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The United States Space Force and NASA are exploring approaches that enable rapid launch 
response via highly reusable launch systems. One hindrance to achieving high reusability is 
the inability to meet damage tolerance requirements. To this end, a framework for applying 
reliability-based damage tolerance to space structures is presented. The reliability-based 
approach employs probabilistic distributions of key input variables such as material 
properties, geometry, loads, inspection probability, and defect characteristics to predict 
hardware reliability for the planned mission life. The probabilistic variables needed to 
perform the reliability assessments are defined and recommendations on how to collect the 
required data are provided. Several example problems illustrate the implementation and 
execution of this approach. 

I. Introduction 
 
The United States Space Force and NASA are exploring approaches that enable rapid response via highly reusable 
launch systems. One hindrance to achieving high reusability is the inability to meet damage tolerance requirements. 
An approach to achieving high reusability could be employing a reliability-based analysis. Reliability analysis for 
damage tolerance has been applied in the nuclear, aircraft, and naval industries. 
 
One common damage tolerance approach used in the aerospace industry is to perform an assessment assuming an 
initial flaw exists in the hardware. The size of the initial flaw is chosen to be greater than or equal to the minimum 
flaw size which can be detected using non-destructive evaluation (NDE) with a 90% probability of detection at a 95% 
confidence level (P90/C95) [1]. If the characteristics of the flaw are unknown, the analysis must consider the worst-
case location(s) and orientation(s) while accounting for interaction effects from adjacent or nearby flaws. In the case 
where flaw characteristics are known, the assessment uses those characteristics. Average values of fracture toughness 
and fatigue crack growth rates are used in the assessment. The part with this initial flaw must survive at least four 
times the predicted service life. The factor of four in the life assessment is used in the space industry to account for 
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dispersions in fatigue fracture properties and provides margin against unstable fracture.  In this paper, the approach 
described above is referred to as deterministic fracture mechanics (DFM) analysis. 
 
Standard P90/C95 flaw sizes for various NDE techniques for use in deterministic damage tolerance assessment are 
listed in NASA-STD-5009B [2]. These standard flaw sizes were intended to be developed such that 95% of NDE 
inspectors could achieve a 90% probability of detection with 95% confidence. However, re-analysis of the original 
data by the NASA Engineering Safety Center uncovered potential issues for select techniques. [3] 
 
A less frequently used approach in the space industry is the probabilistic fracture mechanics (PFM) approach. In the 
PFM approach, probabilistic distributions describing each relevant input parameter are constructed and used as inputs 
into a part reliability analysis. The uncertainty in the input variables is propagated through a crack growth analysis to 
determine the part reliability for the planned mission life. 
 
While PFM analysis is rarely used in the space industry, it has been widely researched by academia [4] and applied in 
industry [5,6]. In the aircraft industry, the Federal Aviation Administration (FAA) Advisory Circular published 
guidance on the use of PFM for damage tolerance verification of aircraft engine components [7,8]. Likewise in the 
nuclear power industry, the Nuclear Regulatory Commission (NRC) published guidance on the use of PFM for reactor 
and nonreactor license submittals [9,10]. The FAA and NRC both accept PFM analyses as a tool for the qualification 
and licensing of new designs. The primary challenge with applying PFM to space applications is the low production 
rates, which means that each hardware that is produced is an extremely invaluable asset. There is insufficient hardware 
available to characterize flaw distributions throughout the production process. This paper explores the application and 
challenges in applying PFM to space structures. 

II. Challenges and Benefits of a Reliability-Based Framework 
There are challenges associated with applying PFM in practice. The estimated reliability depends on the quality of the 
statistical input parameters. High confidence in the tails of the input distributions is required to accurately predict 
reliability, which can only be gained from extensive testing. Statistical data for several key variables can be expensive, 
time-consuming, and difficult to obtain. Finally, the results of probabilistic analyses are prone to misinterpretation, as 
reliability estimates only consider the probability of failure due to sources of uncertainty included in the analysis. 
Hardware nonconformances and flight anomalies can cause the realized reliability to be much lower than predicted if 
they were not considered in the assessment. 
 
Specific challenges in applying PFM in the space industry stem mainly from low production rates. Space hardware 
tends to be manufactured in small volumes due to high unit value and launch costs. Because fewer units are produced, 
fewer units are inspected and tested making it harder to infer the rate of occurrence of rare, large defects. The service 
life of most launch systems is generally shorter than systems in other industries. Most launch vehicles fly once or only 
a limited number of times, resulting in a small sample size when trying to calibrate reliability models based on 
observed anomaly rates. Hardware used in other industries are subjected to routine periodic inspections which can be 
used to continuously calibrate reliability models based on the rate and severity of inspection findings. 
 
Among many benefits of a reliability-based approach is that the risk of fracture failure for a particular component is 
directly calculated, allowing it to be compared to the allocated risk. Individual component reliabilities can be 
aggregated to calculate system reliability. PFM can result in a more consistent risk characterization compared to DFM. 
Risk ratings based on DFM rely on material property crack growth rate variabilities. DFM assumes an initial flaw 
exists even if not present, so the risk assessment depends on the likelihood of occurrence of a flaw. In well-controlled 
manufactured hardware where flaws are unlikely and not detected, but assumed to be present in the DFM assessment, 
the assessment can understate service life predictions In these specific cases, PFM can provide a quantitative basis for 
risk determination and  can be used to extend the service life because there is no longer the need to rely on the 
presumption that a minimum detectable flaw size exists in the DFM assessment. Note, however, this is not the case 
for when an actual flaw is detected and considered in the DFM.  
 
