
Runway Sign Classifier: A DAL C Certifiable
Machine Learning System

Konstantin Dmitriev
Technical University of Munich

Garching, Germany
konstantin.dmitriev@tum.de

Johann Schumann
KBR, NASA Ames Research Center

Moffett Field, CA
johann.m.schumann@nasa.gov

Islam Bostanov
Technical University of Munich

Garching, Germany
islam.bostanov@tum.de

Mostafa Abdelhamid
Technical University of Munich

Garching, Germany
mostafa.abdelhamid@tum.de

Florian Holzapfel
Technical University of Munich

Garching, Germany
florian.holzapfel@tum.de

Abstract—In recent years, the remarkable progress of Machine
Learning (ML) technologies within the domain of Artificial
Intelligence (AI) systems has presented unprecedented oppor-
tunities for the aviation industry, paving the way for further
advancements in automation, including the potential for single
pilot or fully autonomous operation of large commercial air-
planes. However, ML technology faces major incompatibilities
with existing airborne certification standards, such as ML model
traceability and explainability issues or the inadequacy of tra-
ditional coverage metrics. Certification of ML-based airborne
systems using current standards is problematic due to these
challenges. This paper presents a case study of an airborne
system utilizing a Deep Neural Network (DNN) for airport sign
detection and classification. Building upon our previous work,
which demonstrates compliance with Design Assurance Level
(DAL) ”D”, we upgrade the system to meet the more stringent
requirements of Design Assurance Level ”C”. To achieve DAL C,
we employ an established architectural mitigation technique
involving two redundant and dissimilar Deep Neural Networks.
The application of novel ML-specific data management tech-
niques further enhances this approach. This work is intended to
illustrate how the certification challenges of ML-based systems
can be addressed for medium criticality airborne applications.

I. INTRODUCTION AND RELATED WORK

The remarkable progress of Machine Learning (ML) tech-
nologies in recent years has the potential to revolutionize avi-
ation [1], [2]. Data-driven ML systems can implement highly
complex cognitive functions such as vision and language
processing that can enable single pilot or fully autonomous
operation of large commercial airplanes, a level of automa-
tion not possible with traditional rule-based software systems
[3]. However, ML technology encounters various inherent
incompatibilities with existing airborne certification standards.
These incompatibilities encompass challenges related to ex-
plainability, traceability, and implementation coverage [4].
As a result, the utilization of ML-based applications within
the framework of existing airborne certification standards is
currently impeded.

The industry, aviation authorities, and academia are actively
engaged in collaborative efforts to develop new certification
standards aimed at addressing the existing incompatibilities

of ML technology with existing certification practices. The
development of a new standard for airborne machine learning
(ML) certification has been underway since 2019 through the
collaborative efforts of the EUROCAE/SAE WG-1141/G-342

joint working group. The working group has published reports
reflecting the intermediate results [4], [5]. The European
Aviation Safety Agency (EASA) has released the guidance
for ML applications [8], which includes anticipated objectives
and means of compliance for the certification of safety-critical
airborne systems based on machine learning. In collaboration
with Daedalean AG, the U.S. Federal Aviation Administration
(FAA) has released a research report on a neural network
vision-based landing guidance system [6]. This report offers a
practical assessment of the previously proposed W-shaped pro-
cess for ML applications, as outlined in earlier Daedalean AG
publications [1], [2]. Numerous ongoing research projects in
academia are exploring various aspects of ML-based systems
certification in different domains [7]–[11].

However, all currently available materials do not constitute
final certification standards but rather anticipated guidance
specific to systems utilizing machine learning technology. Due
to the novelty and complexity of the subject matter, as well as
the involvement of multiple stakeholders, the accomplishment
and acceptance of new certification standards for ML may
require several additional years. The absence of certification
standards presents a fundamental constraint to the effective
utilization of the advantages offered by ML technology within
the aviation industry. To tackle these challenges, we proposed
and implemented in our previous works [12], [13] a custom
ML certification workflow for low-criticality (Design Assur-
ance Level ”D”) [14] machine learning systems which is based
on existing certification standards. In this work, we present
an extension to our previous case study [13] of the Machine
Learning Runway Sign Classifier (RSC) system designed to

1https://www.eurocae.net/news/posts/2019/june/
new-working-group-wg-114-artificial-intelligence/

