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ChatGPT, a generative AI large language model, has recently captured significant 

attention in both the computer science community and the broader public domain. It has 

demonstrated a wide range of capabilities, from answering simple questions to writing fully 

functional computer code. This study spotlights both the capabilities and limitations of 

ChatGPT when addressing engineering problems. The model's capacity to generate practical 

engineering tools is highlighted through an example of a prompt that leads to an interactive 

plotting tool, enabling the examination of the fluid boundary layer around a fan blade. 

Subsequently, the paper also uncovers potential pitfalls in ChatGPT’s application, shown 

through an unsuccessful attempt to use ChatGPT to automate a process in Ansys Workbench 

through scripting. The research further investigates ChatGPT's proficiency in addressing 

inquiries and providing explanations about the functionalities of OpenMDAO, an open-

source, multidisciplinary design, analysis, and optimization tool developed at NASA Glenn 

Research Center. Finally, an optimization methodology, developed with ChatGPT’s help, is 

applied to the structural optimization of a fan blade. The developed optimization method 

utilizes T-Blade3 for geometry generation, Ansys Mechanical for meshing and finite element 

analysis, and sci-kit learn’s MLPRegressor method to generate a trained neural network 

model of the design space. OpenMDAO is then used to find the optimal point within the design 

space. The outcome is a significant reduction in stress in the optimized model—less than one-

fifth of the stress value in the baseline model. 

I. Nomenclature 

AI =  Artificial Intelligence 

CFD =  Computational Fluid Dynamics 

FEA =  Finite Element Analysis 

FoS =  Factor of Safety 

GPT =  Generative Pre-trained Transformer 

LHS =  Latin Hypercube Sampling or Latin Hypercube Sample 

LLM =  Large Language Model 

ML =  Machine Learning 

MLP =  Multilayer Perceptron 

NN =  Neural Network 
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𝑑𝑚𝑠
′  =  Normalized differential arc length of a streamline 

𝑚𝑠 =  Streamline position 

𝑟 =  radial coordinate in (𝑥, 𝑟, 𝜃) cylindrical coordinate system 

𝑟𝑠 =  Streamline 𝑟 coordinate 

𝑥 =  Axial coordinate in (𝑥, 𝑟, 𝜃) cylindrical coordinate system 

𝑥𝑠 =  Streamline 𝑥 coordinate 

𝜃 =  Left-handed rotational coordinate in (𝑥, 𝑟, 𝜃) cylindrical coordinate system 

𝜎𝑣𝑚,𝑚𝑎𝑥 =  Maximum von-Mises stress 

𝜎𝑦𝑠 =  Yield Strength 

Δ𝑚25
′  =  Sweep control point at 25% span (similarly for other span location) 

Δ𝜃25 =  Lean control point at 25% span (similarly for other span locations) 

II. Introduction 

The incorporation of generative artificial intelligence (AI), particularly large language models (LLMs), into 

engineering tool development signifies a paradigm shift in engineering practices. ChatGPT is an AI chatbot developed 

by OpenAI [1] that has recently become a topic of interest in popular culture. There are several versions of it, some 

of which are available to use freely on the OpenAI website. The current free version of ChatGPT is based on 

Generative Pre-trained Transformer 3.5 (GPT-3.5). A professor at Wharton School at the University of Pennsylvania 

recently wrote a report on GPT-3.5 stating that the chatbot would score a B or B- on the final exam in their operations 

management course [2]. Despite this high praise for GPT-3.5, the authors have found that the newest version of 

ChatGPT, which currently requires a subscription, performs much better at programming tasks compared to GPT-3.5. 

The newest version of ChatGPT is based on GPT-4; this is the model that is the focus of this paper. Further 

references to ChatGPT refer to the version based on GPT-4. GPT-4 has shown remarkable ability in a wide variety of 

academic fields. It has outscored, significantly in many instances, GPT-3.5 on every exam that the authors have seen 

reported. GPT-4 scored in the 90th percentile on the Uniform Bar Exam and the 80th percentile in the GRE 

Quantitative exam according to a March 2023 report by OpenAI [3]. GPT-4 also achieved passing grades on a mock 

500-question neurosurgical written board examination [4]. 

These are some extremely impressive accolades for any person, much less an AI language model. However, it is 

still important to consider the limitations of such tools. Like a person, ChatGPT is only proficient in topics on which 

it has been sufficiently trained. Unlike most people, when ChatGPT is insufficiently trained on a topic, it often returns 

a response which appears to be legitimate but may be entirely made up. This is known as an AI hallucination [5], and 

it is a major hurdle to overcome so that these models can be even more useful in engineering work. 

Still, ChatGPT has shown itself to be an incredibly valuable tool in this work. One key to success in the usage of 

ChatGPT is drafting an effective prompt. If a prompt is well-crafted, the user is much more likely to successfully 

achieve their objective. Prompts should be written clearly and concisely with information that is accurate and pertinent 

to the objective. The level of specificity depends highly on the type of output that is desired. Sometimes, one may 

simply desire that ChatGPT produces a general framework that can later be modified after the backbone has been 

created. Other times, it may be better to provide specific instructions, such as axis labels in a plot. 

In the following sections, ChatGPT is presented as a valuable engineering resource with notable pitfalls. In the 

design optimization work highlighted in Section V to Section IX, the language model is used to explain the functions 

of OpenMDAO, an open-source multidisciplinary analysis and optimization framework developed at NASA Glenn 

Research Center [6]. ChatGPT is also used to write Python code that generates samples of the design space using Latin 

Hypercube Sampling (LHS). Finally, ChatGPT recommends the usage of a neural network (NN) as a method of 

representing the design space. The NN is trained using the design points of the LHS. This NN is then evaluated using 

a gradient based optimization algorithm. The design optimization methodology developed with ChatGPT’s help is 

used to drive the factor of safety (FoS) as high as possible through modification of only the lean and sweep control 

points in T-Blade3 [7,8]. 

III. ChatGPT For Simple Tool Creation 

The first example of ChatGPT’s programming capability is the creation of a visualization tool to inspect the 

boundary layer of air on a fan blade. In this section, the specifics of the CFD simulation are not presented. The Python 

code produced by ChatGPT is the focus. 

A data structure is already created and there is now interest in developing an effective way to visualize the data. 

The authors are well-versed python programmers, so they already know the packages that they wish to use to complete 
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this task. Those packages are Matplotlib [9], a matrix plotting library, and PyQt5 [10], a cross-platform GUI toolkit. 

However, the method of producing such a tool without using a GUI designer such as Qt Designer [11] is not well 

understood. This section shows that ChatGPT has no issue creating this type of tool using Python code alone. 

The aim is to integrate the boundary layer plot into a PyQt5 window and leverage PyQt5 to select which region on 

the fan surface to visualize. Two contrasting examples are provided: one illustrating a brief, insufficient explanation, 

and another delivering a more comprehensive, satisfactory description of the desired Python program. The prompt for 

the brief explanation of the desired Python program is shown below. 

 

Prompt: 

 
I have data that I would like to plot in an interactive graph using PyQt5 with an embedded matplotlib plot.  Please 

write a Python code to do this based on the following information.   

The data to plot has the following format: 

VelocityMagnitude[i_position, j_position, t_position] 

DistanceFromWall[i_position, j_position] 

I want to be able to toggle i_position and t_position in the GUI and plot all j points.   

 

The output from this request produces a working interactive figure that plots the boundary layer. The interactive 

plot is shown in Fig. 1. Though the code functions as described in the prompt, the output leaves several things to be 

desired. First, ChatGPT creates a class for the interactive plot, but this class does not take any inputs. Therefore, it 

must be placed below the data definition within a script, and the data cannot be imported. This issue can easily be 

corrected by programming the class to take inputs of the variables that contain the velocity magnitude and the distance 

from the wall. Second, it placed the velocity magnitude on the y-axis and distance from the wall on the x-axis, which 

is the opposite of the typical way to show such data. This type of data is also often too fine to include markers, as they 

may overlap each other for certain positions. Finally, this data is always in the standard SI unit system, so it is desirable 

to include units in the plot.  

