Flow visualization for Plume-Surface Interaction testing with large-scale vacuum environments at conditions relevant to Lunar and Martian Landers <u>N.S. Rodrigues¹</u>, O.K. Tyrrell¹, P.M. Danehy¹, C.J. Eberhart², K.J. McDougal²,

T.Y. Liu², T.D. Reynolds^{2,3}, J.S. Rubio⁴, N. Jiang⁵, P. Hsu⁵, A.M. Korzun¹

¹NASA Langley Research Center
²NASA Marshall Space Flight Center
³Optical Sciences Corporation
⁴Johns Hopkins University
⁵Spectral Energies, LLC

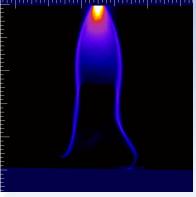
JANNAF December 2023: 40th Exhaust Plume and Signatures (EPSS) Meeting Plume / Wake / Hypersonic Flowfield Measurements

Acknowledgements

- Ground test conducted under support of *Plume Surface Interaction* project, previously funded by the NASA Space Technology Mission Directorate (STMD) Game Changing Development (GCD)
- High-speed PLIF development primarily under support of NASA Phase II SBIR Award to Spectral Energies, LLC
- NASA Marshall: S. Harris, Dr. M. Mehta, Dr. J. West, Dr. A. Weaver, T. Shurtz, Dr. J. Sisco, K. Miasek, K. Thompson, and the entire staff of ET-10 involved with this work
- NASA Langley: H. Ripley and Dr. T. Fahringer

Introduction

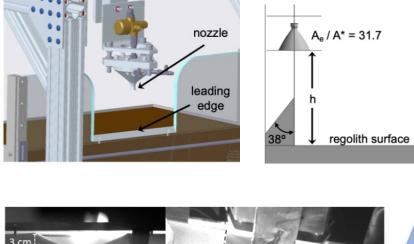
- Rocket Plume-Surface Interaction (PSI):
 - Induced environment due to impingement of hot rocket exhaust on landing surface
 - Complex: multi-scale and often multi-phase (unimproved Lunar or Martian surface)



Lunar: Apollo 16 landing → Artemis missions

Martian: rover landings → human landings

- Scarcity of experimental data to validate high-fidelity models:
 - Realistic environments: plumes within reduced ambient pressures (continuum to rarefied scales)
- Martian-relevant environments can leverage data from Space Shuttle Return to Flight efforts
 - 46th AIAA Aerospace Sciences Meeting (Inman, Danehy, Nowak, Alderfer; 2008)
- Plume-surface flow visualization for near-lunar ambient pressures not available in literature



Inman *et al.* (2008)

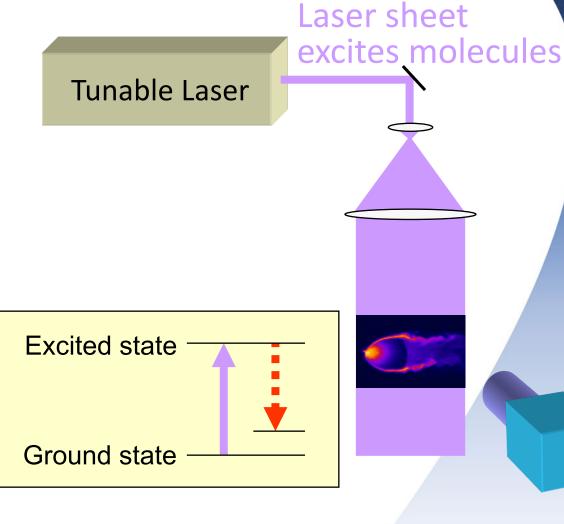
Background

- NASA Space Technology Mission Directorate (STMD) funded two ground tests within large-scale vacuum chambers at NASA Marshall Space Flight Center
 - 15-ft Vacuum Chamber (2021-2022)
 - 20-ft Vacuum Chamber (2022)
- 15-ft Vacuum Chamber:
 - Half-plane regolith bin geometry:
 - Imaging of plume-induced crater
 - Ejecta imaging and tracking
 - Half-plane flat impingement plate:
 - Impingement pressure

3 cm8.3 cm h/D = 3

References

- Korzun *et al.*, Design of a Subscale, Inert Gas Test for Plume-Surface Interactions in a Reduced Pressure Environment, in AIAA SciTech Forum, San Diego, CA (Jan. 2022).
- Eberhart *et al.*, Overview of Plume-Surface Interaction Data from Subscale Inert Gas Testing at NASA MSFC Test Stand 300 Vacuum Facilities, in AIAA SciTech Forum, San Diego, CA (Jan. 2022).
- Rubio *et al.*, Plume-Surface Interaction Physics Focused Ground Test 1: Setup and Preliminary Results, in AIAA SciTech Forum, San Diego, CA (Jan. 2022).
- Diaz-Lopez *et al.*, Plume-surface Interaction Physics Focused Ground Test 1: Diagnostics and Preliminary Results, in AIAA SciTech Forum, AIAA 2022-1810, AIAA, San Diego, CA (Jan. 2022).

