
An On-Board Off-Board Framework for Online Replanning: Applied to
UAVs in Urban Environments

Timothy Darrah1, Jeremy Frank2, Marcos Quiñones-Grueiro1, Gautam Biswas1

1Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
2Intelligent Systems Division, NASA Ames Research Center, Mountain View, CA, USA

{timothy.s.darrah, marcos.quinones.grueiro, gautam.biswas}@vanderbilt.edu, jeremy.d.frank@nasa.gov

Keywords: Genetic Algorithm, Agent-Based Replanning, Unmanned Aerial Vehicles (UAV), Cyber Physical Systems
(CPS)

Abstract: Autonomous systems are being used in a multitude of areas at an increasing rate and require a high level of
adaptivity and intelligence to operate safely, especially under faulty conditions. This paper introduces a novel
genetic algorithm tailored for UAV trajectory replanning, with an improved execution time via search space
reduction based on the operating conditions of the UAV and its remaining mission. A unique characteristic
of the replanning agent is its fast-start and adaptive properties, pre-seeding candidates with partial solutions
and dynamically tuning elitism, crossover, and mutation rates in correspondence to the average fitness and
diversity of the population. A population restart mechanism and early stopping mechanism are evaluated as
well to assess their effect on solution quality and runtime. Previous work on genetic algorithms for UAV
replanning were conducted with short trajectories in a small state space. Our UAV operates in a 56,000
square meter simulated urban environment, with static obstacles and a total of 53 possible waypoints. The
agent increases the safety and reliability of UAV autonomy when operating under faulty conditions and when
replanning is required.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are rapidly be-
coming an indispensable part of a variety of industries
with both commercial and military applications. En-
suring their robust and reliable performance while op-
erating with a multitude of uncertain factors is of crit-
ical importance. These factors include environmental
conditions such as wind, internal conditions such as
degradation, and unanticipated factors such as abrupt
faults. This necessitates a high level of autonomy re-
quired for replanning in conditions where the search
space is large, the safety constraints are tight, and time
is of the essence.

Replanning under faulty conditions is a funda-
mental aspect of safe and reliable UAV operations
and comes into play when unforeseen disturbances
or faults occur during a flight mission. The primary
aim of fault-aware replanning is to amend the cur-
rent flight plan in order to ensure that the system is
still able to operate and achieve some of its goals
while finishing safely. This involves real-time adjust-
ments to the flight path and waypoints, influenced by
the dynamic feedback of the UAV’s state and the en-

vironment. A necessary precursor is fault detection
and isolation to identify when a fault occurs in real
time as well as the fault magnitude. The literature is
rich with techniques for fault detection and diagno-
sis methods, which can be classified as data driven
(hypothesis testing, machine learning), model based
(filtering, residuals), or hybrid approaches (filtering
+ hypothesis testing). The primary purpose of this
work is to discuss the replanning algorithm used in
such cases, and for a further discussion on fault man-
agement the reader is directed to (Hu et al., 2020),
(Venkatasubramanian et al., 2003), and (Badihi et al.,
2022) for a comprehensive review.

The replanning problem is formulated as a mod-
ified Orienteering Problem (OP), which is a type of
constraint satisfaction problem that seeks to find a cy-
cle in on the input graph which maximizes reward
while not violating any constraints. The modification
is that we are not finding a cycle, since replanning
is triggered from an arbitrary point that is different
than the goal location. A Fast-Start Adaptive Genetic
Algorithm (GA) is implemented to solve this replan-
ning problem, with 53 total waypoints over 56,000
square meters in an urban environment with static ob-

stacles (see Figures 4 and 6). The novel contribution
is twofold: first, the on-board off-board agent-based
replanning architecture allows for compute-intensive
operations to be executed in an environment with a
sufficiently large amount of resources and minimal
delay in communication (2 seconds round trip); and
second, key modifications to the GA implementation
speed up computation time and generate better so-
lutions with a higher reward to execution time ratio
when compared to the vanilla GA.

1.1 Paper Organization

The rest of the paper is organized as follows. A brief
literature review is presented in Section 2. The re-
planning approach is presented in Section 3. The GA
is presented in Section 4. The experimental approach
is discussed in Section 5. The results and discussion
are given in Section 6, followed by the conclusion and
future work in Section 7.

2 BACKGROUND

Planning is a crucial aspect of autonomous cyber
physical systems that allow them to operate and per-
form their function with minimal human interaction.
Replanning involves generating new plans in response
to changes in the environment, changes in the system,
or changes in the system’s goals, and is necessary
when operating in dynamic and stochastic environ-
ments. Replanning methods aim to ensure the system
is adaptable, robust, and efficient by continuously up-
dating plans or trajectories to achieve desired objec-
tives. Virtually all planning algorithms can be modi-
fied to be a replanning algorithm, but this poses addi-
tional constraints and considerations that will be dis-
cussed. In the field of robotics (mobile robots, robotic
arms, and multi-robot systems), planning studies have
explored various techniques, including potential fields
and model-predictive control (Li et al., 2021), and hi-
erarchical task planning (Ryu, 2020) to enable robots
to plan their actions. In the domain of UAVs, plan-
ning and is vital for tasks such as surveillance, recon-
naissance, and package delivery in dynamic environ-
ments. Research works focus on developing real-time
planning algorithms that consider factors like obsta-
cle avoidance (Yang et al., 2022) or energy efficiency
(Ahmed et al., 2016).