 

 

Fig. 1  Boundary Layer Visualizer produced with inadequate description of request 



4 

 

Based upon the deficiencies of the first plot, a more descriptive prompt is now used to produce an improved 

interactive figure. This prompt is much more detailed in describing the format that is desired, which results in a better 

tool produced by ChatGPT. 

 

Prompt: 

 
I have data that I would like to plot in an interactive matplotlib graph.  I'd like the interactive plot to be controlled 

using PyQt5.  Please write a Python code to do this based on the following information. 

The data to plot has the following format: 

VelocityMagnitude[i_position, j_position, t_position] 

It also has a corresponding set of data, which is the distance from the wall. 

DistanceFromWall[i_position, j_position] 

I would like this to be its own class that takes inputs for VelocityMagnitude and DistanceFromWall as its inputs.  I 

want to be able to toggle i_position and t_position in the GUI and plot all j points.  The GUI should print the i_position 

and t_position to the screen.  The toggles should be a horizontal sliders.  The velocity variable should be plotted on 

the x-axis, and the distance should be plotted on the y-axis.  Please add labels to them including units, this is all in 

standard mks.  I would like the plot to be a line plot without markers.   

I also want this to be easy to import, so please make a separate function that takes care of all the extra PyQt stuff like 

the show method. 

 

 The second boundary layer visualization tool functions exactly as desired. The class initialization now takes inputs 

of the variables used to generate the plot. The code also included a function that makes it very easy to import into any 

other script. The axes are aligned as requested and include labels with units. The code is included in Appendix A. 

 

 

Fig. 2  Screen capture of ChatGPT boundary layer visualizer produced with adequate explanation of the 

request 

The length of the Python code output is nearly at the maximum output size for a ChatGPT response, so it is difficult 

to create a more sophisticated program than this. Conceivably, the user could request that ChatGPT create various 

functions that could later be pieced together into a larger, more complicated program. However, the approach that the 
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authors have taken is to ask ChatGPT programming questions and then write the code themselves. This is discussed 

in Section V. 

IV. ChatGPT Hallucination Issues 

As part of the development of the optimization method that is described in Section VIII of this paper, it was 

necessary to automate an Ansys Mechanical analysis. The simulation automation was completed before ChatGPT 

(based on GPT-4) was released. So, a method of doing this task was already known to the authors. The most 

complicated portion of this process is changing the geometry of the blade. The process requires an external Python-

based script that is an Ansys Workbench Journal File [12] with an embedded JavaScript [13] that is sent to Ansys 

DesignModeler. So, the Ansys Workbench script should contain a large string of JavaScript which controls the 

geometry update in DesignModeler. 

Multiple prompts are attempted with the hopes that ChatGPT can write the portion of the code that changes the 

fan geometry’s source file. Each of these prompts results in a hallucination [5] where ChatGPT outputs a solution that 

reads like it could be correct if one is not familiar with Ansys scripting, but code is entirely nonsense. The first prompt 

requests that ChatGPT write an Ansys Workbench Journal File that uses DesignModeler to change the geometry of a 

fan blade. 

 

Prompt:  

 
Please generate an Ansys Workbench Journal File to change geometry in Ansys DesignModeler.  The geometry object 

that I wish to change is called "Blade" in the DesignModeler tree outline and the file describing the geometry is a 

STEP file.  

 

 The response produces a script and the assumptions made in creating it. ChatGPT finishes with important items to 

remember when running this type of script. However, the script is not functional. The commands are made up and, 

based on its response, ChatGPT does not even know what type of scripting language that is used in Ansys Workbench. 

 

Response: 

 
Sure, you want to generate an Ansys Workbench journal file to automate the change of a geometry object named 

"Blade" in the Ansys DesignModeler, which is originally described by a STEP file. Below is a simple example of how 

you might automate this task. 

This journal assumes that: 

You have an ANSYS Workbench project with a DesignModeler geometry component. 

The geometry named "Blade" is already present in the DesignModeler tree. 

You want to replace this geometry with another STEP file, let's assume it's named "NewBlade.step" and is located in 

the "C:\Users\YourUsername\Documents" directory. 

 
! ANSYS Workbench Journal File for Updating Geometry in DesignModeler 
 
! Open the active DesignModeler session 
/activate ACT 
 
! Open the DesignModeler application 
AG.ACTivate DesignModeler 
 
! Delete the existing "Blade" geometry 
AG.DeleteItem("Blade") 
 
! Import the new STEP file to replace the old geometry 
AG.Import("C:\Users\YourUsername\Documents\NewBlade.step") 
 
! Rename the newly imported geometry as "Blade" 
AG.RenameItem("NewBlade", "Blade") 
 
! Update and save the changes in the geometry 
AG.Update() 
AG.SaveProject() 
 
! Close the DesignModeler session 
AG.Exit() 
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Remember: 

1. Replace C:\Users\YourUsername\Documents\NewBlade.step with the actual path to your new STEP file. 

2. Journal files can be run from the ANSYS Workbench environment, or via command line. Depending on 

the specifics of your setup and what you're looking to accomplish, you might need to modify the provided 

script to better suit your needs. 

3. Always back up your original project and data before running any script or automation to prevent 

accidental data loss. 

 

This response is followed with a question, “What language is this written in?” ChatGPT responds by stating that 

“the code I provided is written in ANSYS DesignModeler scripting language, which is a part of the ANSYS 

Workbench scripting environment. This language is specifically designed for automating tasks within the ANSYS 

Workbench and DesignModeler environment. The commands, prefixed with AG, are special functions provided by 

ANSYS to interact with DesignModeler.” 

So, a few things are obviously wrong with this response outside of the script. First, DesignModeler is not scripted 

in the same language as Workbench. Workbench has Python-based journaling, and DesignModeler scripting is done 

in JavaScript. Second, there is no AG object that exist within the Workbench scripting environment, and since the AG 

object does not even exist, it certainly does not send commands to DesignModeler as ChatGPT claims.   

A second prompt is made where the problem is simplified for ChatGPT. In the second prompt, Ansys Workbench 

is not mentioned, and the goal is to simply create a script that will automate changing the geometry source in 

DesignModeler.   

 

Prompt:  

 
Please generate a script for me that I can use in Ansys DesignModeler to change the source of a geometry object.  The 

name of the geometry object in the tree outline is "Blade", and the file format is STEP. 

 

Response: 

 
Certainly! Changing the source of a geometry object in Ansys DesignModeler would typically involve replacing the 

geometry with another source, such as importing a different STEP file. 

 

To help you with the task, here is a script written in Ansys DesignModeler's scripting language, which is based on 

JavaScript: 

 
// Define the main function 
function ChangeSource() { 
    // Access the geometry object named "Blade" 
    var bladeObject = DM.FindObject("Blade"); 
    if (bladeObject === null) { 
        DM.AddMessage("Error: 'Blade' object not found.", 2); 
        return; 
    } 
 
    // Remove the original "Blade" object from the tree 
    bladeObject.Delete(); 
 
    // Path to the new STEP file you want to use as the source. 
    // Replace 'path_to_step_file.stp' with the actual path to your file. 
    var newFilePath = "path_to_step_file.stp"; 
 
    // Import the new STEP file 
    var importResult = DM.Import(newFilePath, "step"); 
 
    // Check if the import was successful 
    if (importResult === 0) { 
        DM.AddMessage("STEP file imported successfully.", 1); 
 
        // Rename the imported geometry to "Blade" 
        var importedGeometry = DM.ActiveObject(); 
        if (importedGeometry !== null) { 
            importedGeometry.Rename("Blade"); 
        } else { 
            DM.AddMessage("Error: Imported geometry could not be renamed.", 2); 
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        } 
 
    } else { 
        DM.AddMessage("Error importing STEP file.", 2); 
    } 
} 
 
// Execute the main function 
ChangeSource(); 

 

Instructions: 

• Replace the text "path_to_step_file.stp" with the actual path to your new STEP file. 