2https://standardsworks.sae.org/standards-committees/
g-34-artificial-intelligence-aviation

https://www.eurocae.net/news/posts/2019/june/new-working-group-wg-114-artificial-intelligence/
https://www.eurocae.net/news/posts/2019/june/new-working-group-wg-114-artificial-intelligence/
https://standardsworks.sae.org/standards-committees/g-34-artificial-intelligence-aviation
https://standardsworks.sae.org/standards-committees/g-34-artificial-intelligence-aviation


Fig. 1. Runway Sign Classifier DAL C System Architecture

detect and classify airport runway signs utilizing a computer
vision deep neural network. Through this work we illustrate
the implementation of the next version of our custom workflow
addressing DAL C certification objectives as proposed in
[15]. To achieve DAL C, we utilize the proven architectural
mitigation approach in combination with novel ML-specific
development and verification techniques. This work is intended
to demonstrate the incremental certification approach from low
DAL D to medium DAL C assurance level by the application
of existing assurance practices.

The rest of this paper is structured as follows: Section II
provides an overview of the RSC system under study including
a discussion of its use cases, an overview of the system
requirements and architecture, data management aspects, and
an analysis of system component implementation, integration,
verification and validation. Section III comprises an evaluation
of the RSC system compliance with the DAL C certification
objectives. Section IV provides a summary of the paper,
explores future work, and presents the concluding remarks.

II. CASE STUDY

In this work, we upgrade the ML-based Runway Sign
Classifier system introduced in [13] to achieve airborne Design
Assurance Level C. RSC system relies on machine-learning
DNN technology which constitutes the focal point of our
research and requires special certification considerations that
we studied in [15] and implemented as a realistic example
in this work. In order to meet the DAL C certification
objectives for RSC, we utilize architectural mitigation along
with ML-specific assurance techniques, following the DAL C
ML workflow proposed in [15].

A. System Overview

Runway Sign Classifier (RSC) system is intended for the de-
tection and classification of airport signs (Fig. 2). The system
receives visual images from a forward-facing camera installed
on the aircraft and uses a DNN for detection and classification
tasks. In our baseline case study [13], we considered three
variants of such a system depending on the level of automation
and corresponding criticality levels:

• RSC-FB (Flight Bag). This variant serves as a pilot as-
sistance system by providing information about detected
runway signs to pilots e.g., via an enhanced vision sys-
tem. Failures of such a system would have minor safety
effects, as the pilot is still responsible for the continuous
perception of the visual environment and retains full
control of the aircraft. Consequently, the RSC-FB can
be assigned the lowest design assurance level (DAL D).

• RSC-SM (Safety Monitor). This system variant provides
information about detected airport signs to enable cockpit
annunciation or automatic braking in hazardous taxing
situations, such as crossing a holding position sign with-
out the controller’s approval. This capability provides a
higher autonomy and criticality level and can be assigned
DAL C.

• RSC-AU (Autonomy). This RSC variant is intended to
support fully autonomous taxiing. In this context, the
location and sign data directly contribute to the decision-
making system responsible for autonomous aircraft con-
trol and preventing runway incursions. Given the potential
safety impact, the system can be assigned DAL B or
DAL A, depending on the aircraft category.

In our previous work [13], we implemented the first variant

Fig. 2. Airport sign



of the RSC-FB system and demonstrated its compliance with
DAL D certification objectives. This study focuses on imple-
menting the second variant, RSC-CM, using our custom ML
workflow for DAL C [15]. In future work, we plan to address
the third and most critical variant, RSC-AU.

B. System Architecture

A single-channel architecture of the original Runway Sign
Classifier system presented in [13] is compatible with the
DAL D custom ML workflow [12] but has to be redesigned
to implement the architectural mitigation approach proposed
DAL C ML-based systems in [15]. We upgraded the RSC
system architecture by adding a second dissimilar DNN and
a safety monitor component. Fig. 1 shows the implemented
in this work DAL C RSC system architecture with two
independent DNNs running in parallel; outputs of DNNs are
continuously monitored by the safety monitor component and
inhibited in case of divergence above the specified threshold.
As justified in [15], the design assurance levels of the redun-
dant dissimilar DNN components can be reduced to DAL D in
such architecture while maintaining the DAL C for the overall
system.