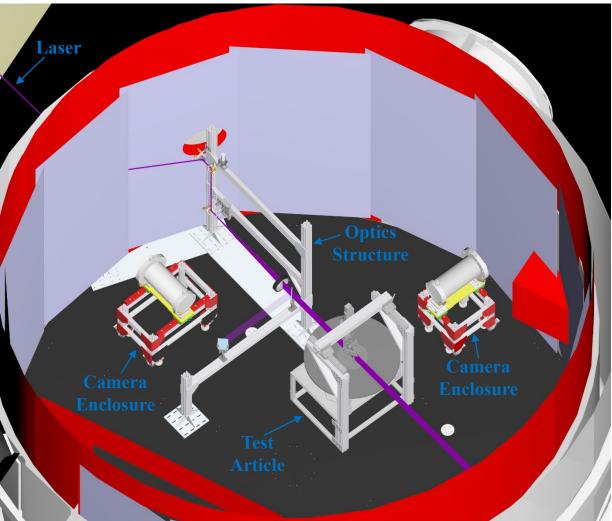

20-ft Vacuum Chamber:

- Full-plane and half-plane flat impingement plate:
 - PLIF flow visualization
 - Impingement pressure

Distribution A: Approved for public release, data is unlimited

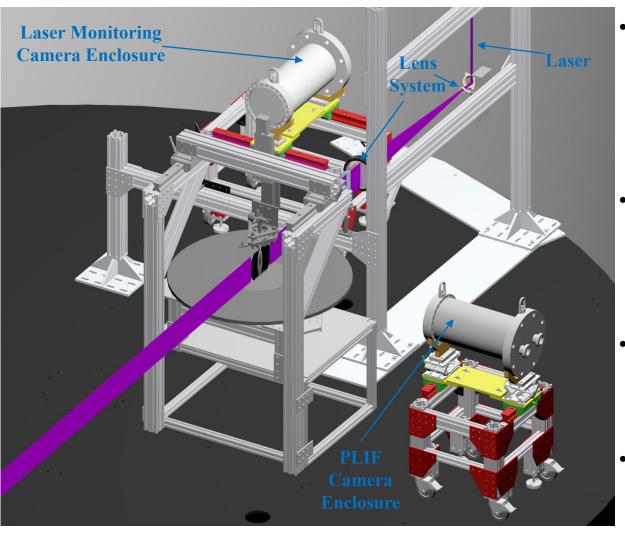
Planar Laser-induced Fluorescence

- Planar laser-induced fluorescence (PLIF) is a 2D, temporarily and spatially-resolved laser-based measurement technique
 - Spatial resolution < 1 mm
- Tunable, pulsed, laser used to excite the NO molecules
 - Repetition-rate of 10 Hz but temporal resolution < 1 μs
- PLIF for PSI test used seeded nitric oxide gas (< 1%)
 - Well suited for low-pressure environments
 - More so than schlieren and shadowgraph
- On the first order, PLIF signal scales with gas density
- Signal intensity is qualitative
- Location of flow structures (e.g., shocks) is quantitative