In most space applications, inspections are conducted once before launch, while components on highly reusable launch 
systems could be periodically inspected. PFM can determine the reliability gained by periodic inspection and inform 
the inspection interval required to achieve a target reliability. In-service inspection can calibrate reliability models, 
resulting in more accurate reliability estimates and potentially resulting in life extensions over time. To illustrate, 
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consider a system for which a conservative assumption is made about defect occurrence rate in the initial phases of 
the design. In production, periodic inspections could find a lower rate of defect occurrence, and the inspections can 
feed into refining the probabilistic distribution over time. Periodic inspections with no inspection findings can “reset” 
the service life as well. Similar to aircraft applications, periodic inspections can extend the allowable service life while 
maintaining high system reliability. 
 
In this work, it is sought to identify and address challenges associated with characterizing required statistical data to 
enable wider adoption of reliability-based damage tolerance assessments in the space industry. The reliability-based 
damage tolerance framework is shown in Figure 1. This framework has three main components: quantification of the 
input variable uncertainty, propagation of the uncertainty through crack growth analysis, and analysis of the output 
uncertainty. These steps are explained in Sections III, IV, and V respectively. 

 

 
Figure 1. Framework block diagram for reliability-based damage tolerance analysis. 

III. Quantification of Input Variable Uncertainty 
The main input variables for reliability assessment include uncertainty in environments (e.g., loads, temperature), 
geometry, residual stresses, mechanical properties, strength and fracture toughness, and crack growth rates. Analysis 
can be further refined by incorporating the initial distribution of flaws within the part and the NDE technique 
probability of detection (POD), if available. 
 
Not all variables must be modeled as uncertain for every reliability assessment. Both the sensitivity of the fracture 
analysis to an input variable and the possible uncertainty in that variable should be considered when determining 
whether to model a variable as uncertain in a reliability assessment. Deterministic sensitivity studies can be performed 
by varying one input parameter and calculating the corresponding change in predicted safe life to determine if the 
crack growth analysis is sensitive to that variable. Material selection and manufacturing method primarily control the 
uncertainty in strength, fracture toughness, crack growth rate, and the distribution of initial flaw characteristics. 
Uncertainty in geometry can be inferred from engineering drawing tolerances, historical measurements from 
production runs, and after passing first article inspection. Uncertainty in load and temperatures depends on the 
subsystem and location. For example, the maximum operating pressure in a metallic pressure vessel is well-controlled, 
while the pressure in a solid rocket booster may vary from flight-to-flight based upon the formulation and 
manufacturing of the solid propellant. Random vibration and acoustic loads are often more uncertain than known static 
loads. 

A. Types of Uncertainty 
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There are two types of uncertainty which must be considered in a reliability assessment: aleatory and epistemic. 
Aleatory uncertainty arises from the intrinsic randomness of the property in question and is often accounted for by 
modeling a variable using a distribution. Epistemic uncertainty arises from a lack of knowledge about a property and 
can be reduced by collecting more data and system knowledge. 
 
One notable source of epistemic uncertainty is the shape of a random variable distribution. When collecting test data, 
a distribution can be fit to the test data to account for the aleatory uncertainty, represented by the spread in that variable. 
The confidence in that distribution may be low due to limited sample size. Additional testing could reveal that a 
different population distribution is a better fit. Statistical software should be capable of fitting a distribution to the test 
data and accounting for the uncertainty in each of the parameters. Figure 2 shows an example distribution fit with 
uncertainty applied to geometric measurements. 

 
Figure 2. Uncertainty in distribution fit to 30 sample data points. 

Maintaining separation between aleatory and epistemic sources of uncertainty through the analysis is recommended 
because it allows estimating the confidence level corresponding to the reliability results. Further, it allows 
determination of how uncertainty can be reduced by collecting additional data. 

B. Deciding How to Address Uncertainty in Each Variable 
Uncertainty in each variable can be addressed in various ways. The first recommended method is to represent the 
random variable using a parametric distribution and varying the distribution shape and parameters in the outer loop of 
the reliability analysis. The distribution parameters and their uncertainty can be quantified by using statistical software 
to fit the distribution to observed data. This method is recommended for variables which the analysis results are most 
sensitive to. 
 
The second recommended method is to represent the random variable using a distribution with a high level of statistical 
confidence. An example of this method is using the 95% confidence POD curve in a reliability assessment. This 
method is useful when data already exist to meet preexisting requirements, or when a distribution is known to be 
conservative with high confidence but the uncertainty in the distribution is too difficult to quantify. 
 
The final recommended method is to treat the random variable as a constant with a bounding value. Examples of this 
method include developing the fatigue load spectrum using P99/C90 loads or using P99/C95 material strength and 
fracture toughness. This method is useful when these data already exist to meet preexisting requirements and the 
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analysis is not very sensitive to their values. Using bounding constants can introduce conservatism into the analysis, 
especially when multiple key random variables are treated as a constant with a bounding value. 