C. RSC Requirements

The functional and operational requirements that we devel-
oped for the DAL D implementation of the RSC system in
our previous study [13] remain unchanged for the DAL C
architecture upgrade, therefore we reused them in this case
study. To address the DAL C workflow objectives for archi-
tectural mitigation measures [15], we added DAL C specific
requirements for system components dissimilarity and a safety
monitor as detailed in Table I. Furthermore, we elaborated
the RSC operational conditions requirements into explicit
requirements for RSC datasets (Table II) with the purpose
of supporting data-specific verification activities discussed in
Section II-D. For requirements authoring and management, we
utilized the Polarion life-cycle management framework [16].

ID Description
RSC-A1 The RSC system shall include two dissimilar DNN compo-

nents independently performing sign detection function
RSC-A2 The RSC system shall include a safety monitor component

that compares the outputs of the dissimilar DNN compo-
nents. The safety monitor shall inhibit the system outputs if
the outputs of the DNN components do not fall within the
specified tolerance

RSC-A3 DNN components shall utilize dissimilar network architec-
ture

RSC-A4 The RSC DNN components shall be trained and tested using
independent datasets

RSC-A5 The RSC DNN components software shall be implemented
using different programming languages

RSC-A6 The RSC DNN components shall be implemented using
dissimilar electronic hardware

RSC-A7 The RSC DNN components shall be implemented by dif-
ferent individuals

RSC-A8 Verification of the RSC DNN components shall be per-
formed by different individuals or groups

TABLE I
RSC SYSTEM ARCHITECTURE REQUIREMENTS

ID Description
The RSC datasets shall contain sign images that have been captured
within the premises of the following airports:
KSFO San Francisco International Airport
KBOS Boston Logan International Airport
KSAN San Diego International Airport
The RSC datasets shall contain sign images that have been captured
under the following weather conditions:
FAIR Fair weather
RAIN Rainy weather
SNOW Snowy weather
FOG Foggy weather
The RSC datasets shall contain sign images that have been captured
during the following time of day:
MRNG Morning
DUSK Dusk
AFTN Afternoon
DAWN Dawn
The RSC datasets shall contain sign images that have been captured
within the following distance ranges:
DS10 10 to 12 meters
DS12 12 to 14 meters
DS14 14 to 16 meters
The RSC datasets shall contain sign images captured from points at
an elevation above ground level within the following ranges:
EL10 1.0 to 1.3 meters
EL13 1.3 to 1.6 meters
EL16 1.6 to 1.9 meters
The RSC datasets shall contain sign images captured within the
following ranges of the camera’s lateral offset from the sign center
line:
LO00 0 to 0.7 meters
LO07 0.7 to 1.4 meters
LO14 1.4 to 2 meters

TABLE II
RSC DATA REQUIREMENTS

D. ML Data Management

In ML development workflows, datasets play a crucial role
as they directly define the system behavior and therefore
serve as high-level software requirements [13]. In this case
study, we address the independence aspects of datasets used
for the different DNN components to satisfy the dissimilarity
requirements outlined in Section II-B. Additionally, we study
the specific aspects of data configuration management and
data verification that have to be addressed in a safety-critical
context but are not covered well by the existing assurance
practices.

1) Datasets Independence: As discussed in [15], a signifi-
cant factor that can contribute to common errors in DNN com-
ponents is the use of a shared dataset for training and testing
across different DNNs. To address this aspect, we developed
a separate dataset for the Faster R-CNN DNN component
by utilizing the X-Plane3 flight simulator to generate airport
visual scenes. X-Plane is one of the most advanced flight
simulators that offers exceptional capabilities in generating
photo-realistic scenery and is also used for scenario-based pilot
training [17]. For the YOLOv2 DNN component, we reused
the dataset generated using the FlightGear flight simulator in
the scope of our previous work [13]. To ensure data integrity

3https://www.x-plane.com/

https://www.x-plane.com/


Fig. 3. Faster R-CNN Architecture

and prevent inadvertent data leakage, we implemented separate
Git repositories for managing the FlightGear and X-Plane
datasets. This segregation ensures that each dataset remains
independent.

2) Data Configuration Management: ML datasets are typ-
ically characterized by a large number of elements, typically
images, and videos in compressed binary format. Traditional
configuration management systems such as Git4 or SVN5

can experience performance issues and other limitations when
tracking the configuration of binary files [18]. To address these
issues in the scope of our case study, we used the DVC6

extension to the Git system to manage the configuration of our
Runway Sign Classifier datasets. DVC is an open-source tool
designed for machine learning and data-science applications.
DVC enables storage of the binary data on a remote server
allowing Git to manage a textual file with tracking reference
of binary files.