Online replanning assumes that an agent is ini-
tially following a predefined plan and due to new in-
formation must change the plan (Bonet and Geffner,
2011). With an updated knowledge base, a new plan
can be computed that would allow it to achieve a sub-
set of its objectives (Komarnitsky and Shani, 2016).

Figure 1: Replanning Approach using Off-board and On-
board Processing (Quiñones-Grueiro et al., 2021)

In the domain of CPS, an unviolable objective will al-
ways be to maintain safe operations and minimize risk
of failure. Risk is therefore a probability function of
the system’s State Of Health (SOH) and performance
constraints. A vast majority of the algorithms to solve
these types of problems are well known, but their im-
plementation in these systems is not a trivial task. In
a static environment, everything can be computed of-
fline without worry of processor limitations or com-
putational complexity. In a dynamic environment, a
complex system such as a UAV must repeatedly make
these calculations and trigger a replanning mode if
it detects a failure along its current trajectory. In In
(Quiñones-Grueiro et al., 2021), the authors present
a multi-objective cost function to assess risk of colli-
sion based on wind conditions and the current flight
plan. A path search algorithm was utilized offboard
to generate a new trajectory and then communicated
to the UAV. The replanning approach is depicted in
Figure 1.

2.1 Genetic Algorithms

GAs are heuristic-based optimization algorithms in-
spired by the principles of natural evolution and ge-
netics, which include selection, crossover, and muta-
tion (Goldberg, 1989). There are many variations to
GAs applied to a wide variety of problems, and for an
in-depth review the reader is directed to the works by
(Chahar et al., 2021). The GA process begins with a
randomly initialized population, where each individ-
ual represents a potential solution to the given prob-
lem, in this case, it is a search optimization problem.
In each generation, individuals are evaluated based on
a fitness function, which quantifies the quality of their
solutions with respect to some value or reward in the
problem domain. Next, selection operates to choose
parents based on fitness, and then the chosen individ-
uals produce offspring through crossover and muta-
tion operations. Crossover combines the parts of the
parent solutions into a new solution, and mutation in-

Figure 2: Replanning framework. The GCS uploads the trajectory and performance thresholds to the UAV prior to departure.
Online, the UAV continually monitors for faults and estimates RUL. When it determines it cannot finish the original trajectory
it requests a new plan from the ground station.

troduces small random changes into the offspring of
the parents afterwards. Elitism is used to retain high-
performing solutions from generation to generation.

The initial population is a crucial element, as
it aids in reducing the time required for the GA
to produce an optimal solution (Khaji and Moham-
madi, 2014). In addition, initialization can signif-
icantly impact the quality of the final solution. In
(Da Silva Arantes et al., 2015), the authors imple-
mented a greedy heuristic in the population initializa-
tion function for a fixed-wing UAV tasked with find-
ing an optimal landing spot and found that it safely
landed the UAV 97% of the time, compared to 88%
of the time without the greedy heuristic. In (Gyenes,
Zoltán and Bölöni, Ladislau and Szádeczky-Kardoss,
Emese Gincsainé, 2023), the authors presented a GA
for online obstacle avoidance with sub-second execu-
tion times. However, the size of the search space was
under 100 square meters, which renders the approach
not applicable on larger scales.

A hybrid GA for path planning of a UAV com-
bined with ray casting for obstacle avoidance is de-
tailed in (de Moura Souza and Toledo, 2020). Their
approach was implemented on a Raspberry Pi with
a maximum timeout of 180 seconds. Unfortunately,
180 seconds of runtime is not feasible for online use.
It is important to utilize domain knowledge in this
regard when designing an algorithm to be used on-
line. Generating the initial population informed by
the goals and constraints of the problem is the first
step to developing a rapidly converging GA in time-
critical applications, such as replanning.

3 REPLANNING

The high level goal of replanning is to generate new
mission parameters that allow the UAV to achieve as
much of its original objectives as possible and return
to base safely. Time is of the essence with complex
systems in safety critical environments and mission
designers need to know how the algorithms behave on

Figure 3: Reward comparison between the desktop com-
puter (orange) and embedded hardware (blue) shown for up
to 30 seconds of run time using the data from Example Sce-
nario D (see Figure 4). Each reward point represents an
additional waypoint added to the new trajectory, which rep-
resents an increase in utilization while still returning to base
safely.

the target embedded hardware, as opposed to the com-
puting platforms which they are developed on. This
is exemplified in Figure 3, which shows the running
time comparison for one replanning scenario (see Fig-
ure 4) when ran on the embedded hardware (discussed
further in Section 5.2) compared to the desktop com-
puter. This gives us the running time vs solution qual-
ity tradeoff, something that must be accounted for
when desiging safety related software architecture.

Theoretically, replanning is no easier than plan-
ning (Nebel and Koehler, 1993), and in fact replan-
ning itself is a planning problem. As this is the case,
the modified OP (a ”planning” problem) is a suitable
representation to frame the replanning problem, albeit
with the slight modification that we are not looking
for a path on the graph instead of a cycle. We leave
the kinematics to a separate solver and focus on re-
planning the waypoints in a given trajectory.