C. Collecting Data and Developing Distributions for Random Variables 
The number of samples to test and method of data collection will differ for each input variable. The sensitivity of the 
assessment to a given variable will determine the number of data points which need to be tested to adequately quantify 
the input uncertainty. Generally, at least 30 data points should be collected for each input variable. The need for 
additional data collection will emerge from the reliability assessment results if the epistemic uncertainty in distribution 
fit is properly accounted for and the analysis maintains separation between the epistemic and aleatory uncertainty. 
 
NDE POD Curves 
The probability of detection curve represents the rate of detection of flaws of various sizes for one inspection method, 
as shown in Figure 9. The curve is specific to one inspection method including the equipment and settings used, the 
material, surface finish, and geometry of the region under inspection. 
 
The POD curve for an inspection method is developed from a POD study, which includes a large range of flaw sizes 
targeting a qualification flaw size. [2] An inspector uses the NDE procedure to inspect parts containing these flaws 
and the rate of successful detection is recorded for each flaw size. Then POD curve is obtained by fitting the data with 
a statistical model. 
 
Compared to assuming an initial flaw exists based on the P90/C95 flaw size, including the full POD curve can greatly 
impact the calculated reliability. The POD curve accounts for the rate at which flaws smaller than the P90/C95 size 
are detected and larger flaws are missed, producing the distribution of flaw sizes within a part after inspection. 
However, using the POD curve in this way requires knowledge of rate of flaw occurrence and distribution of flaw 
sizes which exist in the part before inspection. 

 
Figure 3. Example NDE POD curves at 50% and 95% confidence levels. 

Distribution of Initial Flaws 
The distribution of initial flaw characteristics within a part is often the primary variable affecting reliability. Whether 
a build has a flaw and the size of that flaw dictate how much life will be degraded compared to a pristine build. Four 
techniques are presented here to estimate the rate of occurrence and size distribution of defects within a component. 
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Evaluate NDE Finds from Routine Inspections 
Many components that are mission critical are subjected to standard NDE inspections prior service. The best effort 
should be made to estimate flaw size during inspections. A dataset of detected flaw sizes can be built from detected 
flaws during production runs. In this way, the size distribution and occurrence rate of large flaws can be determined 
with high confidence. However, the distribution is more challenging to determine for smaller flaws than those detected 
because the probability of detecting these smaller flaws is low and often not quantified. While smaller flaws are 
occasionally detected by NDE, the number of undetected flaws in the part is obviously unknown. 
 
Confidence can be gained in the distribution of smaller flaws by determining the full POD curve of the NDE method 
used during routine inspections. When the probability of detecting small flaws is known, the number of existing 
undetected flaws can be estimated from the number detected. Whenever a flaw smaller than the qualified P90/C95 
flaw size is detected, the number of counts at that size is increased by the reciprocal of the probability of detection for 
that flaw size. Above the P90/C95 size, only one count per detection is recorded. 

 
Figure 4. Scaling number of counts based on probability of detection. 

 
Back-Calculate Initial Flaw Sizes from Defects Found In-Service 
Reusable launch vehicles are periodically inspected with the goal of finding cracks which may have grown during 
service. These cracks were smaller than the detection limit prior to service, thus passing inspections; but grew to a 
detectable size during service. Inhere, the initial flaw size prior to service can be back-calculated by using a crack 
growth model and the known environments during service. This method of determining the initial flaw size distribution 
is known as the Equivalent Initial Flaw Size (EIFS) method [11] and has been used to characterize the initial flaw size 
distribution of aircraft features [12]. 
 
This method has the advantage of detecting initial flaws too small to confidently detect during pre-flight inspections. 
The back-calculation process can introduce errors in the initial flaw size estimate when the dynamic environment is 
not well characterized, or small crack effects are not accounted for in the calculation. 
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Figure 5. Back calculation of initial flaw sizes from flaws detected in-service. 

 
Perform High-Resolution NDE of a Limited Sample 
High-resolution inspection methods such as acoustic or ultrasonic microscopy and X-ray microtomography 
(microCT), can detect smaller flaws than traditional NDE techniques within localized regions [14, 15]. These methods 
are useful for determining the occurrence rate and size distribution of the smallest flaws. This method may be 
necessary for very long mission durations or extreme loads. These methods are extensive and labor-intensive. 

 
Perform Destructive Inspection of a Limited Sample 
Destructive inspection methods such as sectioning can determine the size and characteristics of flaws with high 
confidence. Sectioning is a robust method of characterizing manufacturing defects. However, the method is labor-
intensive and expensive. 

 
Using a Combination of Methods 
The use of multiple techniques may be required to sufficiently characterize the flaw size distribution. If the goal is to 
extend the qualified life of a currently flying design, then quantifying the distribution of flaw sizes smaller than the 
P90/C95 flaw size is likely required. High-resolution NDE and/or sectioning are useful to characterize the population 
of small and commonly occurring flaws, while routine inspections performed in high volumes are useful to 
characterize the larger rare flaws. 
 
When combining data from multiple sources to produce the flaw size distribution, it is required that statistical tests be 
performed to ensure the different techniques assign the same size for the same flaws. This could be achieved by 
performing two inspection methods on a small sample of hardware containing defects and independently 
characterizing the defect size with each method. When this method is applied appropriately, the flaws detected from 
each method can be combined to characterize the flaw size distribution. 
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Figure 6. Left: Simulated flaw size data from inspection of 30 welds using microCT and 5000 using radiographic 
inspection (RT), Right: Data normalized to produce occurrence rate of flaws in welds. 