E. System Implementation and Integration

In this work, we focus on the implementation of the
dissimilar Python-based R-CNN DNN component, the safety
monitor component, and their integration with the YOLOv2
DNN component implemented in our previous case study
[13]. YOLOv2 (Figure 4) is a widely-used object detection
network known for its speed and relatively small size [19].
We used the MATLAB implementation of the YOLOv2 DNN
yolov2ObjectDetector7 utilizing the DarkNet-19 back-
bone network and conducting the YOLOv2 training employing
the capabilities of the MATLAB Computer Vision Toolbox8.

The implementation and integration of the video camera and
video pre-processing component are not included in this study
because these components can be implemented and certified
using traditional non-ML software and hardware assurance
practices that fall outside the scope of this research.

4https://git-scm.com/
5https://subversion.apache.org/
6https://dvc.org/
7https://www.mathworks.com/help/vision/ref/yolov2objectdetector.html
8https://www.mathworks.com/help/vision/index.html

Fig. 4. YOLOv2 DNN Architecture

1) DNN components: The YOLOv2 DNN, implemented
in our prior work [13], was reused for the first RSC DNN
component. Taking into account the dissimilarity requirements
for DNN components provided in Section II-B, we opted for a
Python-based implementation of the Faster R-CNN [20] as a
DNN architecture (Figure 3) for the second RSC component.
The Faster R-CNN architecture employs a two-stage detection
approach, incorporating a Region Proposal Network (RPN)
to predict potential object locations before performing main
network predictions and classification. The Faster R-CNN
DNN architecture (depicted in Figure 3) presents notable
differences compared to the YOLOv2 architecture (shown in
Figure 4). These differences are evident in the backbone net-
work architecture, with Faster R-CNN employing a ResNet50
convolutional network with 50 layers, while YOLOv2 uses
a DarkNet-19 network with 19 layers. Moreover, the overall
detection approach differs, with Faster R-CNN utilizing an
advanced two-stage prediction pipeline, whereas YOLOv2
employs a single-stage pipeline optimized for speed.

We implemented the Faster R-CNN DNN component us-
ing the fasterrcnn_resnet50_fpn model from the
torchvision9 Python package. Utilizing the dissimilar
architecture of DNN models, different programming languages
and diverse training frameworks for independent DNN com-
ponents mitigates the risk of common errors in independent
system channels. Furthermore, to mitigate the risk of human
error, we assigned the development of the Faster R-CNN DNN
and YOLOv2 components to different individuals.

To match the interfaces of the YOLOv2 DNN component
[13], we adjusted the input and output layers parameters of

9https://pytorch.org/vision/main/index.html

https://git-scm.com/
https://subversion.apache.org/
https://dvc.org/
https://www.mathworks.com/help/vision/ref/yolov2objectdetector.html
https://www.mathworks.com/help/vision/index.html
https://pytorch.org/vision/main/index.html


Faster R-CNN DNN. We kept the default values of the other
DNN parameters, such as the number of RPN input features
and loss function balancing parameters, because the required
component performance was achieved during training without
other hyperparameters tuning.

The Faster R-CNN training process utilized the independent
X-Plane dataset described in Section II-D. To handle the
training dataset, we employed the torch.transforms10

and CV211 Python packages for various tasks, including the
conversion of dataset images into PyTorch tensors to provide
compatibility with the model training framework.

To determine the DNN detection thresholds, we evaluated
the trained Faster R-CNN DNN using a precision/recall metric
[21]. With a selected confidence and intersection threshold
of 95% delivering the required average precision and highest
possible recall of the model, the final Faster R-CNN DNN
achieved an average detection precision of 100% on the test
dataset.

2) Safety monitor component: The safety monitor com-
ponent implements protection against DNN failures that can
result in incorrect system output. The safety monitor compares
the outputs (bounding box coordinates and sign class) of the
dissimilar YOLOv2 and Faster R-CNN DNNs and passes
through the output of the first DNN if it matches the outputs
of the second DNN. If the different DNN components do not
return the same sign class or the divergence between bounding
box coordinates is above the threshold, the safety monitor
inhibits the system output by setting the signal validity flag
to FALSE. We selected the Intersection over Union (IoU)
metric [22] for measuring the coherence of the bounding
boxes coordinates between the different DNN components.
The safety monitor IoU is calculated by dividing the area of
intersection between the regions predicted by different DNN
components by the area of their union (Figure 6).