The replanning framework is presented in Figure
1, consisting of the off-board replanning agent on
the GCS, a pre-departure component (L), and an on-
line component (R). During pre-departure the mission

plan is generated on the GCS and is loaded onto the
embedded hardware with the performance thresholds.
The RUL and auxiliary model that estimates flight
time and power consumption are also loaded onto the
embedded hardware. Since we are moving the replan-
ning agent to the GCS one my ask why not also move
the estimation models as well. The reasoning is that
transmitting data consumes power and if we are con-
stantly transmitting input data for the models then the
battery will drain faster. Moreover, the RUL and aux-
iliary model execute in under a second - and moving
these models to the GCS would increase the time to
action by 200%. For these reasons, the models remain
onboard, and the replanner is moved to the GCS.

During the online phase, the Health-Awareness ar-
chitecture performs monitoring and estimation tasks.
The distance, flight time, a power consumption esti-
mates for each trajectory are known ahead of time.
Every 10 seconds the onboard models estimate the
RUL, remaining flight time, and remaining power. If
at anytime either of these values are less than the orig-
inal trajectory estimates or if the FDII module detects
a fault, the UAV enters a hover mode and replanning
agent on the GCS is activated. The GCS receives the
UAVs current position and remaining distance, flight
time, and power consumption estimates. It performs
replanning and then sends the new trajectory back to
the UAV, which then resumes flight.

3.1 Reward Function

The reward function of the replanner is such that orig-
inal waypoints have a reward value of 5 units, and al-
ternate waypoints have a reward value of 1 unit. In
the example depicted in Figures 3 and 4, the theoret-
ical maximum reward possible is 43 units, or 8 way-
points from the original trajectory (out of 9), and 3
additional waypoints. However, only 1 out of 5 trials
was successful with this solution, whereas 5 out of 5
trials with one less alternate waypoint was successful
(reward of 42). The UAV returned to base safely with
an average of 7 seconds before failure is reached. Any
mission designer will say this is to close for comfort.

A solution of 41 reward units, equivalent to 8 out
of the original 9 waypoints and 1 additional waypoint,
offers a buffer of approximately 28 seconds of flight
time. Looking at Figure 3 again, we can see that the
embedded hardware took 27.5 seconds to reach a so-
lution of this quality, while the desktop computer took
only 2.5 seconds. Now consider that we are able to
communicate with the UAV and the round-trip com-
munication time is 2 seconds. This means that we
can move the replanner to the ground control station
(GCS) and generate and execute a new plan in under

5 seconds.
The value of a waypoint wi is the ratio of its re-

ward to its distance to the original trajectory, T, cal-
culated for each waypoint as

values←
wR

1:|W′|
dist(T1:|W′)

, ∀ w ∈ W′,

which is the first step of the population initialization
function presented in Section 4.1.

3.2 Problem Formulation

The modified OP can be formulated as 4-tuple of
elements, (G,r,v0,T) where G = (W,R) is an un-
directed graph with waypoints, W = [w1,w2, ...wn],
representing locations. Each edge in R is a tuple,
ri j = (di j, ti j, pi j)∀ (wi,w j) ∈ W, which represents
the segment distance, flight time, and power con-
sumption, i.e. resources consumed between each pair
of waypoints. Each waypoint has an associated re-
ward, denoted by wR. The start and goal location
are the same for the original plan, ws = wg, but are
different for the case of replanning, in which case
the start location is the location at which the fault is
detected, when the UAV enters hover mode to con-
duct replanning. The resource constraint that must
not be violated, rmax = (dmax, tmax, pmax), is a tuple of
max distance, max flight time, and max power con-
sumption. Finally we have the original trajectory, T,
which is represented by a series of intermediate path
points from waypoint to waypoint, beginning with the
starting waypoint and ending at the goal waypoint.
The path points can be anywhere from 5 meters to
40 meters apart based on the geometry of the trajec-
tory (straight sections have path points that are further
apart). This defines a graph-based optimization prob-
lem that we apply a modified GA to, discussed next.

4 FAST-START ADAPTIVE
GENETIC ALGORITHM

The GA algorithm comprises several helper functions
that initialize the population, calculate target fitness,
calculate candidate fitness, calculate population diver-
sity, perform the crossover and mutation operations,
and calculate the adaptive rates for crossover, muta-
tion, and elitism. Some functions are described in
greater detail than others due to basic operations com-
mon to all GAs, and the GA itself is given in Algo-
rithm 4. The proposed GA incorporates five modifi-
cations to the vanilla version, which are:

(A) Discard waypoints beyond a certain distance from
the original trajectory to reduce the size of the
search space;

(B) Initialize each candidate with a randomly as-
signed partial solution of the original trajectory to
jump-start solution quality;

(C) Incorporate adaptive rates for elitism, crossover,
and mutation, based on population performance
and diversity to improve solution convergence;

(D) An early stopping mechanism to halt the algo-
rithm when the solution quality plateaus; and

(E) A mechanism for population restart to reinitialize
the population when solution quality does not im-
prove.

We will return to this list of modifications in Sec-
tions 5 and 6. The algorithms are now detailed in the
following subsections.