 
The data on the rate of occurrence and size distribution of flaws can be combined to form the exceedance curve. An 
example is shown in Figure 7. For each defect size, the exceedance curve encodes the expected number of occurrences 
of a flaw of that size or greater in a fixed quantity of material or number of parts. 
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Figure 7. Example exceedance curve which simultaneously represents the rate of occurrence and size 

distribution of defects within a volume of material. Pre- and post-inspection curves are shown, assuming all 
parts with detected defects are rejected. 

D. Loads and Environments 
The importance of including load variation depends on the system which the part belongs to and the environment in 
which it operates. For example, pressurized components with stresses dominated by well-regulated pressure cycles 
likely do not benefit from including the small variability in pressure. The importance of load variation in other 
structural components depends on the proportion of the cyclic stress which results from predictable loads such as static 
components of engine loads and controlled internal pressure versus more variable sources such as vibration, acoustics, 
and aerodynamic loads. 
 
Uncertainty in loads can be recovered from coupled loads analysis (CLA) and vibro-acoustic analysis (VAA). CLA 
is often already run using procedure similar to Monte Carlo analysis. Several possible load inputs, known as forcing 
functions (FFNs), are applied to the dynamic model for each flight event. The differences between these FFNs 
represents variations in possible loading conditions including aerodynamic loads, engine gimbaling, actuator timings, 
and other sources of uncertainty. The structural response of the dynamic model to each FFN input is computed and a 
statistical maximum (often P99/C90) is taken across the responses to produce upper bound loads for stress and fatigue 
analysis. To produce loads for PFM analysis, instead of computing a maximum response across the FFN cases, a 
distribution may be fit to the responses. 
 
VAA is a different case. Typically, VAA is performed by first taking a statistical maximum input environment 
(acoustic pressure or vibration acceleration) at the P95/C50 level, known as the maximum predicted environment. [15] 
Then, the structural response is computed using a random response analysis, and fatigue loads are derived. The data 
used to compute this maximum is obtained through flight experience, ground testing, and computer modeling. To 
apply PFM, instead of developing a statistical maximum environment, a distribution can be fit to the input environment 
representing the number of decibels above the mean each individual flight environment was. Because VAA models 
are linear, scaling the input signal by a factor results in the output response being scaled by the same factor so the 
structural response distribution is the same as the input distribution. 
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Whether the fatigue load spectrum is derived using CLA, VAA, or a combination of the two, a reasonable way to 
account for the load uncertainty is to apply a scaling factor to the amplitude of the fatigue spectrum. For loads derived 
from CLA, the scaling factor will follow a distribution fit to the dynamic model output responses. For loads derived 
from VAA, the distribution if fit to the dynamic environment input spectrum. 
 

 
Figure 8. Spread in sound pressure environments used as input to random response analysis for fatigue load 

derivation. 

E. Geometry 
Geometric uncertainty results from manufacturing tolerances and measurement uncertainty. Manufacturing variability 
will result in variable part thicknesses, fillet radii, surface finish, and other characteristics. These variations can drive 
differences in local stresses, affecting crack initiation time and growth rates. 
 
The distribution of dimensions of key geometric features can be obtained through several methods. Several flight-
quality units of the qualified design could be built and measured. This method produces the most accurate distribution 
for the geometric variables. Another method is to build a bounded distribution using the upper and lower dimensional 
acceptance criteria. However, this method is susceptible to error as the true distribution of dimensions may be skewed 
to one side of the tolerance range. Finally, conservative geometry assumptions could be used. 

F. Material Properties 
Material strength and fracture toughness properties can be measured from standard material tests. Strength can be 
measured using ASTM E8 while fracture toughness can be measured from ASTM E399 or ASTM E1820. Generally, 
at least 30 specimens should be tested to build a distribution. These specimens should be distributed within and 
between material lots to ensure both sources of uncertainty are accounted for.  

G. Crack Growth Rates 
Crack growth rates can also be measured from standard material tests, for example, ASTM E467. Generally, at least 
30 specimens should be tested to build a distribution. These specimens should be distributed within and between 
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material lots to ensure the variation between lots is captured in the crack growth rate distribution. A reasonable way 
to model uncertainty in crack growth rate is to model the constants of the crack growth rate model (e.g., the Paris 
equation) as uncertain input variables and fit distributions to them.  

 
Figure 9. Example da/dN data with 95% prediction interval. 

IV. Propagation of Uncertainty Through a Damage Tolerance Analysis 

A. Monte Carlo Sampling Technique 
The method of reliability-based damage tolerance verification presented in this paper employs the Monte Carlo method 
to propagate uncertainty in the input variables through a crack growth simulation to determine the uncertainty in safe 
life and the probability of failure. A two-loop Monte Carlo sampling scheme is used to maintain separation between 
aleatory and epistemic uncertainty sources. [16] 
 
In the inner loop variables of interest such as the initial flaw size, material properties, and loads are sampled from their 
respective statistical distributions to produce a set of aleatory realizations. Crack growth and fracture analysis is 
performed for each realization to determine the number of cycles to failure each realization survives. The probability 
of failure is computed as the fraction of aleatory realizations which fracture within the component’s service life. 
 