Fig. 5. Distribution of IoU for dissimilar DNN components

The IoU threshold for the safety monitor component was
determined experimentally by analysis of the IoU distribution

10https://pytorch.org/vision/main/transforms.html
11https://pypi.org/project/opencv-python/

Fig. 6. Intersection over Union

over the available test dataset. The experimental frequencies
of the IoU values fit the Beta distribution with a mean of 0.66
and a standard deviation of 0.54. Figure 5 shows the observed
IoU value frequencies on the FlightGear testing dataset and the
probability density of the fitted Beta distribution. To ensure the
system availability above 95%, the safety monitor threshold for
the IoU value was set to 0.32.

F. ML Specific Verification

Verification activities serve the purpose of identifying po-
tential errors introduced during development. In this case
study, we focus on the ML-specific data verification techniques
which complement testing, reviews, and analysis methods that
we studied in our previous work to fulfill the verification
objectives required for DAL D systems [13].

1) Data Verification: ML datasets representing high-level
software requirements in our workflow entail the application
of typical objectives for requirements verification, such as
verification of accuracy, consistency, and compliance with
upstream requirements. However, ML datasets possess specific
properties, such as higher complexity and size, that are not
explicitly addressed in the current requirements verification
practices outlined in DO-178C [23] and ARP-4754 [14]. In
the scope of this case study, we implement a data traceability
approach to address these specific properties of ML datasets.
This approach is based on creating bi-directional links between
textual data requirements and DNN datasets by tagging data
files during the data preparation process.

To collect and analyze traceability information for datasets,
we developed the DataTrace extension for the SimPol trace-
ability management tool [24], originally created for model-
based design workflows. DataTrace automates the fetching
of requirements from the requirements management system
Polarion [16] and creates and stores links to the linked
datasets.

DataTrace also provides a capability to generate data trace-
ability matrices (Fig. 7) and data requirements coverage charts
(Fig. 8) from the collected data traceability information. We
used the data traceability matrix to review by sampling the
compliance of dataset elements with data requirements and
analyze the traceability of dataset elements to requirements.
The data requirement coverage chart (Fig. 8) was used to

https://pytorch.org/vision/main/transforms.html
https://pypi.org/project/opencv-python/


Fig. 7. Data Traceability Matrix

Fig. 8. Data Requirements Coverage Chart

analyze the coverage of data requirements, including the
characteristics of coverage distribution.

III. CERTIFICATION COMPLIANCE ANALYSIS

In this section, we elaborate on the analysis of DO-178C
DAL C objectives provided in [15] by mapping the objectives
to the actual activities performed and artifacts created in the
scope of DAL C RSC development. Table III includes the
list of DAL C objectives, their applicability by the DO-178C
software levels and the compliance analysis column. This table
complements the DAL D objectives analysis presented in [13]
and therefore doesn’t include DAL D objectives which are also
applicable to DAL C. Since the generation of target source
code from DNNs has no significant disparities compared
to traditional software assurance practices covered by DO-
178C, the source code development and verification objectives
are not included in the analysis. Also, this analysis does
not encompass the objectives related to planning, configura-
tion management, quality assurance, and certification liaison
processes. These processes are not significantly affected by
ML-specific challenges and can be fulfilled using existing
assurance practices [15]. Overall 14 out of 23 DO-178C and

DO-330 objectives included in the analyzed DAL C subset
have been directly accomplished, 4 objectives for executable
code testing have been covered at the RSC DNN model level,
and 5 objectives have been justified through the application of
architectural mitigation.

IV. CONCLUSIONS AND FUTURE WORK

This paper focuses on the certification and safety aspects
of machine-learning systems used in safety-critical airborne
applications. To demonstrate the approach for addressing the
certification issues of such systems, we conducted a case
study of an onboard system utilizing deep neural networks for
the detection and classification of airport runway signs. We
demonstrated that machine learning systems can attain Design
Assurance Level C by utilizing our custom development work-
flow in combination with an architectural mitigation approach
and selected novel ML-specific data verification methods.
Building upon our previous work that studied the Design
Assurance Level D certification workflow, this case study
involves the use of two dissimilar DNN components running
in parallel. As part of the architectural mitigation approach, we
integrated the safety monitor component, which continuously
compares the outputs of dissimilar DNNs to detect potential
errors in DNN outputs and prevent error propagation.