4.1 Population Initialization

The population initialization function, given in Algo-
rithm 1, is where the fast-start property of the algo-
rithm is contained. The algorithm prioritizes high-
reward, close to the original trajectory waypoints via
the value function. Furthermore, candidate solution is
initialized by sampling from the remaining waypoints
in the trajectory. To define what we mean by ”close to
the original path” we introduce a cutoff value, c, for
which we use to consider waypoints to begin with.
This allows us to restrict the search space and speed
up the execution time of the algorithm. Formally, this
is

W ′ = w ∈ W : ∃D(w, p) ≤ c, ∀ p ∈ T, ∀ w ∈ W,

where W ′ is the reduced set of waypoints; w are indi-
vidual waypoints in the set of all waypoints W′; p are
intermediate points along the trajectory T; D(w, p) is
the distance between a waypoint w and an interme-
diate path point p; and c is the distance cutoff with
which to ignore or consider waypoints. Moving for-
ward, W′ will denote the reduced set of waypoints
used by the replanning agent.

The algorithm takes as input the population size,
the graph, G, the starting waypoint, ws, the goal way-
point, wg, the original trajectory, T, and the resource
threshold values, rmax. The values, line 2, is the value
function used to guide the initial population genera-
tion process presented in Section 3.1. In line 3 the
population is initialized to an empty set and in line 4
the population outerloop begins. A candidate, C, is
initialized in line 5 by selecting a random number of

Algorithm 1: Generate initial population for GA

1 Function
initialize population(population-size,
G(W′,R),T,ws,wg,rmax)):

2 values←
wR

1:|W′ |
dist(T1:|W′)

, ∀ w ∈ W′

3 population← /0

4 for i = 1 ... population-size do
5 C ∼U(W, [0, |W′|−2])
6 r← (0,0,0)
7 while r < rmax do
8 E(w)← values(w)

∑values
9 wp∼ (waypoints,E(w))

10 waypoints← waypoints−wp
11 r‘← r
12 if —C— ≡ 0 then
13 r‘+= R(ws,wp)
14 end
15 else
16 r‘+= R(C−1,wp)
17 end
18 if r‘ + R(wp,wg)≤ rmax then
19 C←C∪wp
20 r← r‘
21 end
22 end
23 population← population ∪ C
24 end
25 return population

waypoints from the remaining waypoints in the orig-
inal trajectory, while maintaining the initial ordering.
The accumulated resources are initialized in line 6.

The inner loop starts on line 7, which builds an
individual candidate solution. Lines 8-10 select a
waypoint via weighted sampling from the values (the
value function, line 2). Line 11 assigns the current re-
source utilization to r, which on the first iteration will
be 0. Lines 12-17 accumulate these values based on
if its a new candidate, line 13, or line 14 if not. Then
in line 18, the resource thresholds, rmax, are checked,
and the current waypoint is added to the candidate if
the check is satisfied in line 19. The total resource uti-
lization is updated in line 20. In line 23 the candidate
is added to the population.

4.2 Helper Functions

The next function, Calculate Target Fitness, shown in
Algorithm 2, calculates the target fitness that the av-
erage fitness of the population should exceed. This
value is to allow the parameters of the algorithm to

dynamically change in real time based on the fitness
of the overall population. One approach would be to
calculate the reward per unit distance based on the to-
tal reward available in the search space and the max
distance. However, this assumes an even distribution
of rewards and travel segment distances, and there are
many cases where this approach will yield a poor es-
timate.

Algorithm 2: Calculate target fitness

1 Function
calc target fitness(G(W′,R),ws,wg,rmax):

2 waypoints← sort(W′,values(W′))
3 f← 0
4 r← (0,0,0)
5 for each wp ∈ waypoints do
6 r‘← R(ws,wp)+R(wp,wg)
7 if r+ r‘≤ rmax then
8 f← f+wV

9 r← r+ r‘
10 end
11 else
12 break
13 end
14 end
15 return f

A better estimation of the target fitness would ac-
count for the fact that some waypoints might provide
more reward per unit distance than others. An im-
proved approach involves sorting the waypoints based
on their reward-to-distance ratio, using the distances
from the starting waypoint and the goal waypoint.
This is the approach given in Algorithm 2.

The waypoints are sorted according to their val-
ues in line 2. In line 3 fitness, f, is initialized, and in
line 4 the resources, r, are initialized. The main loop
begins on line 5, which iterates through the sorted list
of waypoints and gets the distance, time, and power
for the selected waypoint in line 6. Line 7 checks the
thresholds if the thresholds are not violated then the
fitness and and threshold values are accumulated in
lines 8 and 9. The algorithm terminates when a re-
source threshold exceed the max allowable value, and
the target fitness is returned in line 15.

Algorithm 3 performs the Mutation operation, and
takes as input a candidate, C, the list of waypoints (ex-
cluding the start and goal waypoints, W′, the muta-
tion rate, mrate, the resource thresholds, rmax, and the
resource matrix, R. Mutation operates on individual
waypoints, or genes, within the candidate solution,
using waypoints from the candidate, w ∈ C or way-
points in the set of waypoints, w ∈W′. If a random

Algorithm 3: Mutation function

1 Function mutate(C, W′, mrate, rmax, R):
2 if random() ≤ mrate then
3 op← random(add,subtract,replace)
4 if op = add then
5 Cnew← C + random(w, w ∈

W′, w /∈C)
6 else if op = subtract then
7 Cnew← C − random(w, w ∈C)
8 else if op = replace then
9 idx← random(|C|)

10 Cnew← C
11 Cidx

new← random(w, w ∈W′, w /∈
C)

12 if ∑
wi,w j∈Cnew

R(wi,w j) ≤ rmax then

13 return Cnew
14 end
15 end
16 return C

number is less than the mutation rate then a mutation
operation is randomly selected (lines 2 and 3).