• Execute this script within Ansys DesignModeler. 

 

Remember, this script assumes you already have an object named "Blade" in your tree. If the object doesn't exist, the 

script will give an error message. The script deletes the old "Blade" object and imports the new geometry from the 

specified STEP file, renaming it to "Blade". 

 

This response is written in the correct language, and it follows the steps that are needed when scripting this process.  

A brief outline of operations in the script are listed below: 

 

1. Find the current geometry object which is to be replaced 

2. Delete the current blade geometry 

3. Import the new geometry 

 

So, ChatGPT interprets the request correctly. However, it is using objects that do not exist. For example, it is using 

an object called DM which does not exist in DesignModeler scripting. When the following question, “What is DM in 

the script above?”, ChatGPT responded that “when scripting within Ansys DesignModeler, DM is a global object that 

provides access to the functions and features of the DesignModeler environment.” None of this is true.   

Several other attempts were made to successfully get ChatGPT to produce something that is usable. However, 

none of them were successful. One of the attempts that is not presented in this paper resulted in a rather comical 

creation of a new programming language called AGL, which ChatGPT claimed stands for ANSYS Geometry Interface 

Language. ChatGPT summarized AGL by stating “AGL is a scripting language developed by ANSYS for its Design-

Modeler tool. DesignModeler is a part of the ANSYS suite of simulation software, and it's focused on creating and 

editing 3D geometry for simulation.” In case it needs to be stated, the reader should note that AGL is not something 

that actually exists.   

The issue of hallucination [5] is among the most critical challenges to the creation of reliable generative AI 

systems. The current AI models tend to provide an answer to a question, regardless of whether that answer is correct.  

If the AI system has been sufficiently trained on the material that it is prompted about, the chance for a hallucination 

is reduced. However, for proprietary software that is not that well-documented with openly available information, the 

training is limited, thus the responses are less reliable.  

V. ChatGPT Contribution to Optimization Scheme 

While ChatGPT struggled to create anything usable from the prompts in the previous section, it proved to be 

extremely effective in explaining how to use OpenMDAO [6] and other open-source Python packages that are used 

in the optimization scheme presented in Section VIII and IX. ChatGPT is effective in both explaining how certain 

functions work in OpenMDAO as well as proposing additional ideas to improve the optimization process. 

OpenMDAO has various libraries that can be used to set up an optimization routine. ChatGPT’s primary role with 

respect to the OpenMDAO-based tool development was the explanations of the OpenMDAO Python objects to allow 

the first author to quickly come up to speed on the optimization tool. To show the utility of ChatGPT in explaining 

how Python code functions, ChatGPT is prompted with the custom OpenMDAO class used in the next section of this 

paper. This code is included in Appendix B. 

 

Prompt:  

 
Below is a Python code that I am going to ask you questions about.  Please provide a brief summary of the code.  I 

will also follow this prompt with additional questions about the code. 

[In ChatGPT prompt, the code from Appendix B was pasted here.] 
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Response:  

 
The provided Python code seems to be part of a simulation optimization setup possibly related to turbomachinery, 

judging by the naming conventions and libraries used. Here's a brief summary: 

 

1. Import Statements: 

• The code imports necessary modules and classes including InputFileGenerator and FileParser from 

openmdao.utils.file_wrap, SimulationControlClass from TurboOpt3DSimControl, OpenMDAO's API 

(openmdao.api), shutil, os, time, and numpy. 

2. Global Variable Declaration: 

• LastIteration is declared as a global variable to keep track of the last successful iteration in case the 

simulation process is interrupted. 

3. Class Definition (TurboOPT3D): 

• TurboOPT3D class is defined which inherits from OpenMDAO's ExternalCodeComp class. 

• In the setup method: 

• Inputs (like lean and sweep values at different sections of a blade) and outputs (FoS - Factor of 

Safety, and W - possibly Weight) are defined. 

• Instances of InputFileGenerator, SimulationControlClass, and some other variables are initialized. 

• In the compute method: 

• The method orchestrates a simulation process by preparing input files, running a simulation, 

performing structural analysis, and logging the results to a file. 

• The results of each iteration are appended to a result file, which logs the iteration number, FoS, 

weight, and input parameters. 

• WriteTblade3File method: 

• Modifies a template input file for a simulation tool (presumably TBlade3) with updated values of 

lean and sweep at different blade sections. 

• StructuralAnalysis method: 

• Attempts to run a structural analysis (using a method from SimulationController) on the simulation 

results, handling any exceptions that occur, and logging failures to the result file. 

4. Error Handling: 

• If a simulation failure occurs during structural analysis, it's logged in the results file, and if too many 

consecutive failures occur, the program will exit. 

 

This code is structured to automate the process of running simulations, modifying input files, and logging results 

within an optimization framework provided by OpenMDAO. The TurboOPT3D class encapsulates the logic needed 

to interact with external simulation tools, handle file I/O, and manage the simulation process. 

 

This response is an excellent summary of the functions of the Python class that was provided. The only mistake is 

confusing T-Blade3 for the analysis tool, which is an understandable error given the limited amount of information 

provided to ChatGPT for this exercise. If ChatGPT is provided with the information that T-Blade3 is a parametric 

geometry generating tool for use with turbomachinery, then it is better able to analyze the code, which results in a 

more informative response to the prompter.  

The more information that ChatGPT has on a certain topic, either from its training or from a prompt, the better it 

is at answering questions. In terms of creating an effective prompt, it is ideal to be concise while still including a 

reasonable amount of pertinent information. If ChatGPT is not well-trained trained on a certain topic, the amount of 

background information that should be included in the prompt grows. T-Blade3 is not a well-known tool, so it is not 

surprising the ChatGPT is unfamiliar with it. 

 

Prompt:  

 
Just a bit of context for you, T-Blade3 is a parametric geometry generating tool for use with Turbomachinery. Can 

you please explain to me how editing the T-Blade 3 input file works in the TurboOPT3D class? 

 

Response: 

 
Certainly! The TurboOPT3D class within the provided code snippet has a method named WriteTblade3File that is 

responsible for modifying the input file for T-Blade3, which is a parametric geometry generating tool for turbomachinery. 

 

Here's a step-by-step breakdown of how the WriteTblade3File method operates to edit the T-Blade3 input file: 
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1. Method Signature: 

• The WriteTblade3File method accepts two arguments: tbladeinputfile (which is the path to the original input 

file for T-Blade3) and inputs (which contains the new values for parameters like lean and sweep at different 

sections of a blade). 

2. Generated File Naming: 

• A new file name (tbladeinputfile_generated) is created by appending _gen to the original file name 

tbladeinputfile. This new file will temporarily hold the updated input data before it overwrites the original file. 

3. Input File Parser Initialization: 

• The method initializes the InputFileGenerator instance (self.writeParser) with the original input file 

(tbladeinputfile) as the template and the generated file name (tbladeinputfile_generated) as the output. 

4. Modifying Lean Parameters: 

• self.writeParser is then used to find and replace the values of lean parameters at different blade sections: 

• The anchor is reset and marked at the line containing 'Control points for lean'. 

• The transfer_var method of self.writeParser is used to replace the existing values of lean parameters at different 

blade sections (lean_025, lean_050, lean_100) in the original file with the new values provided in inputs. 

• The generate method of self.writeParser is called to write these changes to the generated file. 

5. Modifying Sweep Parameters: 

• Similar to the lean parameters, the sweep parameters are updated: 

• The anchor is reset and marked at the line containing 'Control points for sweep'. 

• The transfer_var method of self.writeParser is used to replace the existing values of sweep parameters at 

different blade sections (sweep_025, sweep_050, sweep_100) in the original file with the new values 

provided in inputs. 

• The generate method of self.writeParser is called again to write these changes to the generated file. 

6. Overwriting Original File: 

• Finally, the shutil.copyfile method is used to overwrite the original input file (tbladeinputfile) with the updated 

data from the generated file (tbladeinputfile_generated). 

• The generated file (tbladeinputfile_generated) is deleted using os.remove to clean up. 