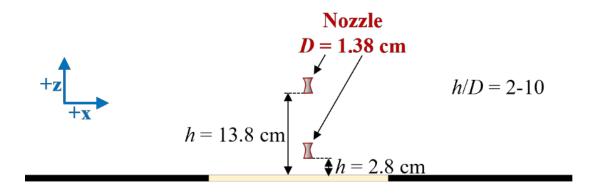


Camera

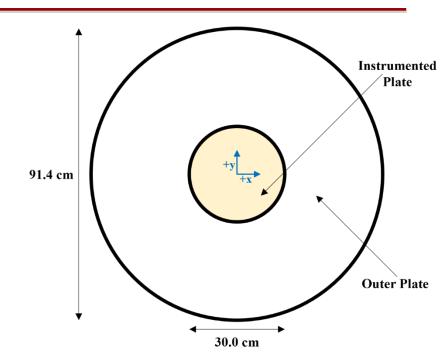
detects


20-ft Vacuum Chamber Overview

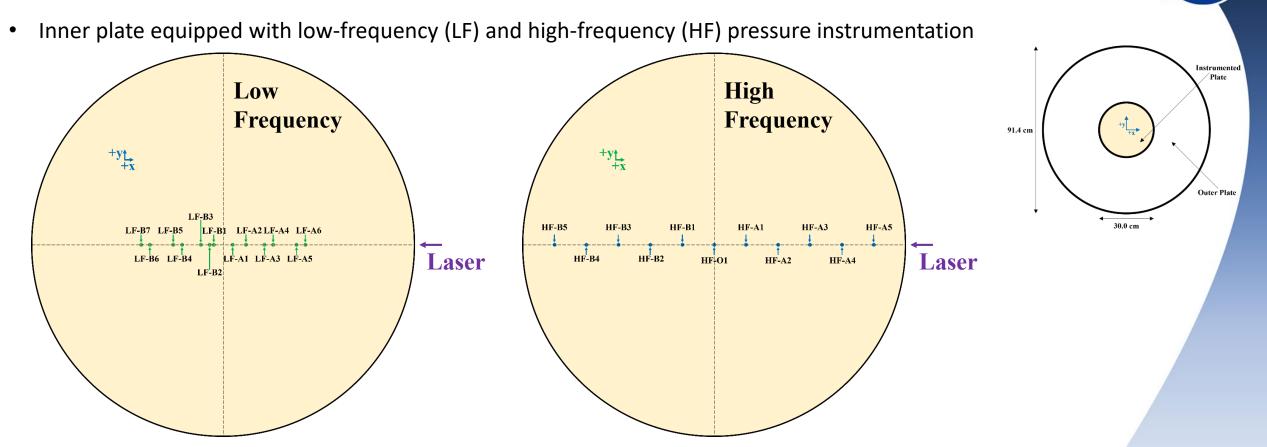
•


- Jet nozzle assembly and impingement plate test article
 - Located near middle of chamber
- Heated inert gas (nitrogen) plume
 - Premixed with nitric oxide for PLIF visualization
- UV laser (near 226 nm) brought into vacuum chamber through viewport window
- Optics for PLIF laser sheet placed on custom structure
- PLIF cameras located within custom camera enclosures

10 Hz PLIF Systems


- 226-nm laser: Sirah[®] Cobra-Stretch Dye laser with sum-frequency-mixing wavelength extension, pumped by Spectra-Physics[®] Pro-230
 - Laser beam alignment adjusted using remotecontrolled mirrors
- PLIF laser sheet expanded to ~140 mm using negative cylindrical lens
 - Height collimated using positive spherical lens
 - Laser sheet thickness <1 mm near nozzle
- PLIF Camera: Andor[®] iStar sCMOS camera
 - 100 mm UV lens *f*/2.8
 - Long-wavelength-pass filter near 230 nm
- ~1% of laser energy reflected off glass window and directed towards diffuser plate
 - Laser sheet monitoring
 - Imaged by Cooke[®] Sensicam

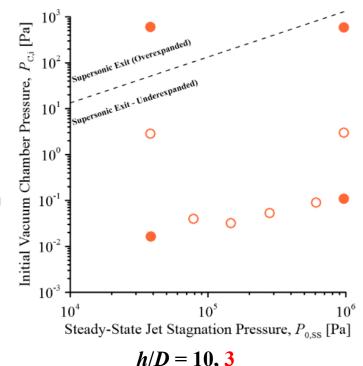
Test Article Overview

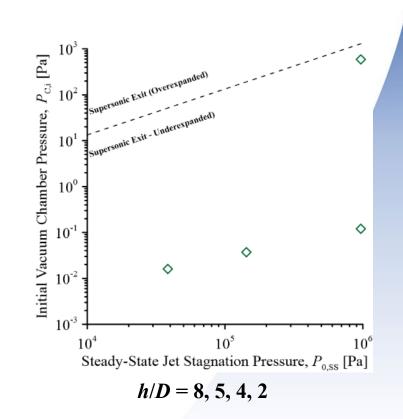


- Mach 5.3 supersonic nozzle:
 - Exit diameter D
- Nozzle vertically translated with respect to plate:
 - *h*/*D* = 10 to 2
- Jet and facility instrumentation:
 - Pressure
 - Temperature
- Impingement plate:
 - Instrumented plate
 - Outer plate

Measurement	Instrument	Range	Uncertainty
Initial Vacuum Pressure, P _{C,i}	Wall-located cold cathode	$1.0 \cdot 10^{-6} - 1.0 \cdot 10^{0} \text{ Pa}$	30% reading
	Ex-situ transducer (10 Torr)	< 1.3·10 ³ Pa	6.7·10 ⁻¹ [Pa]
Vacuum Pressure, P _C	Wall-located transducer (1 Torr)	$1.3 \cdot 10^{-3} - 1.3 \cdot 10^2$ Pa	0.08% reading
	Wall-located transducer (1000 Torr)	$4.0 \cdot 10^1 - 1.3 \cdot 10^5 \text{ Pa}$	0.5% reading
Jet Stagnation Pressure, P ₀	Nozzle plenum transducer I (250 psia)	< 1.7·10 ⁶ Pa	8.6·10 ³ [Pa]
	Nozzle plenum transducer II (250 psia)	< 1./10° Pa	
Jet Stagnation Temperature, T_0	Nozzle plenum thermocouple (K-type)	273 – 373 K	2.2 [K]
		> 373 K	0.75% reading