To ensure maximal entropy in the resultant popu-
lation, multiple mutation operations are implemented.
The addition operation adds a waypoint to the can-
didate, Cnew (line 5); the subtraction operation re-
moves a waypoint from the candidate, Cnew (line 7);
and the replace operation replaces a waypoint in Cnew
(lines 9-11). Transpose is a common mutation oper-
ation that is discarded here because it breaks the or-
dering property that we do not want to violate. If the
total resource consumption is less than the resource
thresholds then the new candidate is returned (lines
12-13). If the mutation operation doesn’t take place or
if the resource thresholds are exceeded then the origi-
nal candidate is returned (line 16).

The Adaptive Rate function (not depicted) calcu-
lates rates for crossover, mutation, and elitism based
on the algorithms performance. The algorithms per-
formance is characterized by the average population
fitness, the population diversity, and the number of it-
erations since last improvement. It takes as input the
average population fitness, f̄; the target fitness, f∗; the
population diversity, δ; the GA parameters, θ (xrate is
the crossover rate, mrate is the mutation rate, erate is
the elitism rate, α is the crossover and mutation step
size, and β is the elitism step size); and the number of
iterations since last improvement, i.

If the algorithm hasn’t reached or exceeded the
target fitness, has low diversity, or isn’t improving,
the crossover and mutation rates increase while the
elitism rate decreases. If the target fitness has been

reached and the algorithm is improving, the crossover
and mutations rates decrease while the elitism rate
increases. If the target fitness has been reached but
the algorithm isn’t improving, then the elitism and
crossover rates tend towards their initial value while
the mutation rate increases. This is because both
crossover and elitism utilize information within the
population, but if the population is diverse but not pro-
ducing better solutions, then we want to impart new
candidates into the population using mutation instead.

4.3 The Genetic Algorithm

The proposed GA, given in Algorithm 4, uses the
above functions and implements the Fast-Start Adap-
tive Genetic Algorithm for Constrained Routing with
Rewards. Lines 1-7 initialize the best candidate, C∗,
the fitness values, F, the iterations for improvement
and the improvement counter, I & i, the reset counter,
the target fitness values, f∗, and the population, P.
The main loop begins on line 7 at iterates for θN gen-
erations. The fitness for each candidate in the pop-
ulation is calculated in line 8, and the average fit-
ness, f̄, is calculated in line 9. The population di-
versity, δ, is calculated in line 10, and line 11 con-
tains the adaptive check. If the number of iterations
for improvement have passed without improvement,
or if the population diversity is poor (values ¿ .5 are
poor) and the average fitness is less than the target
fitness, then a new population is initialized in line
12, and the reset counter is incremented in line 13.
The only stopping condition outside of loop termina-
tion is in line 14, where the algorithm terminates if
the population has been reinitialized 3 times. Oth-
erwise, in line 16 the crossover, mutation, and elite
rates, θxrate , θmrate , θerate , respectively, are calculated.

Elitism is performed in line 18 by sorting the pop-
ulation based on fitness, and selecting the top N can-
didates, where N = θerate x |P|, the elitism rate multi-
plied by the length of the population. Next, in lines
19-23 the crossover operation is performed. First,
a weighted sampling operation selects two random
candidates, Ca & Cb, weighted by the population fit-
ness. Then, the two candidates are crossed over and
added to the offspring set in line 22. Line 24 per-
forms mutation, mutating all candidates in the off-
spring set, whereby some candidates are returned un-
altered based on the mutation rate, θmrate . The exist-
ing population is updated in line 25 with the elites and
offspring, and in 26 the best potential candidate, Ĉ is
taken. Line 27 performs two checks to determine the
best candidate, C∗.

If the fitness of the potential candidate is equal to
the fitness of best candidate, C∗, and the resource con-

Algorithm 4: Adaptive Genetic Algorithm for Con-
strained Path Planning with Rewards

Input: The graph, G, and GA parameters, θ

Output: C∗, the best candidate
1 C∗← /0

2 F← /0

3 I, i← θI ,1
4 reset← 0
5 f∗← calculate target fitness(G)
6 P← generate initial population(θsize,G)
7 for j = 1 : θN do
8 F← calculate fitness(C,G), ∀C ∈ P
9 f̄ ← ∑F

|P|
10 δ← calculate diversity(P)
11 if i mod I ≡ 0 or (δ > .75 and f̄ < f∗)

then
12 P←

generate initial population(θsize,G)
13 reset← reset + 1
14 if reset ≡ θreset then break
15 else
16 θxrate ,θmrate ,θerate ←

calculate dynamic rates(f̄, f∗,δ,θ, i)
17 end
18 elites← sort(P,F)1:θerate x |P|
19 o f f spring← /0

20 for n = 1 : |P|− |elites| do
21 Ca,Cb ∼ (P,F)
22 o f f spring← o f f spring ∪

crossover(Ca,Cb,θxrate ,G)
23 end
24 o f f spring← mutate(C,G,θmrate) ∀C ∈

o f f spring
25 P← elites ∪ o f f spring
26 Ĉ← max(P,F)
27 if (F(Ĉ)≡ F(C∗) and R(Ĉ)<