 

Through this process, the WriteTblade3File method automates the editing of the T-Blade3 input file to reflect the new lean 

and sweep parameters for a given iteration, making it ready for the next simulation run. This automated editing of input 

files is crucial for facilitating parametric studies or optimization runs where the geometry parameters are varied 

systematically. 

 

This is a much more detailed overview of the WriteTblade3File method. ChatGPT does an excellent job explaining 

how this works and makes no mistakes this time. This utility could prove to be very useful in getting engineers up to 

speed on how a code works. It could also be very useful in documenting code. There are a lot of possibilities with one 

significant hinderance. Submitting information like this through the typical web interface is not secure. This issue is 

briefly discussed in the conclusion.  

The initial approach to optimization utilized a genetic algorithm (GA) directly on the fan blade FEA model. This 

proved to be difficult for this problem. The simulation time was too long for the GA implementation that was being 

used. An attempt to use a gradient based optimization approach led to difficulties with becoming stuck in local minima. 

Additionally, it proved to be difficult to restart the optimization process if there was a simulation failure. So, a new 

approach is desired. The intent is to run a set of cases and use that data to fit a polynomial to the objective function 

with the design variables as independent variables. Latin hypercube sampling (LHS) [14] is chosen as the method to 

survey the design space. ChatGPT is prompted to see if there is any way to do this with a Python package. It responds 

that there are three Python packages available to do LHS: PyDOE, SciPy and SALib. Since SciPy is the most 

commonly used package of those listed, it is chosen as the tool. Now, ChatGPT is tasked with writing the code that 

will generate the LHS and save it to a text file. 

 

Prompt:  

 
Please use SciPy to create a LHS with 6 design variables.  I also want to be able to set the size of the range of the 

variables and the center point of the variables.  The variables are called: lean_025, lean_050, lean_100, sweep_025, 

sweep_050, sweep_100.  I want 1000 points in the sample.  

 

After this prompt, ChatGPT successfully generates a code that creates an LHS, but the prompt did not request a 

save function, so the code did not save the sample. ChatGPT is asked to add a save function to the code. The following 

is the ChatGPT authored code that successfully generates an LHS of the design space and saves it to a text file.  
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Python Code Portion of Response: 

 
import numpy as np 
import pandas as pd 
from scipy.stats.qmc import LatinHypercube 
 
# Define bounds 
c1, c2, c3, c4, c5, c6 = [0, 0, 0, 0, 0, 0]  # Define your center points here 
r1, r2, r3, r4, r5, r6 = [1, 1, 1, 1, 1, 1]  # Define your range values here 
 
bounds = [ 
    [c1-r1, c1+r1], 
    [c2-r2, c2+r2], 
    [c3-r3, c3+r3], 
    [c4-r4, c4+r4], 
    [c5-r5, c5+r5], 
    [c6-r6, c6+r6] 
] 
 
# Generate LHS sample 
lhs_obj = LatinHypercube(d=6) 
samples = lhs_obj.random(n=1000) 
 
# Adjust the samples to the specified bounds 
samples_adjusted = np.array(bounds)[:, 0] + samples * (np.array(bounds)[:, 1] - 
np.array(bounds)[:, 0]) 
 
# Convert samples to a DataFrame for easier saving 
columns = ['lean_025', 'lean_050', 'lean_100', 'sweep_025', 'sweep_050', 'sweep_100'] 
df_samples = pd.DataFrame(samples_adjusted, columns=columns) 
 
# Save function 
def save_to_csv(df, filename="lhs_samples.csv"): 
    df.to_csv(filename, index=False) 
    print(f"Saved to {filename}") 
 
# Save the data 
save_to_csv(df_samples) 

 

After the space is mapped, the cases are run using the points from the LHS. This process is described in more 

detail in Section VIII. The initial intent was to fit the space using polynomial regression. Initial attempts at this failed, 

resulting in strong oscillations for the curve fit of the FoS within the design space. So, ChatGPT is queried to see if it 

has any advice on fitting the points.   

 

Response: 

 
If you're experiencing oscillations in your polynomial regression fit, you might be dealing with overfitting, especially 

when using high-degree polynomials. Here are some alternative methods and approaches to consider: 

 

1. Regularization: Introducing regularization like Ridge (L2) or Lasso (L1) can help to reduce overfitting in 

polynomial regression. By adding a penalty term to the cost function, the algorithm is discouraged from fitting 

the training data too closely. 

2. Lower the polynomial degree: If you are using high-degree polynomials, try reducing the degree. It might give 

a smoother fit, albeit with a potential increase in bias. 

3. Piecewise Regression: Instead of fitting a single polynomial over the entire domain, fit multiple lower-degree 

polynomials over partitions of the domain. 

4. Splines and Smoothing Splines: Splines are piecewise polynomial functions. Smoothing splines can be 

particularly useful as they allow for a smooth curve that fits the data points with a penalty on the curve's 

roughness. 

5. Kernel Regression: It’s a non-parametric technique, meaning that the model doesn't assume any underlying 

distribution. It fits the data points using local approximations. 

6. Gaussian Processes (GPs): GPs can be used for regression tasks and provide a probabilistic non-parametric 

model. They give both a mean function (the regression function) and a covariance function (giving uncertainty 

estimates). 
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7. Random Forests and Gradient Boosted Trees: Even though these are more commonly used for classification, 

they can be adapted for regression tasks. They work well with complex datasets and don't require the 

underlying relationship between variables to be of a specific form. 

8. Neural Networks: A simple feed-forward neural network can be used for regression. They can capture complex 

non-linearities, but require careful tuning and can overfit if not handled properly. 

9. Dimensionality Reduction: Given you have 6 design variables, consider techniques like Principal Component 

Analysis (PCA) to reduce the dimensionality of your problem. This can simplify the regression task, especially 

if the original variables have multicollinearity. 

10. Cross-validation: No matter which method you choose, always use cross-validation to evaluate the model's 

performance on unseen data. This will give you an idea of how well your model might perform on new, unseen 

data points. 

11. Data Visualization: Given that your design space has 6 variables, direct visualization can be challenging. 

However, consider techniques like pair plots, parallel coordinate plots, or t-SNE to visualize and understand 

relationships in your data. 

12. Experiment with Interactions and Transformations: Instead of just using the raw variables, consider creating 

interaction terms (e.g., 𝑥1 × 𝑥2) or transforming variables (e.g., log-transform). Sometimes, the relationship 

between the response and predictors can be captured better with transformations. 

 

Remember, the choice of method should be based on the nature of your data, the relationships between variables, and 

the specific problem requirements. It's often a good idea to try multiple approaches and evaluate their performance. 

 

Following this response, the concept of using a neural network to model the space was pursued which led to the 

usage of the Neural Network in Section VIII.D.  

VI. Initial Design, Design Variables and Objective Function 

The design selected for improvement through the optimization method described in the next section is called the 

Tail Cone Thruster (TCT) Design No. 7-28-8 [15], previously known as the aft boundary layer propulsor in the cited 

paper. The input files to generate this rotor can be found on the T-Blade3 Github in Ref. [16]. The TCT is a blade 

designed to handle the ingestion of the boundary layer towards the back of the airplane as depicted in Fig. 3.   

For the purposes of this paper, this model has been selected simply for demonstration purposes and the boundary 

layer ingestion is not a consideration in the proposed optimization methodology. Rather the focus is on improvement 

in the factor of safety (FoS) through modification of the lean and sweep control points exclusively. The FEA 

simulation, which considers centrifugal loading only, is described in detail in Section VII.   

 

Fig. 3  The Tail Cone Thruster (TCT) as depicted in Refs [15,17] 

For the optimization presented in the next sections, the design variables selected for use in the optimization are 

lean and sweep control points at radial stations of 25%, 50% and 100%. 
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A. Lean and Sweep Control Points 

The lean and sweep of the blade can be altered by a user-specified number of spanwise control points in the T-

Blade3 input file [18]. B-spines are used to generate smooth geometry from these inputs. The stacking of the blade 

sections may be adjusted in the 𝜃 direction using lean control points and the 𝑚𝑠
′  direction using sweep control points. 