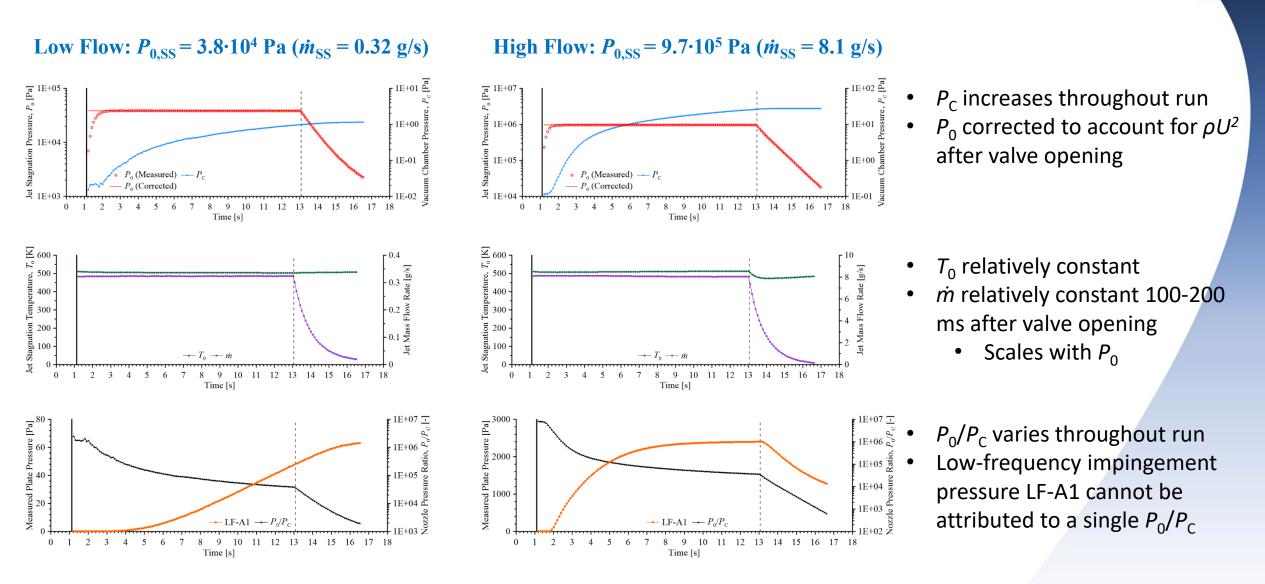
Plate Pressure Instrumentation

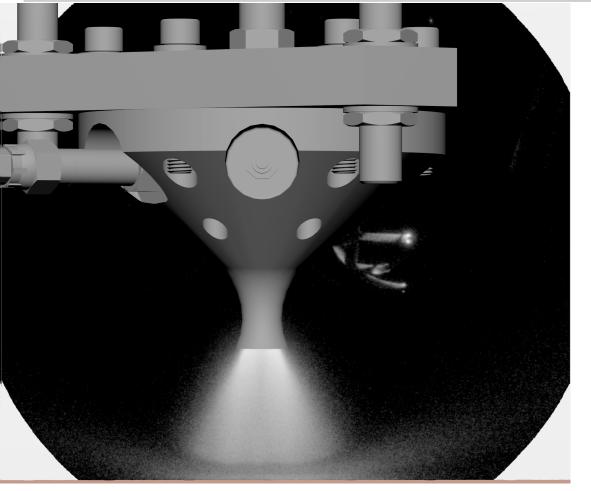

- Low-frequency (100 Hz) pressure instrumentation (InstruTech CDM900 vacuum gauge) located outside vacuum chamber
 - Connected to impingement plate using plastic sense tubes (order of seconds time response)
- High-frequency (200 kHz) pressure instrumentation (Kulites) flush-mounted on impingement plate
 - 100 Hz moving mean filter applied for static pressure measurements reported here