R(C∗)) or ((F(Ĉ)> F(C∗) and R(Ĉ)≤
rmax) then

28 C∗← Ĉ
29 i← 1
30 reset← 0
31 else
32 i← i + 1
33 end
34 end
35 return C∗

sumption of the potential candidate is less than the
resource consumption of the best candidate, then the
best candidate is replaced. Second, if the fitness of the
potential candidate is greater than the fitness of the
best candidate and the resource consumption of the

Figure 4: Replanning experimental process overview. Left: The UAV does not enter replanning mode and fails shortly before
reaching base. Middle: The replanner is activated and selects a new trajectory using waypoints near the existing flight path.
Right: The UAV executes the new trajectory and returns to base safely. The replanner discared one waypoint from the original
trajectory, and added two additional waypoints. Fault onset time was at 207 seconds.

potential candidate is less than the resource thresh-
olds, then the best candidate is replaced. If either
check is satisfied, then the best candidate is updated
in line 28, and the improvement and reset counters are
reset in lines 29 and 30. Otherwise, the improvement
counter increments in line 32. The algorithm returns
the best candidate in line 35.

5 EXPERIMENTS

Several experiments were conducted to demonstrate
the GA algorithm for replanning after the onset and
detection of a fault. Three scenarios are presented in
this work for discussion, with the scenario in Figure 4
depicting the overall experimental process. The ex-
periments are set up as follows: First, the selected
UAVs have completed between 40 and 80 flights, and
the selected trajectories have an estimated flight time
of 19-22 minutes. Possible faults include battery cell
loss, parasitic load, and speed loss. Fault onset times
randomly occur between 50 and 400 seconds into
flight. Wind force magnitude is randomly set between
1.5 and 3.5 Newtons. The trajectory, UAV, fault time,
fault type, and fault magnitude are determined ran-
domly.

Figure 4 depicts a typical replanning scenario
(with the proposed replanner), which will now be de-
scribed moving from left to right. The left plot shows
the UAV fly the original trajectory without replan-
ning. The UAV starts in the upper left corner (green
dot), and moves counter clockwise. There are a total
of 12 waypoints (blue dots), and the fault (battery cell
loss) occurs shortly after reaching the 3rd waypoint
(black X) - 207 seconds into the flight. Without re-
planning, the UAV is able to reach all 12 waypoints
but fails shortly before returning to base (red X).

The middle plot of Figure 4 depicts alternate way-

Figure 5: Scenario for GA comparison with a fault onset
time of 135 seconds and a fault type of battery cell loss.
The UAV travels clockwise and the fault occurs at the black
X, with failure occurring at the red X.

points that are ignored by the replanner (red mark-
ers), waypoints that are considered by the replanner
(green markers) (i.e. W′), and the new trajectory (pur-
ple line). The distance-to-path is a parameter of the
replanner which is used to delineate waypoints that
are considered and waypoints that are ignored. In this
case, that value was set at 60 meters. The right plot
shows that UAV flew the new trajectory and reached
base safely (green triangle). We can also see that an
original waypoint was removed (red circle), and two
alternate waypoints were added (green circles).

5.1 GA Comparison

To demonstrate the effectiveness of the modified GA,
we compare it to the vanilla GA and highlight both so-

lution quality and runtime. The vanilla GA considers
all waypoints in the search, does not initialize can-
didates with partial solutions, does not have adaptive
elitism, crossover, and mutation rates, and does not
have a population restart or early stopping function.
The scenario used for this study is shown in Figure 6.
We run the GA 30 times for each trial. The trials con-
sist of the vanilla GA; the GA with each modification
A-B-C-D-E individually; the GA with A-B modifica-
tions; the GA with A-B-C modifications; the GA with
A-B-C-D modifications, and finally the GA with each
modification A-B-C-D-E combined. The results are
discussed in Section 6.

The GA parameters for the replanning experiment
are given below in Table 1.

Parameter Symbol value

number of generations θN 100

population size θsize 1000

improvement iterations θI 25

resets to halt θreset 3

crossover rate θxrate 1.0

mutation rate θmrate .3

elitism rate θerate .3

rate increment 1 θα .05

rate increment 2 θβ .02

Table 1: GA search parameters.

5.2 GA Performance Analysis

The GA was tested on the Ground Control Station
(GCS) as well as the embedded hardware to under-
stand how the algorithm performs on different com-
puting platforms. The GCS is equipped with A 24
core Ryzen Threadripper 3960X CPU at 3.8 GHz with
a clock speed of 1.78GHz. The embedded hardware
used for the experiments is a Unibab Spacecloud Q71

with a dual-core AMD G-series SOC CPU operating
at 1.8GHz. These compute modules are radiation tol-
erant and used for space applications.