 Fig. 4 shows the (𝑥, 𝑟) meridional plane of the turbomachine along with streamlines of the expected airflow. The 

third direction of the coordinate system that this plane lies on is the 𝜃 direction; together these three coordinates form 

the (𝑥, 𝑟, 𝜃) coordinate system with the rotation direction in 𝜃 defined using left-handed rotation. In this context, the 

streamlines are axisymmetric and should be thought of as construction curves. When revolved about the 𝑥-axis, they 

are construction surfaces. The position along the streamline is defined by 𝑚𝑠 and the differential arc length of the 

streamline, 𝑑𝑚𝑠, can be determined by Eq. (1).  

𝑑𝑚𝑠 = √𝑑𝑥𝑠
2 + 𝑑𝑟𝑠

2 (1) 

 

Fig. 4  The (𝒙, 𝒓) meridional plain of the turbomachine. This figure also shows streamlines, which are used to 

define the 𝒎𝒔
′  coordinate. 

 For the purposes of design, it is useful to normalize the space to allow for effective scaling of the size. For this 

purpose, the normalized differential arc length, 𝑑𝑚𝑠
′ , defined in Eq. (2) is used. Finally, the 𝑚𝑠

′  coordinate is 

determined through integration of 𝑑𝑚𝑠
′  in Eq. (3). 

𝑑𝑚𝑠
′ =

𝑑𝑚𝑠

𝑟𝑠

 (2) 

𝑚𝑠
′ =  ∫

√(𝑑𝑥𝑠)2 + (𝑑𝑟𝑠)2

𝑟𝑠

 (3) 

In the T-Blade3 input file used for the optimization work presented in this paper, there are four control points 

defined at different positions along the blade span; these are at 0%, 25%, 50% and 100% span locations. Keep in mind 

that the number of these control points is determined by the user and can be set arbitrarily. The control points represent 

a shift in location from the profile defined in another portion of the T-Blade3 input file. Sweep control points are 

defined in the non-dimensional 𝑚𝑠
′  coordinate. These are referred to as Δ𝑚0

′  , Δ𝑚25
′ , Δ𝑚50

′  and Δ𝑚100
′ . Lean control 

points produce a shift of the blade profile in the 𝜃 coordinate, which is rotation about the 𝑥-axis and has units of 

radians. Similar to the sweep control points, the lean control points are referred to as Δ𝜃0, Δ𝜃25, Δ𝜃50 and Δ𝜃100. 

These two parameters are used to shift the blade profile in the (𝑚𝑠
′ , 𝜃) coordinate system. The result is a change in the 

lean and sweep angles of the blade. 

For the optimization work presented in this paper, the values of Δ𝜃0 and Δ𝑚0
′  are always held at zero, while the 

other six parameters are considered design variables. There is an example below in Fig. 5 that shows the effect of 
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changing the lean and sweep control points. In Fig. 5, the new geometry is shown in green while the baseline geometry 

is shown in grey. Fig. 5a shows the result of applying Δ𝑚25
′ = 0.2, resulting in a forward swept blade at the 25% span. 

Fig. 5b shows the result of applying Δ𝜃25 = −0.2, which has a strong effect on the lean of the blade around the 25% 

span. For additional background on T-Blade 3 and how it functions, please reference [7,8,16,18–23]. 

 

 

Fig. 5  Sweep (a) and lean(b) examples; a) positive sweep control point at 25% span (𝚫𝒎𝟐𝟓
′ = 𝟎. 𝟐); b) 

negative lean control point at 25% span (𝚫𝜽𝟐𝟓 = −𝟎. 𝟐) 

B. Objective Function 

The objective function for the design optimization is the negative of the factor of safety (FoS). The FoS is defined 

as the maximum von-Mises, 𝜎𝑣𝑚,𝑚𝑎𝑥, stress in the blade divided by the yield strength of the material. This is shown 

below in Eq. (4). The goal of the optimization is to minimize the objective function, which is the same as maximizing 

the FoS for this case. This is done through modification of the lean and sweep control points. 

FoS =  
𝜎𝑦𝑠

𝜎𝑣𝑚,𝑚𝑎𝑥

 (4) 

VII. FEA Model Settings and Starting Design Results 

A. Baseline Model 

As mentioned in the previous section the starting design for this optimization is the Tail Cone Thruster (TCT) 

Design No. 7-28-8 [15,16]. A slight alteration has been made to the version that is available on the T-Blade3 website; 

the lean and sweep at 0% span have been set to zero. The blade geometry is of a model previously designed for a wind 

tunnel test. The blade is approximately 150 [mm] in radius and its design rotational speed is 21,581 [RPM] [15]. The 

blade is constructed of Ti-6Al-4V. The properties for this material are given in Table 1. 

a) b) 
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Table 1  Properties of the titanium compound used for this analysis 

Ti-6Al-4V Properties 

Density [kg] 7,850 

Elastic Modulus [GPa] 200 

Poisson Ratio 0.3 

Tensile Stength [MPa] 250 

The geometry of the blade design is shown in Fig. 6. This geometry does not contain a design for a disk. Instead, 

it is supported by a thick wedge. Disk design is outside the scope of this work, but it is a future topic of interest. A 

constant radius fillet sized 1/16 [in] (1.5875 [mm]) is added to the root of the blade in Ansys DesignModeler [24]. 

 

Fig. 6  TCT 7-28-8 with all lean and sweep parameters set to zero. 

B. Mesh Settings 

The mesh settings used in a typical analysis in the optimization scheme are listed below in Table 2. The topology 

is separated such that it allows for mapped face meshing on both the pressure and suction faces. Two edges run along 

the span (Spanwise Edges) and two edges run along the chord (Chordwise Edges) at both the root and top of the blade. 

The fillet region is also composed of two mappable faces, whose refinement is defined by the Chordwise Edge sizing 

and the Fillet Edge sizing. Table 3 shows the mesh parameters used by the Ansys mesh utility. Please see the Ansys 

Mechanical manual for details about these mesh parameters [25]. For the baseline geometry, the mesh has 148,914 

nodes and 100,254 solid, second-order elements. Fig. 7 shows the resultant mesh. 

Table 2  Mesh edge sizing for the centrifugal load safety analysis. 

  Divisions Bias Type Bias Factor 

Spanwise Edges 50 Towards Root 3 

Chordwise Edges 50 Both Sides 3 

Fillet Edges 5 None N/A 
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Fig. 7  Mesh of the baseline case. 

 

Table 3  Ansys mesh parameters used for analyzing models for the optimization. 

Ansys Mesher Settings 

Element Order 2nd 

Element Size [m] 0.005 

Growth Rate 1.85 

Capture Curvature Yes 

Curvature Min Size [mm] 0.3 

Curvature Normal Angle 12 

Capture Proximity Yes 

Proximity Min Size [mm] 1 

C. Loading and Constraints 

A cyclic symmetry model is not used in order to conducts the simulation as quickly as possible. Instead, the model 

is fixed at the base of the wedge as well as the faces which would otherwise have cyclic symmetry boundaries applied. 

The design speed for the rotor is 21,581 [RPM], and the centrifugal load is the only load that is applied.   

D. Mesh Convergence Study 

A mesh refinement study is conducted to ensure that the chosen mesh is sufficiently refined. In this study, the 

number of divisions on the mapped faces are both coarsened and refined in order to evaluate for mesh convergence.  

The settings used in this study are shown below in Table 4. 
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Table 4  Mesh settings for mesh convergence study 

 Edge Divisions   

Mesh Type Spanwise Chordwise Fillet Growth Rate Total Nodes Total Elements 

Coarse 30 30 4 1.85 116,959 81,584 

Regular 50 50 6 1.85 148,914 100,254 

Fine 100 100 8 1.4 309,788 197,214 

Table 5 shows the results of the mesh convergence study in terms of the FoS, which is the only component of the 

objective function and is defined in Equation 4. The results show that the regular and fine mesh, which has twice as 

many nodes as the regular mesh, have nearly the same results with a deviation of only 0.6%. The coarse mesh, on the 

other hand, has a result which deviates 10.6% from the fine mesh.   