Test Matrix Overview

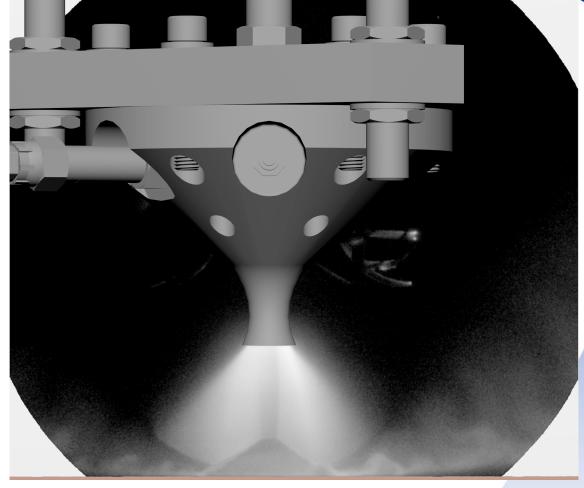
		[Pa]		
ṁ _{ss} [g/s]	$P_{0.SS}$ [Pa]	$10^{-3} < P_{\rm C,i} < 10^{-1}$	$2 < P_{\rm C,i} < 3$	$590 < P_{C,i} < 610$
0.32	3.8.104	h/D = 10, 8, 5, 4, 3, 2	h/D = 10, 3	h/D = 10, 3
0.65	7.9·10 ⁴	h/D = 3, 10		
1.2	$1.5 \cdot 10^{5}$	h/D = 10, 8, 5, 4, 3, 2		
2.4	$2.8 \cdot 10^{5}$	h/D = 3, 10		
5.1	6.1·10 ⁵	h/D = 3, 10		
8.1	9.7·10 ⁵	<i>h</i> / <i>D</i> = 10, 8, 5, 4, 3 , 2	h/D = 10, 3	h/D = 10, 8, 5, 4, 3, 2

 $\dot{m}_{\rm SS}$: steady-state mass flow rate $P_{0,\rm SS}$: steady-state stagnation pressure $P_{\rm C,i}$: initial vacuum chamber pressure h/D: dimensionless nozzle height


- Parametric test matrix designed to study the effects of h/D, P_{0,SS} and P_{C,i}
- Three different vacuum chamber pressure groups:
 - Near-lunar: $10^{-3} < P_{C,i} < 10^{-1}$ Pa
 - Lunar-relevant: $2 < P_{C,i} < 3$ Pa
 - Martian-relevant: $590 < P_{C,i} < 610$ Pa
- This presentation focuses on h/D = 3
 - Near-lunar: high & low flow
 - Martian-relevant high & low flow