A performance test of the GA was conducted to
determine the relationship between the population
size, number of generations, solution quality, and run-
time on both platforms. This was initially discussed
above with a runtime versus reward comparison plot
between the hardware and desktop computer in Fig-
ure 3. The test will now be described, with the above

1https://unibap.com/wp-
content/uploads/2020/03/1004001-unibap-information-
sheet-on-unibap-e2000e2100-modules.pdf

example scenario in Figure 4 as context. In the above
scenario, the original waypoint had 12 waypoints to-
tal, and 9 remaining waypoints after the failure oc-
cured. Of the remaining original waypoints, the re-
planning agent is allowed to select at maximum 8,
or 1 less than the remaining total. The replanning
agent was executed a total of 10 times for each pop-
ulation size and number of generation combinations
taken from the following:

pop. size ← [100,250,500,1000,1500,2000]

n gen. ← [25,50,75,100,125,150,175,200]

This results in a total of 480 runs of the GA, ex-
ecuted for the above scenario on both the embedded
hardware and the GCS. The results are discussed next.

6 RESULTS & DISCUSSION
We first discuss the GA ablation study, followed by a
discussion of the GA performance on embedded hard-
ware (on-board) versus the GCS (off-board). The re-
sults of the ablation study are shown in Table 2. What
we see is that the vanilla GA (trial 1) performs the
worst in terms of reward, and 2 out of 30 trials did
not return a solution. We also see that the popula-
tion restart mechanism (trials 6 and 10) had the high-
est time cost, but did not have the highest reward
improvement. Trial 7, the GA with the ’fast-start’
modifications (A-B), had the best time-to-reward ra-
tio. Adding the ’adaptive’ property, trial 8 (A-B-C),
increase the reward achieved at the cost of execution
time. The execution time was then reduced in trial 9
(A-B-C-D), with a slight reduction in reward as well.
There was no benefit in terms of reward or execution
time with incorporating population restart in trial 10
(A-B-C-D-E).

ID Method Time Reward Notes

1 Vanilla 5.26s 31.81 2*
2 A 5.13s 34.41 1*
3 B 5.33s 37.62 –
4 C 8.26s 35.16 1*
5 D 4.14s 31.91 2*
6 E 10.1s 33.77 –
7 AB 5.35s 38.14 –
8 ABC 7.69s 38.55 –
9 ABCD 6.57s 38.27 –
10 ABCDE 8.62s 37.95 –

Table 2: GA ablation experiment results.
*number of times a solution was not found

Figure 6: Example trajectories generated by the replanning agent with different versions of the GA. Each Trial maps to the ID
field of Table 2.

6.1 On-Board Off-Board Analysis
Figures 8 and 9 each show a 4-D surface plot for the
improved GA algorithm using data from the scenario
depicted in Figure 4. Figure 8 is for the desktop test,
and Figure 9 is the hardware test. The Z-axis repre-
sents running time, the Y-axis represents population
size, the X-axis represents number of generations, and
the colorbar represents reward. This plot allows us
to see all four variables at once, and find the optimal
manifold for which to choose our parameters from.
The biggest different between the desktop and em-
bedded hardware is in the running time, which is ex-
pected.

An additional factor that affects the performance
of the algorithm is the distance threshold with which
to either consider or discard alternate waypoints.
More waypoints are considered for larger distances,
and the resulting population contains more solutions
with trajectories that may be sub-optimal, which af-
fects convergence time. Therefore, it is recommended
to keep the the distance cutoff threshold as small as
possible.

The key takeaway from this experiment is that on-
line replanning with time constraints and large search
spaces is still a challenge that we face. Advances in
communication technologies have made it possible to
move the replanning agent off-board while still ensur-
ing in-time solutions when accounting for the commu-
nication overhead, which is roughly 2 seconds round
trip for a UAV in an urban environment, when the
GCS is co-located in the area of operations.

6.2 Solution Quality as a Function of
Runtime

Figure 7 depicts the health-aware replanning solution
on the left with a population size of 500 and 100 gen-
erations, and on the right with a population size of
2000 and 200 generations. When comparing the left
and right solutions, we can see that both solutions dis-
carded the same 3 waypoints from the original trajec-
tory. However, when the running time constraint is
ignored (right), 2 additional waypoints are added to
the trajectory. This results in a reward of 38 vs 36 for
this particular example. The trade-off is that for two
extra waypoints an additional 19 seconds of runtime
is required.

Figure 8: GA performance plots on desktop computer.

Figure 7: Left: replanning solution when controlling for execution time (< 5 seconds→ population size = 500, generations =
100) results in a reward of 36. Right: replanning solution when runtime is not a factor (population size = 2000, generations =
200) results in a reward of 38.

n gen pop size avg time avg reward

200 250 1.75 41.06
100 500 2.89 41.01
150 500 3.71 41.10
175 500 4.14 41.22
200 500 4.46 41.29

Table 3: Top GA performance results on desktop with re-
ward greater than or equal to 41 and runtime less than 5
seconds.

Figure 9: GA performance plots on the Unibap Qseven.

n gen pop size avg time avg reward

100 500 27.11 41.01
125 500 29.46 41.12
150 500 32.45 41.20
175 500 37.58 41.30
200 500 42.17 41.36

Table 4: Top GA performance results on embedded hard-
ware with reward greater than or equal to 41.