Table 5  FoS results of the refinement study 

 FoS 

Coarse 1.1182 

Regular 1.0167 

Fine 1.0107 

The mesh convergence study results indicate that the regular mesh is sufficiently refined. Also, the regular mesh 

settings produce a model that can be meshed and solved in less than a minute, which is an excellent property given 

the large number of cases that need to be simulated. The reported meshing and simulation time is on a laptop using 4 

cores, so the time on the workstation where the optimization is conducted is even less. 

VIII. Optimization Methodology 

In this section, the turbomachinery blade optimization system that was inspired by the recommendation of 

ChatGPT to utilize a neural network model is presented. The method is described in a flow chart in Fig. 8. The flow 

chart was fed to ChatGPT’s image input function and asked to describe the process illustrated in the flow chart.   

 

Response: 

 
The flowchart outlines a design optimization process that employs both sampling techniques and neural networks. 

Here's a step-by-step explanation: 

 

1. Choose a design space: This is the initial step where you define the boundaries and constraints of the problem 

you want to solve or optimize. 

2. Sample that space with LHS: LHS stands for Latin Hypercube Sampling, which is a statistical method used for 

generating a sample of plausible collections of parameter values from a multidimensional distribution. It's a 

way to ensure that the entire design space is adequately explored. 

3. Run each point from the sample: After sampling the design space, each sampled point or scenario is executed 

or evaluated. This could involve running a simulation, an experiment, or any method that gives you a result for 

that specific set of parameters. 

4. Use the results to train a NN: NN stands for Neural Network, a type of machine learning algorithm. The results 

from the sampled points are used to train this neural network. Essentially, the neural network learns the 

relationship between the input parameters and the results. 

5. Run an optimization on the NN model: Once the neural network is trained, you can use optimization techniques 

on it to find the best possible solution within the design space. This step tries to improve the performance based 

on what the neural network has learned. 

6. Determine if result is satisfactory: After running the optimization, you check if the results meet your criteria for 

success. If they do, you proceed to finalize the optimization. If not, you go to the next step. 

7. Reduce the design space and recenter it around the best point: If the result from the neural network 

optimization isn't satisfactory, the design space is narrowed down, focusing more closely around the best 

solution found so far. This refined design space is then sampled and evaluated again, effectively iterating on the 

optimization process. 
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Finally, once a satisfactory result is achieved, the process concludes with the statement "Optimization Complete." 

 

In essence, this process is a mix of exploratory sampling, machine learning, and iterative refinement to find an optimal 

solution within a design space. 

 

 

Fig. 8  Flow chart of optimization methodology 

The following subsections explain the individual steps in further detail.   

A. Initial Design Space 

The choice of a design space is simple in concept but can be difficult in practice if the designer is unfamiliar with 

the design space. For example, if too large of a space is selected with many infeasible designs, it will reduce the 

understanding of the useful portion of the design space. In the case of the optimization of the Tail Cone Thruster 

(TCT), prior experience indicated that a range of -0.1 to 0.1 for all design variables would provide designs that are 

largely reasonable for this geometry. This is the space used for the initial iteration in the design and is also shown 

below in Table 6. Please see Section VI.A for a description of the lean and sweep control point design variables. 

Table 6  Initial design and design space for initial iteration of optimization loop 

  Design Space 
 Initial Design Lower Limit Upper Limit 

Δ𝑚25
′  0.0 -0.1 0.1 

Δ𝑚50
′  0.0 -0.1 0.1 

Δ𝑚100
′  0.0 -0.1 0.1 

Δ𝜃25 0.0 -0.1 0.1 

Δ𝜃50 0.0 -0.1 0.1 

Δ𝜃100 0.0 -0.1 0.1 
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B. Latin Hypercube Sampling 

The sampling of a high dimensional space, in this case a 6-dimensional space for the 6 design variables, is a 

problem that has been studied by statisticians. The goal is to fill the design space as uniformly as possible, the design 

of such a sampling is known as a space-filling design. One common method for filling such a space is called Latin 

Hypercube Sampling (LHS), which was introduced by McKay, Beckman and Conover in 1979 [26]. LHS ensures that 

each of the dimensions within the sampling space is sampled uniformly. This is described in Ref [14] as “Latin 

hypercube designs have one-dimensional uniformity in that, for each input variable, if its range is divided into the 

same number of equally-spaced intervals as the number of observations, there is exactly one observation in each 

interval.” However, this does not guarantee that combinations of variables will be sampled effectively, and the points 

could still be somewhat bunched together in some of the regions of the design space.   

The LHS can be improved through optimization methods which produce a sample of the design space that is more 

even and avoids point bunching. SciPy’s LHS generator provides several optimization routines to do this. The 

‘random-cd’ optimization method provided by SciPy conducts random permutations of coordinates to lower the 

centered discrepancy [27,28]. The centered discrepancy gives the largest difference between the number of sample 

points in any sub-interval and the expected number of sample points. Simply put, this optimization method reduces 

point bunching and pushes the sample towards a more uniform distribution of points in any sub-domain of the space. 

For the work presented in this paper, SciPy’s Latin Hypercube Sampling is used to sample a 6-dimensional space 

with 1000 points. The sample is optimized using the ‘random-cd’ optimization parameter to reduce centered 

discrepancy.   

There are also other methods known to the authors but not explored in this paper. One of these methods is 

Orthogonal-Array Latin Hypercube Sampling (OA-LHS) [14,29]. OA-LHS sampling has properties that reduce the 

variance of interaction. Consequently, OA-LHS can offer improved representation of the interactions between 

different design variables in many scenarios. However, the complexity of generating a set of OA-LHS points is greater 

compared to ordinary LHS. Since this type of sampling is freely available in SciPy, the complexity of generating the 

sample is not a concern. So, this is a very interesting topic for the focus of future research. Another interesting topic 

for future research is the number of points used to sample the design space. 

C. Simulation Execution 

In addition to the optimization routines included in OpenMDAO, it also contains a useful utility for editing input 

files and running simulations. These features are used to evaluate the set of 1000 cases produced by the LHS by first 

creating the geometry using T-Blade3 and then evaluating the design with the meshing parameters and conditions 

described in Section VII. If a particular configuration fails to produce a FoS result, either due to an issue in geometry 

generation or a failure of the FEM, the point is simply thrown out and not used to train the neural network. The types 

of cases that fail are typically in a range of the design space that performs very poorly, so the loss those points does 

not have much effect on the ability to optimize. The result and design are both saved to a text file. In the next step, the 

data is used to train the neural network. 

D. The Neural Network 

Prior to the recommendation to use a neural network from ChatGPT, neither of the authors had significant 

experience working with neural networks. Fortunately, the recommendations from ChatGPT for the model 

architecture and training parameters proved to train the model effectively with little tweaking. The model 

recommended for use by ChatGPT is sklearn’s Multi-Layer Perceptron (MLP) Regressor [30,31]. The model 

parameters used in this work are given in Table 2. These parameters are little changed from the recommendation from 

ChatGPT, with the only change in the hidden layer size. The original recommendation was for a size of (100, 100), 

but some experimentation with this setting found that increasing the size to (300, 200) produced a better result. An 

investigation into these neural network model and training parameters is outside of the scope of the current work, but 

it is a topic that will be considered in future research. 



19 

 

Table 7  Parameters used for the MLPRegressor model. 

MLPRegressor Parameters 

Hidden Layer Size 300, 200 

Activation Relu 

Solver Adam 

Alpha 0.001 

Learning Rate Constant 

Random State 1 

Max Iterations 500 

E. Optimization of the Neural Network 

After the neural network (NN) is created, an optimization is run on this network. OpenMDAO is used for this 

optimization. OpenMDAO contains several different optimization routines. The goal of the optimization is to drive 

the FoS as high as possible through modification of only the lean and sweep design variables. In this paper, the 

gradient-based optimization is used. OpenMDAO has a method called ScipyOptimizeDriver which is a wrapper for 

the scipy.optimize.minimize method [32,33]. The method for the minimization is Sequential Least Squares Quadratic 

Programming (SLSQP) [34]. 