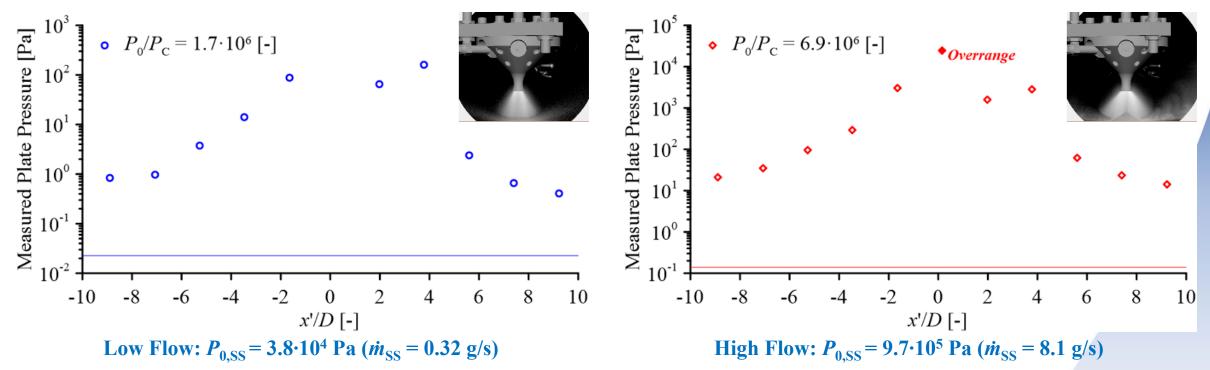


Distribution A: Approved for public release, data is unlimited


Near-Iunar Vacuum Conditions

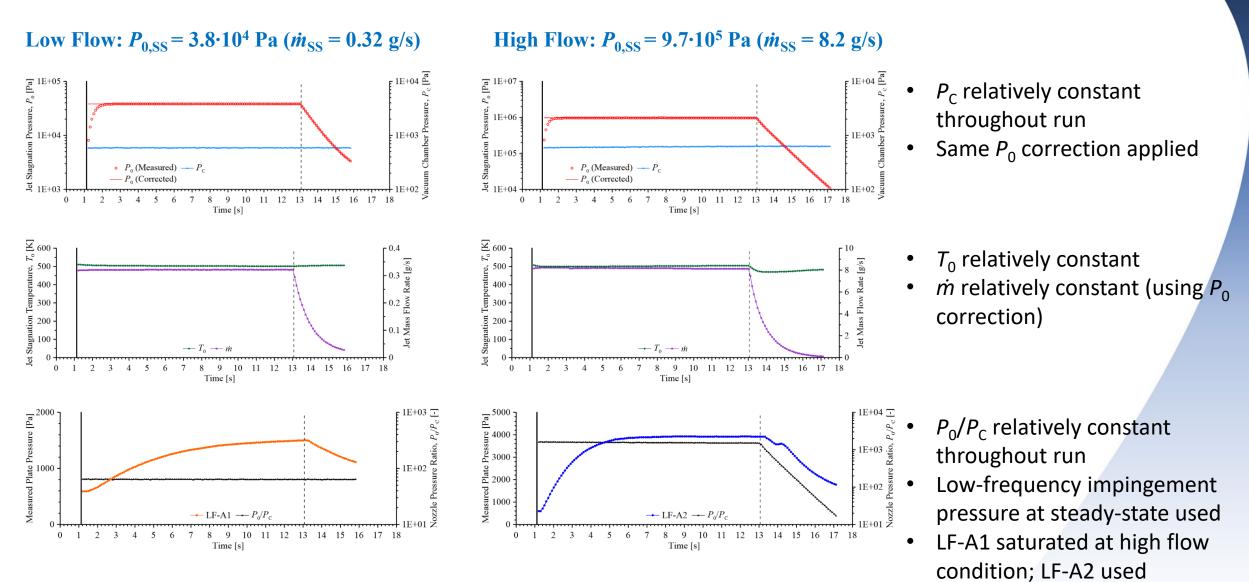
Near-lunar Flow Visualization (log-scale)

Low Flow: $P_{0,SS} = 3.8 \cdot 10^4$ Pa ($\dot{m}_{SS} = 0.32$ g/s) $P_{C,i} \sim 0.02 \rightarrow 1$ Pa Very low gas density \rightarrow diffuse flow structures


High Flow: $P_{0,SS} = 9.7 \cdot 10^5$ Pa ($\dot{m}_{SS} = 8.1$ g/s) $P_{C,i} \sim 0.1 \rightarrow 3$ Pa

Salient features: stagnation shock, wall jet, unsteady flow

Fluctuations with NO mass flow rate

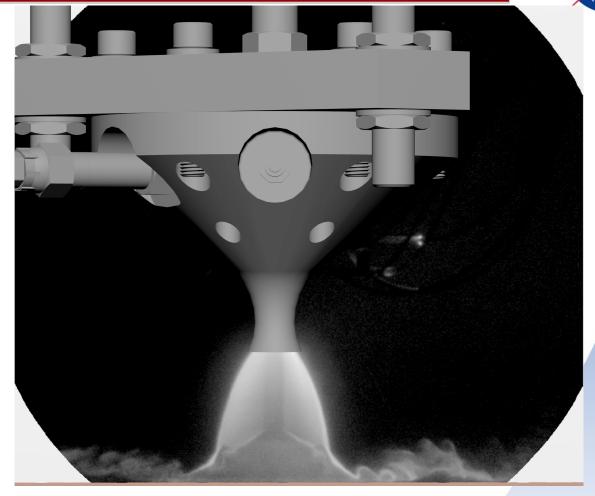

Near-Iunar Impingement Pressure

- Transient vacuum condition inhibits attributing low-frequency pressure measurement to a single P_0/P_c
- High-frequency pressure measurements recorded on 200 kHz DAQ (synchronized with camera exposure signal)
 - Impingement pressure can be paired to P_0/P_c and corresponding PLIF image



- Impingement plate pressure mapped for several jet diameters in radial direction
 - Very different plume structures for qualitatively similar pressure profiles and P_0/P_c

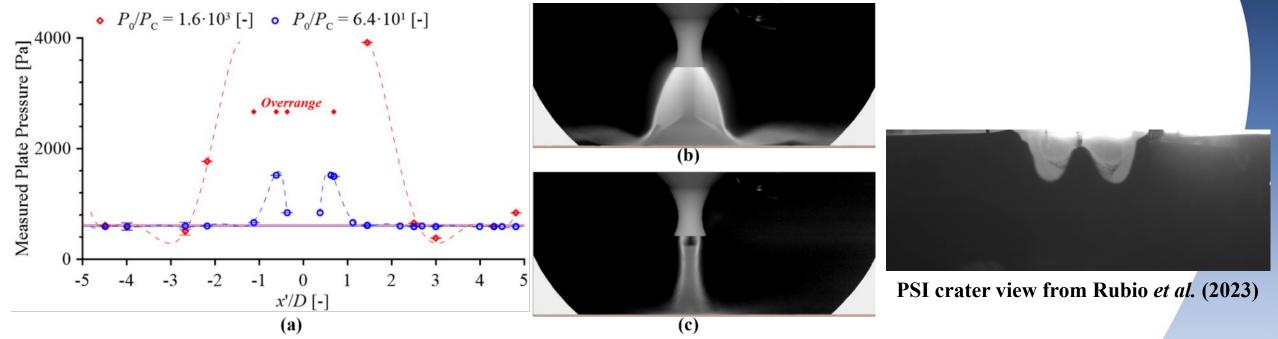
Martian-relevant Vacuum Conditions


Martian-relevant Flow Visualization (log-scale)