Dissimilarity of independent DNNs is achieved by using
dissimilar network architectures, training frameworks, and data
sets. On a more implementation-oriented level, we utilized
different programming languages and having different team
members doing the implementation. The distribution of detec-
tion divergence for dissimilar DNNs measured on the avail-
able dataset fits the normal distribution that correlates with
the dissimilarity applied concepts. Based on the determined
characteristics of the divergence distribution, we selected an
optimal filtering threshold for the safety monitor component
to ensure a target system availability of 95%.

To verify compliance of the implemented system with De-
sign Assurance Level C, we conducted a thorough analysis and



justification of the DAL C objectives outlined in the DO-178C
and DO-331 standards. Additionally, we mapped the analyzed
objectives to the corresponding requirements specified in the
latest ML-specific certification guidance published by EASA
[25].

In our future work, we will further study novel verification
techniques specific to ML technologies with respect to certifi-
cation objectives. In particular, we plan to focus on statistical
data quality, model stability and robustness analysis methods,
and out-of-distribution detection techniques. Additionally, we
aim to explore the aspects of ML models’ dissimilarity with re-
spect to the Run Time Assurance approach described in ASTM
3269 [26]. Lastly, we intend to conduct the qualification of ML
data traceability tools to streamline manual activities of data
verification following the approach proposed in [27].
Acknowledgments. We would like to thank Shanza A. Zafar
for the careful review of this paper and helpful feedback.

REFERENCES

[1] “Concepts of design assurance for neural networks (CoDANN),” Euro-
pean Aviation Safety Agency, Tech. Rep., 2020.

[2] “Report. concepts of design assurance for neural networks (CoDANN)
II,” European Aviation Safety Agency, Tech. Rep., 2021.

[3] “Artificial intelligence roadmap 2.0. human-centric approach to AI in
aviation,” European Aviation Safety Agency, Tech. Rep., 2023.

[4] “Artificial intelligence in aeronautical systems. statement of concerns.”
EUROCAE, Tech. Rep. AIR6988, 2021.

[5] F. Kaakai, K. Dmitriev, S. Adibhatla, E. Baskaya, and et al., “Toward a
Machine Learning Development Lifecycle for Product Certification and
Approval in Aviation,” SAE Int. J. Aerosp. 15(2):2022, 2022.

[6] “Neural network based runway landing guidance for general aviation
autoland,” Federal Aviation Administration, Tech. Rep. DOT/FAA/TC-
21/48, 2022.

[7] H. Delseny, C. Gabreau, A. Gauffriau, B. Beaudouin, L. Ponsolle,
L. Alecu, H. Bonnin, B. Beltran, D. Duchel, J.-B. Ginestet et al.,
“White paper machine learning in certified systems,” arXiv preprint
arXiv:2103.10529, 2021.

[8] C. Torens, F. Juenger, S. Schirmer, S. Schopferer, D. Zhukov, and
J. C. Dauer, “Ensuring Safety of Machine Learning Components Using
Operational Design Domain,” in AIAA SCITECH 2023 Forum, 2023, p.
1124.

[9] N. Escudero, P. Costas, M. W. Hardt, and G. Inalhan, “Machine Learning
Based Visual Navigation System Architecture for Aam Operations with
A Discussion on its Certifiability,” in 2022 Integrated Communication,
Navigation and Surveillance Conference (ICNS), 2022, pp. 1–15.

[10] M. S. Feather, S. Guerrini, P. C. Slingerland, and M. Spolaor, “Assurance
Guidance for Space Mission use of Data-Driven Machine Learning,” in
2023 IEEE Aerospace Conference. IEEE, 2023, pp. 1–10.

[11] D. B. Abeywickrama, J. Wilson, S. Lee, G. Chance, P. D. Winter,
A. Manzini, I. Habli, S. Windsor, S. Hauert, and K. Eder, “AERoS:
Assurance of Emergent Behaviour in Autonomous Robotic Swarms,”
arXiv e-prints, pp. arXiv–2302, 2023.