In the outer loop, the parameters of the statistical distributions, analysis assumptions, and other estimates resulting 
from a lack of knowledge are varied to produce a set of epistemic realizations. Figure 2 illustrates how distribution 
parameters are sampled from a distribution fit with uncertainty. The mean and standard deviation of the distribution 
used in the inner loop are sampled from normal distributions based on the uncertainty in the distribution fit. For each 
epistemic realization, the inner loop is run to compute the probability of failure (POF) resulting in one POF estimate 
per epistemic realization. Finally, confidence bounds are computed across all the POF estimates. 
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Figure 10. Two-loop Monte Carlo crack growth analysis diagram. 

B. Steps to Perform Reliability Assessment Implementing PFM 
 
This section provides the steps required to perform PFM; which includes Loads/Stress Analysis, Sampling, 
Inspections, and Crack Growth Simulations. 
 
Loads / Stress Analysis 
CLA and/or VAA is performed to develop the fatigue spectrum with uncertainty characterized by the CLA output or 
VAA input. Loads from these models may be obtained at a nearby interface. In that case, finite element analysis or 
another form of stress analysis should be performed to derive the transfer function between the interface loads and 
local stresses in the region of interest. 
 
Sampling of Epistemic Random Variables 
A sample size for the epistemic realizations, Ne is chosen based on the desired level of confidence in the reliability 
results. As a rule of thumb, Ne should large enough such at 10 to 100 epistemic realizations fall outside the desired 
confidence enclosure. For example, if 90% confidence is desired, 100 to 1000 epistemic realizations should be used. 
 
Each epistemic realization includes one value for each variable treated as an epistemic random variable, such as the 
shapes and parameters of the aleatory random variable distributions. These distribution shapes and parameters are 
used to construct the distributions used in the inner loop of the analysis. 
 
Sampling of Aleatory Random Variables 
A sample size for the aleatory realizations, N_a is chosen based on the desired resolution of the probability of failure. 
As a rule of thumb, Na should be chosen such that 10 to 100 aleatory realizations result in failure at the desired 
reliability level. For example, if 99.99% reliability is desired (1 in 10,000 POF), then 100,000 to 1,000,000 aleatory 
realizations should be used. 
 
Each aleatory realization represents a hardware build and includes one value for the inputs affecting the damage 
tolerance analysis, such as fracture toughness, initial flaw size, and crack growth rates. If the number and location of 
flaws are treated as aleatory random variables, then each aleatory realization will contain one or multiple flaws 
distributed throughout the hardware. 
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Inspection Simulation 
If the initial flaw size is treated as a random variable, then inspection simulation using the POD curve can be used. 
For each flaw in each part, the probability of detection is computed from the POD curve. A random number generator 
is used to determine if that flaw is detected. If it is detected and is determined to be greater than the allowable flaw 
size, then the part is removed from the PFM analysis, simulating the part’s removal from the manufacturing flow. 
Alternatively, that flaw may be removed from the part to simulate a rework or repair. 
 
If the initial flaws size is not treated as random, then inspection is not simulated. Instead, each part is assumed to 
contain one initial flaw with its size determined by the P90/C95 flaw size from the NDE procedure. 
 
Crack Growth Simulation 
Once the location, size, and stress spectrum are known, the number of service lives survived for each flaw in the part 
is calculated using a numerical crack growth procedure. The safe life of the part is the minimum life of all flaws in the 
part. This is repeated for all N_a aleatory realizations. The POF is the proportion of aleatory realizations with safe life 
below the required service life. POF is calculated using this procedure for each epistemic realization.  
 

V.  Analysis of Output Uncertainty 

The last step of the reliability assessment is to analyze the uncertainty in the output variables. Within one epistemic 
realization, each aleatory realization produces a different estimate of the safe life. These estimates can be numerically 
integrated to produce a probability of failure CDF. Each point on the probability of failure CDF represents the 
probability that the part has failed before the specified life on the x-axis. Each epistemic realization produces a 
different probability of failure CDF, which can be plotted together on the same axes to see the effect of the epistemic 
uncertainty. Finally, the probability of failure estimates from each epistemic realization can be taken at a given life 
(i.e., number of cycles or flights) and plotted as a histogram to show the probability of failure at that life with a given 
level of confidence. This process is shown in Figure 11. 
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Figure 11. Analysis of output uncertainties. A) shows a histogram representing the cycles to failure of each 
sample within one epistemic realization. B) shows the probability of failure CDF across one epistemic 
realization. C) shows the probability of failure CDFs for 100 epistemic realizations. D) shows a histogram 
representing the probability of failure estimates from all 100 epistemic realizations at 100,000 cycles. The 
probability that the part fails before 100,000 cycles is 0.4 with 90% confidence. 

The effect of epistemic uncertainty on the results can be determined from the probability of failure CDFs. Large spread 
between the individual CDFs means that the epistemic uncertainty in the input variables has a large effect on the 
output uncertainty. If this spread is too large such that the reliability estimated at an appropriate confidence level does 
not meet requirements, then the epistemic uncertainty must be reduced by performing additional testing and data 
collection. 

VI.  Examples 

A. Reliability Analysis of a Plumbing Section Subjected to Random Vibration Environments 
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The reliability-based damage tolerance assessment method was demonstrated to predict the probability of failure of a 
plumbing tube within the propulsion subsystem of a reusable launch vehicle subjected to random vibration 
environments. Real testing was not performed to develop the input variable distributions, so these distributions are 
used for the purposes of this numerical example only. The tube wall thickness, crack growth rate, vibration load 
amplitude, and initial flaw size were treated as random variables. Inspection simulation was also performed to simulate 
the removal of units with detectable cracks from the production flow. Uncertainty in these variables was propagated 
through a two-loop Monte Carlo crack growth analysis to determine the probability of failure after 10 to 50 flights. 
 