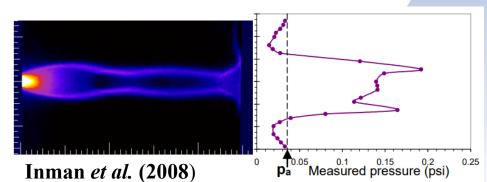
Low Flow: $P_{0.SS} = 3.8 \cdot 10^4$ Pa ($\dot{m}_{SS} = 0.32$ g/s)

Overexpanded nozzle condition, flow separation

• Lower S/N, laser burn mark on viewport window

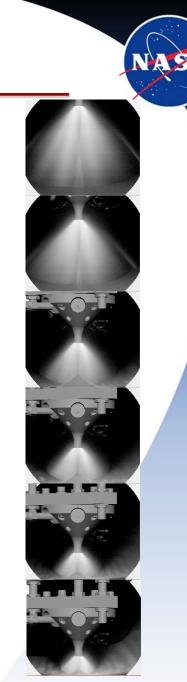


High Flow: $P_{0,SS} = 9.7 \cdot 10^5$ Pa ($\dot{m}_{SS} = 8.2$ g/s)


Salient features: stagnation shock, wall jet, unsteady flow

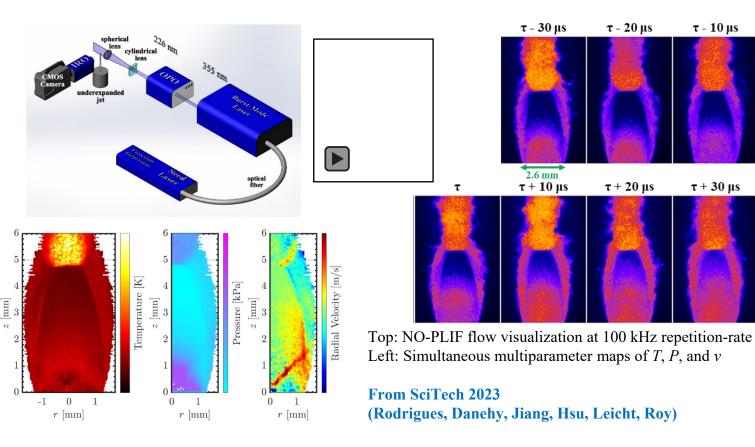
Martian-relevant Impingement Pressure

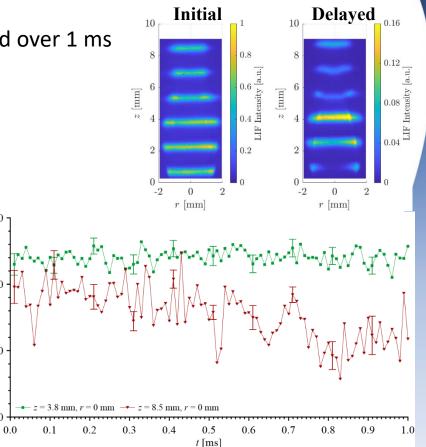
• Steady-state vacuum conditions allow low-frequency pressure measurement to be attributed to a single P_0/P_c



- Impingement pressure structure apparent (but not fully resolved)
 - Double peaks and low-pressure suction region
 - Similar to Inman *et al.* pressure measurements
 - May explain annular crater behavior

Test Summary and Data Analysis Plans


- Planar laser-induced fluorescence applied for first time at NASA Marshall historic East Test Area
 - Plume-surface interaction studied within a 20-ft vacuum chamber
- Very difficult to perform flow visualization at near-lunar vacuum chamber conditions (10⁻³ to 10⁻¹ Pa)
 - NO-PLIF measurement technique performed quite well
- PLIF flow visualization can provide corroborative evidence to trends observed for tests with regolith performed in 15-ft vacuum chamber and impingement pressure measurements
- Distinct flow regimes observed over the test matrix (beyond scope of current presentation)
 - Detailed data analysis continues with focus on reporting plume physics within such environments
- Stay tuned for upcoming conference and journal articles
 - SciTech 2024:
 - "Flow visualization comparisons between intrusive and non-intrusive experimental configurations for plume-surface interactions at lunar- and Martian-relevant conditions"
 - O.K. Tyrrell, N.S. Rodrigues, A.M. Korzun, P.M. Danehy