[12] K. Dmitriev, J. Schumann, and F. Holzapfel, “Toward certification of
machine-learning systems for low criticality airborne applications,” in
2021 AIAA/IEEE 40th Digital Avionics Systems Conference (DASC).
IEEE, 2021, pp. 1–10.

[13] ——, “Toward Design Assurance of Machine-Learning Airborne Sys-
tems,” in AIAA SciTech 2022 Forum, 2022, p. 1134.

[14] Guidelines for Development of Civil Aircraft and Systems, SAE Inter-
national Std. SAE ARP4754A, 2010.

[15] K. Dmitriev, J. Schumann, and F. Holzapfel, “Towards Design Assur-
ance Level C for Machine-Learning Airborne Applications,” in 2022
IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). IEEE,
2022, pp. 1–6.

[16] K. Schmiechen, S. A. Zafar, K. Dmitriev, C. Krammer, M. Maly, and
F. Holzapfel, “A Requirements Management Template in Polarion for
Model-Based Development of Airborne Systems.” in Software Engineer-
ing (Satellite Events), 2021.

[17] B. Williams, Scenario-Based Training with X-Plane and Microsoft Flight
Simulator: Using PC-Based Flight Simulations Based on FAA-Industry
Training Standards. John Wiley & Sons, 2011.

[18] P. Janardhanan, “Project repositories for machine learning with
TensorFlow,” Procedia Computer Science, vol. 171, pp. 188–
196, 2020, third International Conference on Computing and
Network Communications (CoCoNet’19). [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050920309856

[19] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[21] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the ROC plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.

[22] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 658–666.

[23] Software Considerations in Airborne Systems and Equipment Certifica-
tion, RTCA, Inc. Std. RTCA DO-178C, 2011.

[24] M. T. Hochstrasser, “Modular model-based development of safety-
critical flight control software,” Ph.D. dissertation, Technische Univer-
sität München, 2020.

[25] “EASA concept paper: First usable guidance for level 1&2 machine
learning applications,” European Aviation Safety Agency, Tech. Rep.,
2023.

[26] Standard Practice for Methods to Safely Bound Behavior of Aircraft
Systems Containing Complex Functions Using Run-Time Assurance,
ASTM International Std. F3269, 2021.

[27] K. Dmitriev, F. Kaakai, M. Ibrahim, U. Durak, B. Potter, and
F. Holzapfel, “Tool Qualification Aspects in ML-Based Airborne
Systems Development,” in Software Engineering 2023 Workshops.
Gesellschaft für Informatik eV, 2023.

[28] Road vehicles — Functional safety — Part 6: Product development at
the software level, International Organization for Standardization Std.
ISO 26 262-6, 2018.

https://www.sciencedirect.com/science/article/pii/S1877050920309856
https://www.sciencedirect.com/science/article/pii/S1877050920309856


TABLE III
DAL C OBJECTIVES ANALYSIS

DO-178C/DO-331 Objectives Software Levels Compliance Analysis
A B C D E

A-2#4 Low-level requirements are
developed.

x x x Trained RSC DNN models represent software design (low-level requirements and
architecture); the objective is satisfied. This corresponds to the objective IMP-03 of
the EASA Guidance [25].

A-2#5 Derived low-level requirements
are defined and provided to the
system processes, including the
safety assessment process.

x x x The traceability issue discussed in [15] makes it practically infeasible to directly
identify derived requirements associated with RSC DNNs. The EASA Guidance [25]
does not have corresponding objectives. The justification for this objective relies on
the implemented architectural mitigation, which includes utilizing two dissimilar RSC
DNNs and a safety monitor.

A-3#4 High-level requirements are
verifiable.

x x x The RSC system, component and data requirements written in textual form have been
peer-reviewed to accomplish this objective. This corresponds to the objective DA-04 of
the EASA Guidance [25].

A-3#5 High-level requirements
conform to standards.

x x x Same as for the objective A-3#4.

A-3#7 Algorithms are accurate. i i x Same as for the objective A-3#4.
A-4#1 Low-level requirements comply

with high-level requirements.
i i x This objective is achieved through the testing of the RSC DNNs, which represent low-

level software requirements in the implemented custom workflow. This corresponds to
the combination of the objectives LM-09 and LM-10 of the EASA Guidance [25].

A-4#2 Low-level requirements are
accurate and consistent.

i i x Same as for the objective A-4#1.