 
Figure 12. Diagram showing cross section of tube analyzed in example assessment. 

The tube in this assessment is made of Ti 3Al-2.5V material and has an outer diameter of 0.25 in with a nominal wall 
thickness of 0.028 in. Uncertainty in the wall thickness was modeled using a truncated normal distribution with a 
mean of 0.028 in and a standard deviation of 0.002 in. To model epistemic uncertainty arising from a limited sample 
size, the distribution mean was modeled using a normal distribution with a standard deviation of 0.0008 in. 
 
The crack growth rate was modeled as uncertain by fitting to crack growth rate data from the NASGRO material 
database for wrought Ti 3Al-2.5V. The crack growth model used in this assessment was the NASGRO equation with 
the form 
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where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the crack extension per cycle, Δ𝐾𝐾 is the stress intensity factor range over one cycle, C is the crack growth 
rate coefficient, and m is the crack growth rate exponent. The crack growth rate coefficient C was modeled as uncertain 
using a lognormal distribution with a median of 3.0 × 10−10 and a shape parameter of 0.65. To account for epistemic 
uncertainty, the median and shape parameters were modeled using normal distributions with standard deviations of 
0.3 and 0.05 respectively. Material properties such as strength, fracture toughness, and the other constants in the 
NASGRO equation were taken from the NASGRO materials database and are presented in Table 1. 

Table 1. Material and crack growth rate properties used in example reliability assessment. 

Property Symbol Value 
Ultimate tensile strength σ𝑢𝑢𝑢𝑢 125 ksi 

Tensile yield strength σ𝑦𝑦𝑦𝑦 105 ksi 
Effective fracture toughness 𝐾𝐾1𝑒𝑒 70 ksi√in 
Crack growth rate coefficient 𝐶𝐶 3.0E-10 (in/cycles)�ksi√in�

−𝑚𝑚
 

Crack growth rate exponent 𝑚𝑚 4.0 
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Threshold exponent 𝑝𝑝 0.25 
Critical stress intensity exponent 𝑞𝑞 0.75 

 
Figure 13. Left: Best fit with 95% bounds to NASGRO crack growth rate data. Right: Spread resulting from 
epistemic uncertainty in crack growth rate coefficient. 

 
Fatigue loading was modeled using cyclic axial and bending stresses applied to the tube. A random vibration spectrum 
was produced for each flight event besides proof testing. The median fatigue spectrum is shown in Table 2 and Figure 
14. Uncertainty in loads was modeled using a scale factor on the cyclic load amplitude. The scale factor was modeled 
assuming the flight-to-flight uncertainty in vibration environment amplitude was normally distributed with a standard 
deviation of 2 decibels. This corresponds to a scale factor applied to the fatigue environment being lognormally 
distributed with a shape parameter equal to the natural log of 2. To prevent completely unrealistic results, bounds were 
also placed on this distribution to prevent the scale factor from exceeding ±8 dB. 

Table 2. Median load spectrum 𝟑𝟑𝛔𝛔 peak loads per flight event used in example assessment. 

Flight Event 
Static 

Tensile 
Stress [psi] 

Static 
Bending 

Stress [psi] 

Dynamic 
Tensile 

Stress [psi] 

Dynamic 
Bending 

Stress [psi] 

Apparent 
Frequency 

[Hz] 
Duration [s] 

Pressure Proof 6000 4000 N/A N/A N/A N/A 
Engine Hot Fire 500 300 300 3900 150 3 
Static Fire Abort 500 400 200 3600 155 3 
Static Fire 600 400 300 4700 155 3 
Liftoff Abort 600 400 300 3200 175 3 
Early Flight 700 400 400 4000 178 10 
Mid Flight 700 400 400 3700 141 100 
Engine Cutoff 600 400 300 3400 187 10 
Early Reentry 100 100 400 12100 165 30 
Late Reentry 500 100 300 12100 161 100 
Recovery 400 100 200 9700 148 10 
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Figure 14. Median fatigue spectrum showing minimum (blue) and maximum (red) stress for each cycle. The 
cyclic stress amplitude is the difference between the maximum and minimum stress. 

 
Initial flaws were assumed to be semi-elliptical circumferential surface cracks on the exterior of the tube with aspect 
ratio a/c = 0.2. The flaw orientation and aspect ratio are considered bounding assumptions because external 
circumferential cracks are the most sensitive to bending stresses. The initial flaw size was modeled as uncertain using 
a modified version of the exceedance curve from [7]. This flaw size distribution corresponds to the occurrence of hard 
alpha inclusions in titanium forgings and is used as example data only. The modified exceedance curve used in this 
assessment is shown in Figure 15 which encodes both the information that each tube had about a 10% chance of 
containing a flaw and the size distribution of those flaws. The flaw size distribution is non-parametric, so Monte Carlo 
sampling was performed using inverse transform sampling. This flaw size distribution was assumed to be bounding, 
so the epistemic uncertainty associated with the distribution was not directly modeled. 
 



18 
 

 
Figure 15. Modified exceedance curve used in example reliability assessment. The probability of any flaw 

occurring was 10% and the size distribution is encoded by the shape of the exceedance curve. 