A genetic algorithm (GA), OpenMDAO’s SimpleGADriver [35], has also been used during the course of this 

work. GAs have the advantage over gradient based methods in terms of resistance to becoming stuck in local minima. 

However, they are much slower compared to the gradient based methods. So far, the GA and gradient-based methods 

have produced similar results for optimization conducted on the NN. Exploration of the GA may be reported in the 

future if a benefit is found. 

F. Determination of a Satisfactory Result 

For this work, the initial design space is a large one with many regions that are well outside of a desirable design. 

So, the initial survey is a very coarse one. It is also possible that the optimal result lies somewhere outside of the 

design space.   

Given those two ideas, as the design iterations increase, the design space should both be recentered around the 

optimal design point and the range reduced in order to produce a more accurate picture around the space of highest 

interest. If the optimal point lands on the edge of the design space, that is a good indication that the optimal point may 

be outside of the current design space and further iterations are warranted. Also, if the FoS prediction from the NN 

deviates significantly from the one determined from analyzing the same case with FEA, then that is also an indication 

that the design space may not be well represented by the NN. 

With all of that said, much of the determination of a satisfactory result is case-by-case and requires engineering 

judgement. Best practices are still being determined. After each iteration in the current work, the design space is both 

recentered around the best point and reduced in size. For example, for the first iteration, the range for each variable is 

0.2 while this range is reduced to 0.15 for the second iteration. The range is 0.1 for the third and final iteration. The 

center point for iterations 2 and 3 is the best point from the previous iteration.  

IX. Optimization Results 

The optimization process starts with the design space centered around zero values for all parameters, like in Table 

6. For this case, the full optimization process lasts for three iterations (see Fig. 8 for a depiction of the process). The 

starting FoS, as defined in Equation 4, is 1.017. This is improved in each iteration with a final value 5.176. So, this 

process reduced the maximum stress in this blade to one fifth of the original value. The best result after each iteration 

is shown in Table 8, which also shows the lean and sweep control points used for each model. 

During the optimization, it became necessary to make a slight alteration for the NN training methodology for 

iteration 3. The initial model, trained based on the method described in Section VIII.D, does not predict the optimal 

value. Instead, it drives the set of variables to a corner of the design space, predicting that minimum values for all 

variables would be the optimal point. After some guidance from ChatGPT, an early stopping criterion was added to 

the training parameters. Early stopping [36] is a useful tool to prevent overfitting of data by creating two training sets, 

one which is not used in training; instead, it is used exclusively for model validation. With early stopping enabled, 

training is stopped if the error in the validation set begins to increase even if the error in the training set continues to 

decrease.  
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It is not clear why the data for iteration three required an early stopping criterion while the other two iterations did 

not. However, it had a significant improvement on the result. A future research topic may explore this and other criteria 

of the neural network. 

Results from the first and second iteration both show that the optimal point is located on the edge of the design 

space for that iteration. However, for iteration 3, the result is located very close to the center of the design space. One 

other thing to note, the difference in the result between the previous iteration and iteration 3 is much smaller compared 

to the prior iterations. This is a good indication that the design is near its best for the current set of design variable.  

Contour plots of von-Mises stress on the blade surface are included in Fig. 9. The stress unit for the figure is [MPa]. 

One interesting thing to note is the change in the location of maximum stress. For the initial design, the maximum 

stress (shown in the figure using the max label) occurs in the fillet region while it occurs in the middle of the blade 

for the optimized model. The stress in the optimized model is also much more even around the filleted region. 

Table 8: Results of the Optimization 

Iteration Initial 1 2 3 

Δ𝑚25
′  0 0.0006 -0.0566 -0.0562 

Δ𝑚50
′  0 -0.0654 -0.1022 -0.1017 

Δ𝑚100
′  0 -0.09 -0.1079 -0.1083 

Δ𝜃25 0 -0.0278 -0.0953 -0.0949 

Δ𝜃50 0 -0.0855 -0.153 -0.1526 

Δ𝜃100 0 -0.09 -0.1549 -0.1554 

FoS, ML N/A 2.141 3.264 3.504 

FoS, FEA 1.017 2.742 5.163 5.176 

  



21 

 

 

Fig. 9 Contours of von-Mises stress on the fan blade; a) initial design, pressure side; b) final design, pressure 

side; c) initial design, suction side; d) final design, suction side. Stress units are in [MPa]. 

X. Conclusions 

This paper began with a focus on ChatGPT. ChatGPT played a crucial part in the development of the optimization 

scheme presented in the past few sections. It is a capable Python programmer and can even make fully functioning 

engineering tools as shown in Section III. This capability amazed the authors and inspired the submission of the draft 

manuscript for this paper.  

a) b) 

c) d) 

Initial Design Final Design 
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ChatGPT does suffer from some significant issues, especially hallucinations, which are covered in Section IV. 

The issue of hallucinations makes it clear that one cannot yet use AI to replace human engineers. Also, any engineer 

making use of AI systems must be acutely aware that the output may not be accurate.  As these large language models 

continue to be developed, hopefully the developers can find ways to have the system indicate that it is uncertain on 

inquiries for topics on which it is poorly trained. This would be more favorable than the creation of fake programming 

languages or other false responses. 

Still, ChatGPT is incredibly useful. Its ability to provide the user with immediate examples of programming 

concepts aids the learning process for engineering tasks. For certain topics, it can be similar to a personal tutor guiding 

one through a new idea. This was the case when it recommended the usage of the neural network to model the design 

space instead of using polynomial regression. In this case, it not only provided an example, but it actually wrote the 

code that trained the first neural network used in this research. This was then used to map out a 2D design space that 

had already been fully explored, and it became immediately clear that this method had promise. ChatGPT allows for 

rapid consideration of many different tools to solve problems. The engineer can then use their judgement to explore 

the best of the options and even use ChatGPT to create prototypes in some cases. 

Another use of ChatGPT, discussed in Section V, is its ability to document existing code. This clearly a very 

useful feature, and ChatGPT produced excellent documentation for the code used in the work. However, the use of 

this for proprietary source code documentation is not advised as ChatGPT is not a secure platform. It seems like an 

obvious business model, so any businesses interested in code documentation should contact OpenAI directly to see if 

they offer this service. 

The optimization methodology developed with ChatGPT’s help proved to be extremely effective, leading to a 

reduction in blade stress to less than one fifth of the original value. The space is incredibly nonlinear with lots of 

interaction between variables, which the method captured very well. The method is also very robust, and the failure 

of any single simulation has little negative effect on the result. There are many research opportunities to be explored 

in the future with respect to the mapping the design space and training parameters used for this the neural network. 

During the course of this research, the benefit of early stopping in the model training was encountered. The size of the 

training set should also be explored. 

Appendix 

A. ChatGPT Boundary Layer Visualizer Code 

The following Python class was produced entirely by ChatGPT based on the second prompt given in Section III.  