A-4#5 Low-level requirements
conform to standards.

x x x This objective has been fulfilled by conducting peer reviews of the RSC DNN
models representing software design. The EASA Guidance [25] has no corresponding
objectives; this could indicate a potential gap in the provided guidance.

A-4#6 Low-level requirements are
traceable to high-level
requirements.

x x x Similar to objective A-2#5, this objective is impacted by the traceability issue. The
EASA Guidance [25] does not include corresponding objectives. The implemented
architectural mitigation measures support the justification for this objective.

A-4#7 Algorithms are accurate. i i x Same as for the objective A-4#1.
A-4#8 Software architecture is

compatible with high-level
requirements.

i x x Same as for the objective A-4#1.

A-4#9 Software architecture is
consistent.

i x x Same as for the objective A-4#1.

A-4#12 Software architecture conforms
to standards.

x x x Same as for the objective A-4#5.

MB.A-4#MB14 Simulation cases are correct i x x Since DNN model testing is used to fulfill the objectives for low-level requirements
verification; it is necessary to verify the correctness of the DNN model test cases
to ensure comprehensive testing. This objective is achieved through verification of
requirements coverage by test data set as outlined in Section II-F. This is partially
addressed (for test dataset only) by the objective DM-14 the EASA Guidance [25].

MB.A-4#MB15 Simulation procedures are
correct

i x x Similar to the rationale behind objective MB.A-4#MB14, it is necessary to verify the
correctness of test procedures for the DNN model. RSC DNNs test procedures have been
peer-reviewed to satisfy this objective. The EASA Guidance [25] has no corresponding
objectives; this could indicate a potential gap in the provided guidance.

MB.A-4#MB16 Simulation results are correct
and discrepancies explained

i x x Similar to the rationale behind objective MB.A-4#MB14, it is necessary to verify DNN
testing results. These testing results have been peer-reviewed to satisfy this objective.
This is implicitly addressed by the objective LM-10 of the EASA Guidance [25].

A-6#3 Executable Object Code
complies with low-level
requirements.

i i x To fulfill this objective, back-to-back testing of the target executable object code against
the RSC DNN model can be utilized as described in [28]. Since the deployment of RSC
DNN on target hardware was determined to have no significant disparities compared to
traditional software assurance practices covered by DO-178C [15], the testing objectives
were implemented at the RSC DNN model level only, see A-4 and MB.A-4 objectives.
This is covered by the objective IMP-03 of the EASA Guidance [25].

A-6#4 Executable Object Code is
robust with low-level
requirements.

i x x Same as for the objective A-6#3.

A-7#1 Test procedures are correct. i x x Verification of test procedures through reviews can be utilized to satisfy this objective.
This activity was replaced by MB.A-4#MB15 in the scope of this case study, see
objective A-6#3.

A-7#2 Test results are correct and
discrepancies explained.

i x x Verification of test results through reviews can be utilized to satisfy this objective. This
activity was replaced by MB.A-4#MB16 in the scope of this case study, see objective
A-6#3.

A-7#4 Test coverage of low-level
requirements is achieved.

i x x Due to the inherent coverage issue discussed in [15], there are no relevant metrics
for the RSC DNN coverage analysis. The EASA Guidance [25] has no corresponding
objectives. The justification for this objective is claimed from the implemented archi-
tectural mitigation, which involves the utilization of two dissimilar RSC DNNs and a
safety monitor.

A-7#7 Test coverage of software
structure (statement coverage)
is achieved.

i i x As discussed in [15], structural coverage metrics at the DNN source code level are
not representative due to the inherent coverage issue and have not been included in
the scope of this work. The EASA Guidance [25] has no corresponding objectives.
The justification for this objective is claimed from the implemented RSC architectural
mitigation.

A-7#8 Test coverage of software
structure (data coupling and
control coupling) is achieved.

i i x Analysis of data and control coupling can be implemented using traditional methods to
satisfy this objective. This is covered by the objective IMP-03 of the EASA Guidance
[25]. The verification activities at the source code level have not been included in the
scope of this case study, see the objective A-6#2.


	Introduction and Related Work
	Case Study
	System Overview
	System Architecture
	RSC Requirements
	ML Data Management
	Datasets Independence
	Data Configuration Management

	System Implementation and Integration
	DNN components
	Safety monitor component

	ML Specific Verification
	Data Verification


	Certification Compliance Analysis
	Conclusions and Future Work
	References

