

use in future Artemis missions.

Supercritical Water Oxidation and a Preliminary Concept for Lunar Application

A Solution for Wastewater Recovery on the Moon

Sheldon Scott¹*, Michael Hicks², Uday Hegde³, Daniel Gotti⁴, Rosa Padilla⁴, Jun Kojima³, and Yuhao Xu⁵
¹Prairie View A&M University, ²NASA Glenn Research Center, ³Case Western Reserve University, ⁴Universities Space Research Association, ⁵Clemson University

BACKGROUND

Recycling wastewater presents an efficient solution to providing potable water to astronauts on extended missions. A Supercritical Water Oxidation (SCWO) technology being researched at NASA Glenn Research Center (GRC) has been shown to eradicate all hydrocarbons in the waste stream. Results of greater than a 99% reduction in Total Organic Carbon (TOC) with residence times less than 3s have been observed using a waste simulant provided by NASA Ames Research Center. These results were used to create a conceptual design of a SCWO-based lunar platform for

Figure 1. Artist's Concept of a Lunar Base

EXPERIMENTATION

The setup at GRC features a tubular reactor-based design pictured in Figure 2.

Figure 2. Glenn Supercritical Water Oxidation Setup

рН

Turbidity (for cloudiness)

Conductivity (for ionic content)

Key diagnostics include:

- Temperature
- Gas Composition
- Total Organic Carbon (TOC)
- Raman Spectroscopy

Post treatment, the samples showed improvements in the following characteristics:

- Removal of yellowish hue
- Loss of odor
- Removal/reduction of foaming
- Reduction in TOC of 99% or greater

3a

Figure 3. Samples from NASA GRC, **a.** Untreated vs. Treated Sample Bottles, **b.** Foaming of an Untreated Sample Bottle

RESULTS

Quantitatively, the Raman fingerprints of each treated sample show chemical makeups similar to that of pure water.

Figure 4. Normalized Raman Spectrums, **a.** for an Untreated Wastewater Sample, 532 nm Laser, **b.** for 5 Treated Wastewater Samples, 532 nm Laser

LUNAR ZERO PLATFORM (LZP)

Using the experimental design from GRC as a starting point, a conceptual design was iterated upon to develop a Lunar Zero Platform: a setup curated for use on an early lunar base.

Figure 5. Early Schematic of Lunar Zero Platform Concept

EQUIVALENT SYSTEM MASS (ESM)

Below is a comparison of ESM and footprint of the LZP and the delivery of water outright. (Includes equivalent masses of components, volume, and power)

Figure 6. Footprint of Water Delivery Tank

Figure 7. Footprint of Lunar Zero Design

CONCLUSIONS

- An investigation of SCWO was performed at NASA GRC
 - Results proved that this method of wastewater recovery is viable for providing potable water to astronauts
- Reductions in TOC of 99% or greater and Raman characterizations across multiple samples further proved the validity of SCWO
- A conceptual design of a Lunar Zero Platform was created
- A preliminary analysis of ESM and footprint were performed to compare the differences between the LZP and the delivery of water outright
- The preliminary analysis leaves room for further shedding of cost as the layout of Artemis missions become clearer

ACKNOWLEDGEMENTS

S. Scott and Y. Xu were supported by NASA MIRO award #80NSSC19M0195. U. Hegde, D. Gotti, R. Padilla and J. Kojima were supported by NASA Contract NNC08BA08B.