7 CONCLUSION

This research introduces on-board off-board frame-
work for UAV replanning under time and resource
constraints. A novel genetic algorithm tailored to the
online constrained path planning with rewards prob-
lem is presented. Five different modifications to the
vanilla GA were presented with a discussion and ab-
lation study. These include include a ”fast start” pop-
ulation initialization technique, where candidate solu-
tions are seeded with parts of the original trajectory,
and waypoints beyond a threshold distance from the
original path are not considered. The algorithm adap-
tively responds to the population performance and
diversity by modifying its crossover, mutation, and
elitism rates to either encourage exploration or ex-
ploitation as necessary. A population restart mech-
anism is also incorporated to rejuvenate the search
when required. The results show that the fast start
property (methods A-B) contributes the most achiev-
ing high rewards with relatively short execution time,
while adding the adaptive property (A-B-C) increases
the reward achieved at a cost of increasing the exe-
cution time. The execution time can then be reduced
wile maintaining a higher level of reward by adding
in an early stopping mechanism (A-B-C-D). Adding
in the population restart mechanism (A-B-C-D) had a
negative effect on both reward and execution time.

UAV resilience lies in effective replanning to com-
plete as much of the original mission goals as possi-
ble in a safe manner. The replanning process is com-
plicated by the need for time-constrained, on-the-fly

computations. The goal of replanning is twofold: to
maximize rewards by flying through as many attain-
able waypoints as possible, with a preference for way-
points on the initial trajectory; and to ensure the UAV
does not violate any of its resource thresholds. How-
ever, inaccuracies in resource estimates can lead the
UAV to mistakenly believe it possesses more flight
time, culminating in mission failure before returning
to base.

Immediate future work in this direction would be
to incorporate a continuous planning architecture, as
opposed to a one-time, reactive approach. Instead
of reactive adjustments post-failure, since we do not
have computing constraints by moving the replanning
agent off-board, we could continuously plan, sending
only the next one or two waypoints at a time to the
UAV. We could also continuously keep a tree of sev-
eral alternate plans so that when the UAV requires a
new plan it can be immediately uploaded. This agent,
equipped with contingency blueprints for varying lev-
els of potential failure severities, would usher in a
paradigm of anticipatory path optimization.

ACKNOWLEDGEMENTS

This work is supported in part by NASA OSTEM Fel-
lowship 20-154.

REFERENCES

Ahmed, S., Mohamed, A., Harras, K., Kholief, M., and
Mesbah, S. (2016). Energy efficient path planning
techniques for uav-based systems with space dis-
cretization. In 2016 IEEE Wireless Communications
and Networking Conference.

Badihi, H., Zhang, Y., Jiang, B., Pillay, P., and Rakheja, S.
(2022). A comprehensive review on signal-based and
model-based condition monitoring of wind turbines:
Fault diagnosis and lifetime prognosis. Proceedings
of the IEEE, 110.

Bonet, B. and Geffner, H. (2011). Planning under partial
observability by classical replanning: Theory and ex-
periments. In IJCAI.

Chahar, V., Katoch, S., and Chauhan, S. (2021). A review
on genetic algorithm: Past, present, and future. Multi-
media Tools and Applications, 80.

Da Silva Arantes, J., Da Silva Arantes, M., Toledo, C. F. M.,
and Williams, B. C. (2015). A multi-population ge-
netic algorithm for uav path re-planning under critical
situation. In 2015 IEEE 27th International Confer-
ence on Tools with Artificial Intelligence (ICTAI).

de Moura Souza, G. and Toledo, C. F. M. (2020). Genetic
algorithm applied in uav’s path planning. In 2020
IEEE Congress on Evolutionary Computation (CEC).

Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley.

Gyenes, Zoltán and Bölöni, Ladislau and Szádeczky-
Kardoss, Emese Gincsainé (2023). Can genetic al-
gorithms be used for real-time obstacle avoidance for
lidar-equipped mobile robots? Sensors.

Hu, X., Zhang, K., Liu, K., Lin, X., Dey, S., and Onori,
S. (2020). Advanced fault diagnosis for lithium-ion
battery systems: A review of fault mechanisms, fault
features, and diagnosis procedures. IEEE Industrial
Electronics Magazine, 14.

Khaji, E. and Mohammadi, A. S. (2014). A heuristic
method to generate better initial population for evo-
lutionary methods. CoRR.

Komarnitsky, R. and Shani, G. (2016). Computing contin-
gent plans using online replanning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelli-
gence.

Li, J., Sun, J., Liu, L., and Xu, J. (2021). Model predictive
control for the tracking of autonomous mobile robot
combined with a local path planning. Measurement
and Control, 54(9-10):1319–1325.

Nebel, B. and Koehler, J. (1993). Plan modification versus
plan generation: A complexity-theoretic perspective.
13th International Joint Conference on Artifical Intel-
ligence.

Quiñones-Grueiro, M., Biswas, G., Ahmed, I., Darrah, T.,
and Kulkarni, C. (2021). Online decision making and
path planning framework for safe operation of un-
manned aerial vehicles in urban scenarios. Aerospace
Journal (to appear).

Ryu, H. (2020). Hierarchical path-planning for mobile
robots using a skeletonization-informed rapidly ex-
ploring random tree*. Applied Sciences, 10.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and
Kavuri, S. N. (2003). A review of process fault de-
tection and diagnosis: Part i: Quantitative model-
based methods. Computers & Chemical Engineering,
27(3):293–311.

Yang, F., Fang, X., Gao, F., Zhou, X., Li, H., Jin, H., and
Song, Y. (2022). Obstacle avoidance path planning
for uav based on improved rrt algorithm. Discrete Dy-
namics in Nature and Society, 2022.