Finally, inspection simulation was performed to model the removal of tubes with detectable indications from the 
production flow. The POD curve in this assessment is shown in Figure 16. Inspection was simulated for each tube. If 
that tube contained a flaw, then the depth of that flaw determined the probability of detection from the POD curve. 
From there, a random number generator was used to determine if the flaw was detected or not. If a flaw was detected 
in a tube, then the tube was eliminated and replaced with a new sample. The POD curve in this example was assumed 
to be a bounding curve, such as the 95% confidence curve, so the epistemic uncertainty associated with it was not 
directly modeled. 
 

 
Figure 16. Probability of detection curve used in example assessment. 
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Using these distributions and the POD curve, the two-loop Monte Carlo assessment was performed. 100,000 aleatory 
realizations were simulated for each of 100 epistemic realizations. Each epistemic realization varied the distribution 
parameters for the tube wall thickness and the crack growth rate and produced one estimate of the probability of 
failure. 
 
Figure 17 plots the cumulative probability of failure vs number of flights. Results at the 50% and 90% confidence 
level, tabulated in Table 3, were computed by taking the 50% and 90% quantiles of the probability of failure estimates 
for each flight. The epistemic uncertainty is represented by the spread between the blue curves. In this example, this 
spread could be reduced taking additional measurements of the tube wall thickness or testing additional crack growth 
rate samples to decrease the uncertainty in their distribution parameters. 

Table 3. Cumulative probabilities of failure at 50% and 90% confidence. 

Number of Flights Cumulative Probability of Failure 
50% Confidence 90% Confidence 

10 8.78E-5 1.21E-4 
20 2.29E-4 3.00E-4 
30 3.96E-4 5.11E-4 
40 6.02E-4 7.41E-4 
50 8.11E-4 9.67E-4 

 
 

 
Figure 17. Tube cumulative probability of failure (left) and per-flight probability of failure (right) up to 50 

flights. 

The flight-by-flight probability of failure was computed by taking the numerical derivative of the 90% confidence 
cumulative data. These results represent the probability of failure for the next flight given that the part has survived 
all previous flights. In this example, the up until about flight 25, the next flight had a higher probability of failure 
previous flight. However, past that point, the probability of failure of each subsequent flight was approximately the 
same. The probability of failure should eventually begin to increase again as high-cycle fatigue becomes the dominant 
mode of failure. However, high-cycle fatigue was not modeled in this example. 
 
As a point of comparison, the analysis was repeated using a DFM assessment. Mean wall thickness and median crack 
growth rate were used. The load amplitude of the median fatigue spectrum in Table 2 was increased to the P99 level 
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by applying a scale factor of 4.652 dB, based on the assumed standard deviation of 2 dB and the 99th percentile z-
score of 2.326 for a normal distribution. Finally, the initial crack depth was based on the standard initial flaw size for 
radiographic inspection from [2], equal to 0.7 times the tube wall thickness. With these parameters and a life factor of 
4, the DFM assessment predicted a damage tolerance life of only 1 flight. This life prediction could be extended by 
performing special NDE qualification to demonstrate reliable detection of smaller flaws. 

B. Reliability Analysis of Additively Manufactured Stage Tank Cylinder 
In the previous example, the flaw was assumed to be in the worst-case location. This example demonstrates the 
application of the reliability-based damage tolerance analysis with variable flaw location within a non-uniform stress 
field. An additive manufactured tank is considered because defects are more likely to be introduced throughout the 
tank, while in traditional manufacturing flaws are more likely to be concentrated in welded areas.  
 
The reliability-based damage tolerance method was used to predict the probability of failure versus number of flights 
for an additively manufactured stage tank cylinder wall. The tank is made of an aluminum alloy and has a diameter of 
72 in, a length of 350 in, and a nominal wall thickness of 0.125 in. The simulated tank is assumed to be manufactured 
using a wire-fed directed energy deposition (DED) process. 
 
Tank wall thickness, crack growth rate, initial flaw size, flaw location, and number of flaws within the tank were 
treated as random variables. Distribution information for each of these input variables is shown in Table 4. For 
distributions with uncertain parameters, the parameters were modeled as Normal random variables with a standard 
deviation equal to the uncertainty value listed in the table. The parameters were sampled in the outer loop of the 
analysis. 

Table 4. Parametric distributions used in example assessment. 

Input Variable Distribution Type Distribution Parameters 

Wall Thickness Truncated Normal 
μ = 0.125 ± 0.004 in 
σ = 0.005 ± 0.001 in 

𝑎𝑎 = 0.115 in, 𝑏𝑏 = 0.135 in 

Crack Growth Rate Coefficient Lognormal μ∗ = (5.0 ± 1.0) × 10−9 
𝑠𝑠 = 0.42 ± 0.05 

Initial Flaw Depth Pareto 𝑥𝑥𝑚𝑚 = (1.728 ± 1.047) × 10−4 in 
α = 1.322 ± 0.146 

Circumferential Flaw Location Uniform 𝑎𝑎 = 0 deg, 𝑏𝑏 = 360deg 
Number of Flaws Per Layer Poisson λ = 10 

where 𝜇𝜇 is the Normal distribution mean, σ is the Normal distribution standard deviation, μ∗ is the distribution median, 
𝑠𝑠 is the Lognormal distribution shape parameter, 𝑥𝑥𝑚𝑚 is the Pareto distribution minimum value, α is the Pareto shape 
parameter, λ is the expected value of the Poisson distribution, and 𝑎𝑎 and 𝑏𝑏 are the lower and upper bounds respectively 
for bounded distributions. 
 