Near-lunar, High-Flow 17

High-Speed PLIF Capability

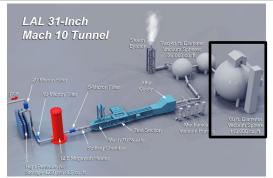
- High-speed PLIF measurements of lab-scale underexpanded jet
 - Flow visualization: 10 kHz 1 MHz .
 - Simultaneous multi-parameter: 1C/2C PLIF velocity and temperature averaged over 1 ms ٠
 - 1C/2C PLIF velocimetry: 10 kHz 1 MHz ٠

Top: Visualization of multi-line PLIF molecular tagging velocimetry Bottom: time series of velocity at 100 kHz at jet centerline

From Journal article submission to Applied Optics in October 2023 (Rodrigues, Jiang, Hsu, Roy, Danehy)

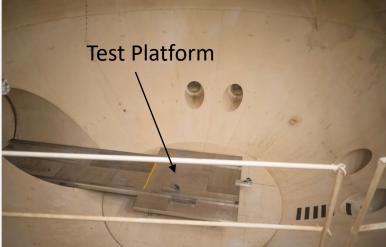
τ - 10 μs

τ + 30 μs

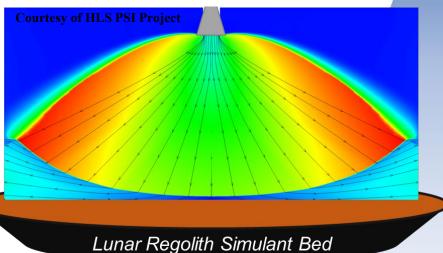

750

u [m/s]

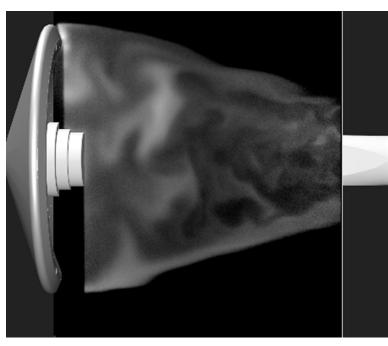
450

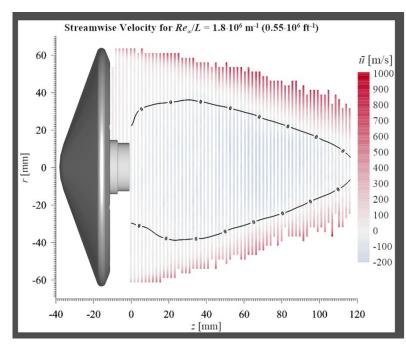

300

Upcoming PSI Flow Visualization at NASA Langley

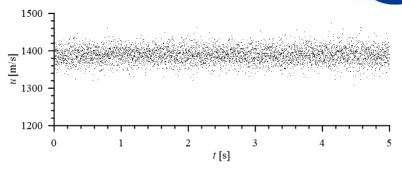


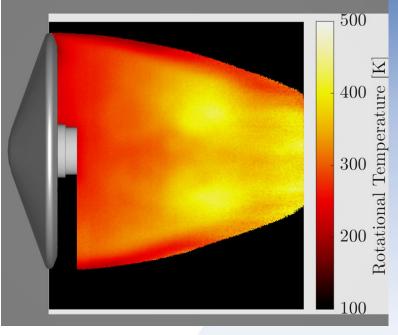
- NASA Langley 60-ft Vacuum Sphere:
 - 100 Pa (0.75 Torr)
- Multiphase flow:
 - Regolith simulants
- Inert Gas Test:
 - Non-reacting ethane
- Hot-fire Test:
 - Hybrid (solid-fuel, gaseous oxidizer)
 rocket motor


- Upcoming ground tests, funded by NASA 5 *Exploration Systems Development Mission Directorate*, designed to reduce PSI risks for HLS program landers
 - Ethane Plume:
 - Laser Rayleigh Scattering
 - Hybrid Rocket Plume:
 - OH Planar Laser-induced Fluorescence


- Future (currently unplanned) PSI flow visualization efforts may focus on plume impingement on flat or curved surfaces
 - Applying high-speed, multi-parameter measurements such as PLIF with pulse-burst laser desirable

Upcoming at SciTech 2024


- Hypersonic Wakeflow Measurements at Mach 10:
 - "FLEET and PLIF velocimetry within a Mach 10 hypersonic air flow"
 - N.S. Rodrigues, O.K. Tyrrell, B.R. Hollis, P.M. Danehy
- Measurements made in wake of blunt body HIAD wind tunnel model
 - Same tools could also be applied to wakes of slender models


Instantaneous Flow Visualization

Average Streamwise Velocity

1 kHz Freestream Velocity using FLEET

Average Rotational Temperature