This code was then copied to a desktop computer and executed locally. 

 
import sys 
from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QSlider, QLabel, QWidget 
from PyQt5.QtCore import Qt 
import matplotlib.pyplot as plt 
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas 
 
class InteractivePlot(QMainWindow): 
    def __init__(self, VelocityMagnitude, DistanceFromWall): 
        super().__init__() 
 
        self.VelocityMagnitude = VelocityMagnitude 
        self.DistanceFromWall = DistanceFromWall 
 
        self.init_ui() 
 
    def init_ui(self): 
        # Create a QWidget as the central widget 
        central_widget = QWidget(self) 
        self.setCentralWidget(central_widget) 
 
        # Create a QVBoxLayout 
        vbox = QVBoxLayout() 
 
        # Create and configure the plot canvas 
        self.figure, self.ax = plt.subplots() 
        self.canvas = FigureCanvas(self.figure) 
        vbox.addWidget(self.canvas) 
 
        # Create sliders for i_position and t_position 
        self.i_position_slider = QSlider(Qt.Horizontal) 
        self.i_position_slider.setMinimum(0) 
        self.i_position_slider.setMaximum(len(self.VelocityMagnitude) - 1) 
        self.i_position_slider.valueChanged.connect(self.update_plot) 
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        vbox.addWidget(self.i_position_slider) 
 
        self.t_position_slider = QSlider(Qt.Horizontal) 
        self.t_position_slider.setMinimum(0) 
        self.t_position_slider.setMaximum(len(self.VelocityMagnitude[0, 0]) - 1) 
        self.t_position_slider.valueChanged.connect(self.update_plot) 
        vbox.addWidget(self.t_position_slider) 
 
        # Create labels for i_position and t_position 
        self.i_position_label = QLabel() 
        vbox.addWidget(self.i_position_label) 
        self.t_position_label = QLabel() 
        vbox.addWidget(self.t_position_label) 
 
        # Set the layout 
        central_widget.setLayout(vbox) 
 
        # Initial plot 
        self.update_plot() 
 
    def update_plot(self): 
        # Get the current i_position and t_position from sliders 
        i_position = self.i_position_slider.value() 
        t_position = self.t_position_slider.value() 
 
        # Update the labels 
        self.i_position_label.setText(f'i_position: {i_position}') 
        self.t_position_label.setText(f't_position: {t_position}') 
 
        # Clear the previous plot 
        self.ax.clear() 
 
        # Plot the new data 
        velocity_data = self.VelocityMagnitude[i_position, :, t_position] 
        distance_data = self.DistanceFromWall[i_position, :] 
        self.ax.plot(velocity_data, distance_data) 
 
        # Add labels 
        self.ax.set_xlabel('Velocity (m/s)') 
        self.ax.set_ylabel('Distance from wall (m)') 
 
        # Update the canvas 
        self.canvas.draw() 
 
def run_interactive_plot(VelocityMagnitude, DistanceFromWall): 
    app = QApplication(sys.argv) 
    main = InteractivePlot(VelocityMagnitude, DistanceFromWall) 
    main.show() 
    sys.exit(app.exec_()) 
 
if __name__ == '__main__': 
    import numpy as np 
 
    # Generate sample data 
    VelocityMagnitude = np.random.random((10, 5, 3)) 
    DistanceFromWall = np.random.random((10, 5)) 
 
    run_interactive_plot(VelocityMagnitude, DistanceFromWall) 

B. Optimization Class Sent to ChatGPT for Explanation 
 
from openmdao.utils.file_wrap import InputFileGenerator, FileParser 
from TurboOpt3DSimControl import SimulationControlClass 
import openmdao.api as om 
import shutil, os, time 
import numpy as np 
 
# Last iteration is used to restart.  Set it to the most recent 
# successful iteration if the solution process is interrupted.  
 
LastIteration = 0 
 
class TurboOPT3D(om.ExternalCodeComp): 
    def setup(self): 
 
        self.add_input('lean_025') 
        self.add_input('lean_050') 
        self.add_input('lean_100') 
        self.add_input('sweep_025') 
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        self.add_input('sweep_050') 
        self.add_input('sweep_100') 
        self.add_output('FoS') 
        self.add_output('W') 
        self.SimFailureCounter = 0 
        self.SimSuccess = True 
         
        self.writeParser = InputFileGenerator() 
        self.SimulationController = SimulationControlClass() 
         
         
        self.WorkingDir = self.SimulationController.WorkingDir 
        self.CaseResults = os.path.join(self.WorkingDir,'TCT_Iteration2_OptimizedLHS.txt') 
        print('Opening %s'%self.CaseResults) 
        self.ResultsFile = open(self.CaseResults,'a') 
        if LastIteration == 0: 
            self.ResultsFile.write('%6s|%9s|%12s|%12s|%12s|%12s|%12s|%12s|%12s\n'% 
            ('# Iter','Fos  ', 'W', 'lean_025', 'lean_050', 'lean_100','sweep_025','sweep_050','sweep_100')) 
        self.ResultsFile.close() 
        self.Iteration = LastIteration 
         
    def compute(self, inputs, outputs): 
         
        WorkingDatFileDict, WorkingSpanCtrlDict = self.SimulationController.CopyTBlade3Files(Process=1) 
        self.tbladeinputfile = WorkingDatFileDict['Rotor1'] 
        self.WriteTblade3File(self.tbladeinputfile, inputs) 
        self.SimulationController.RunTblade3(Process=1) 
        FoS , W = self.StructuralAnalysis() 
         
        outputs['W'] = W 
        outputs['FoS'] = FoS 
         
        self.Iteration += 1 
        self.ResultsFile = open(self.CaseResults,'a') 
        self.ResultsFile.write('%6i|%9.3f|%12.7f|%12.7f|%12.7f|%12.7f|%12.7f|%12.7f|%12.7f\n' %  
        (self.Iteration , FoS, W, 
         inputs['lean_025'][0], 
         inputs['lean_050'][0], 
         inputs['lean_100'][0], 
         inputs['sweep_025'][0], 
         inputs['sweep_050'][0], 
         inputs['sweep_100'][0] 
         )) 
         
        if self.SimSuccess == True: 
            self.SimulationController.CopySpinAnalysisArchive(Process=1,  
            DesignNumber='TestCases_Iteration%i'%self.Iteration, SimSuccess=self.SimSuccess) 
        else: 
            self.SimulationController.CopySpinAnalysisArchive(Process=1,  
            DesignNumber='TestCases_Iteration%i_Failed'%self.Iteration, SimSuccess=self.SimSuccess) 
        self.ResultsFile.close() 
     
    def WriteTblade3File(self, tbladeinputfile, inputs): 
         
        # tbladeinputfile is the template file.   
        # We just treat it as if it is the file that we are going to use.  If it needs 
        # modified by the optimizer, then a verions with _gen on the extension is created 
        # the original file is then overwritten by the _gen file, and the _gen file is deleted 
        # This will allow us to easily change to optimizing the IGVs or OVGs if desired. 
         
        tbladeinputfile_generated = tbladeinputfile + '_gen' 
         
        self.writeParser.set_template_file(tbladeinputfile) 
        self.writeParser.set_generated_file(tbladeinputfile_generated) 
         
        self.writeParser.reset_anchor() 
        self.writeParser.mark_anchor('Control points for lean') 
        self.writeParser.transfer_var(inputs['lean_025'][0],4,2) 
        self.writeParser.transfer_var(inputs['lean_050'][0],5,2) 
        self.writeParser.transfer_var(inputs['lean_100'][0],6,2) 
        self.writeParser.generate() 
         
        self.writeParser.reset_anchor() 
        self.writeParser.mark_anchor('Control points for sweep') 
        self.writeParser.transfer_var(inputs['sweep_025'][0],4,2) 
        self.writeParser.transfer_var(inputs['sweep_050'][0],5,2) 
        self.writeParser.transfer_var(inputs['sweep_100'][0],6,2) 
        self.writeParser.generate() 
         
        shutil.copyfile(tbladeinputfile_generated, tbladeinputfile) 
        os.remove(tbladeinputfile_generated) 
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    def StructuralAnalysis(self): 
                 
        if self.SimFailureCounter > 7: 
            print('Too many failures in a row :(') 
            quit() 
        try: 
            FoSResultDict, MassResultDict = self.SimulationController.RunSpinAnalysis(Process=1) 
            FoS = FoSResultDict['Rotor1'] 
            W = MassResultDict['Rotor1'] 
            self.SimSuccess = True 
            self.SimFailureCounter = 0 
            return FoS, W 
        except: 
            file = open(self.CaseResults,'a') 
            file.write('Failed Ansys Sim \n') 
            file.close() 
            FoS = 0 
            W=0 
            self.SimSuccess = False 
            self.SimFailureCounter += 1 
             
            return FoS, W 
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