The total number of flaws within the tank and their locations were determined through a simple simulation of the DED 
manufacturing process. The build of the tank was simulated layer-by-layer, with a layer height of 0.5 in for a total of 
700 layers. Each layer produced a random number of flaws, governed by a Poisson distribution with an expected value 
of 10 flaws per layer. The Poisson distribution arises from the assumption that every incremental length of material 
deposited by the print head has a constant chance to produce a flaw. The circumferential position of the flaws 
throughout the layer was sampled from a Uniform distribution, and the axial position depends on the station height of 
the layer which the flaw occurred on. 
 
Flaws were modeled as semi-circular external circumferential surface flaws. The flaw depth was sampled from a 
Pareto distribution with uncertain distribution parameters. This flaw size distribution combined with the number of 
flaws per layer produces the uncertain exceedance curve shown in Figure 18. 
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Figure 18. Uncertain flaw depth exceedance curve used in example assessment. 

The tank is subjected to aero-loads during ascent and descent; and these loads contribute to the total fatigue load 
spectra. In addition to pressure loads from leak checks, proof test, and flight pressures, there are axial and bending 
stresses arising from flight. The load spectrum is shown in Table 5. During flight the bending stress and axial stress 
varies as a function of axial station. Figure 19 shows the spatial variation of bending stress. Axial stress throughout 
the tank was assumed to be uniform and bounding of the actual expected stress spatial variation. To determine the 
fatigue spectrum experienced by each flaw in the tank, the dynamic bending stress in Table 5 is multiplied by the 
normalized bending stress at the flaw location in Figure 19. 

Table 5. Fatigue spectrum used in example assessment. 

Flight Event 
Static 

Tensile 
Stress [psi] 

Static 
Bending 

Stress [psi] 

Alternating 
Tensile 

Stress [psi] 

Alternating 
Bending 

Stress [psi] 

Number of 
Cycles 

Pressure Proof 11,880 0 N/A N/A 6 
Pressure Cycling 10,800 0 N/A N/A 24 
Flight Cycles 10,800 0 400 12,600 1000 
Leak Checks 10,800 0 N/A N/A 8 
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Figure 19. Spatial variation of bending stress across stage tank. 

 
 
Inspection simulation was performed using the same POD curve as the previous example, Figure 16. When a flaw in 
the tank was detected, the flaw was removed from the tank to simulate a repair process. Results from the reliability-
based damage tolerance assessment are shown in Figure 20. 
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Figure 20. Stage tank cumulative probability of failure results (left) and per-flight probability of failure 

(right). The probability of failure of each successive flight is higher than the last. 

The reliability results show that the predicted probability of failure of the tank barrel is 4 × 10−5 after 10 flights and 
1.5 × 10−3 after 20 flights. As a comparison, a deterministic analysis was performed using the same fatigue spectrum 
along with the mean wall thickness, median crack growth rate, and a life factor of 4. The initial flaw size was based 
on the P90/C90 flaw size for radiographic inspection from [2], equal to 70% of the wall thickness. With these 
parameters, the deterministic assessment predicts a damage tolerance life of 8 flights. To extend service life with 
DFM, an approach is to develop a special NDE that can improve upon the minimum detectable flaw size or implement 
an in-situ monitoring technique that allows for real-time detection of voids and flaws.  

C. Prediction of Additively Manufactured Coupon Fatigue Life 
 
In [17], the application of reliability-based damage tolerance using probabilistic fracture mechanics and deterministic 
fracture mechanics was examined with an example problem of AM AlSi10Mg round bar coupons under cyclic axial 
loading conditions, Figure 21. In that study, the statistical distributions for flaw population, size, location, and variation 
of fracture properties were informed from three previously published studies. The probabilistic damage tolerance 
approach underpredicted mean cycles to failure and the variability in cycles to failure compared to test. However, the 
number of cycles to failure at four 9’s of reliability and from deterministic analysis with a factor of four bounded all 
test measurements, see Figure 23. A parametric study showed that reducing AM porosity can increase service life but 
may have only a small impact if high reliability is required. 

 
Figure 21. Geometry of round bar fatigue specimen. 
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Figure 22. Comparison of PFM and DFM fatigue life predictions against fatigue test data. 

VII. Summary 

A framework for applying reliability-based damage tolerance to space structures was presented as a method to meet 
the service life demands of highly reusable launch and space vehicle systems. The framework consists of three 
components: the characterization of uncertainty in the input variables, the propagation of uncertainty through a fracture 
analysis, and the analysis of the output uncertainty. 
 
The key input variables include material properties, geometry, loads, inspection probability, and defect characteristics 
among others. Recommendations were provided to collect the required data to characterize the uncertainty in each 
variable. Propagation of the input uncertainty through a fracture analysis was performed using a two-loop Monte Carlo 
sampling approach which maintains separation between the aleatory and epistemic uncertainty to compute the 
probability of failure and confidence level. 
 
This approach was applied to two example assessments: a plumbing tube section subjected to a random vibration 
environment and a launch vehicle stage tank subjected to internal pressure and flight loads. These examples 
demonstrated the probability of failure calculation over several flights. 
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