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Flap-based steering systems on blunt-body Mars entry vehicles may improve flight perfor-
mance relative to existing bank-angle steering systems. Successful implementation of articulating
aerodynamic flaps on a hypersonic entry vehicle requires an active control system to map
angle of attack and sideslip angle commands to flap deflection commands. Here, a successive-
linearization model predictive control algorithm, as well as a linear-quadratic regulator, are
designed and assessed to address this multiple input multiple output control problem. These two
control algorithms are assessed under uncertainty in Monte Carlo simulations for various flap
configurations and command profiles. Results indicate that while both control algorithms pro-
vide successful command tracking in the presence of uncertainty, the model predictive controller
provides tracking errors about half the value of those corresponding to the linear-quadratic
regulator, indicating increased robustness. Comparison of various flap configurations showed
the model predictive controller can be applied to various flap configurations successfully with
only marginal performance differences between configurations.

I. Introduction

Guided entries of blunt-body entry vehicles to-date have used bank-angle steering for hypersonic trajectory control.
Bank-angle steering has a long history of successful applications at Earth with the Apollo Command Module [1],

Space Shuttle [2], and Orion crew vehicle [3]. The Mars Science Laboratory (MSL) [4] and Mars 2020 missions also
used bank-angle steering, allowing for increasing ambitious Mars missions and a higher degree of landing accuracy. The
Mars 2020 mission, in particular, achieved about 1 km of accuracy from the zero-divert point [5]. Guidance algorithms
on bank-angle steering vehicles typically select the bank angle magnitude to hit a longitudinal target, and the sign of the
bank angle is periodically varied to manage the lateral error through open loop bank reversals [4]. With a bank angle
commanded to the vehicle, simple phase-plane controllers have been used to command reaction control system (RCS)
thrusters to obtain the desired movement around the neutrally stable bank axis [6].

While bank-angle has been successful so far, this hypersonic steering scheme has several disadvantages. The
open-loop bank reversals used as a result of the coupling of control between the longitudinal and lateral motion can
result in decreased positional accuracy at terminal descent initiation (TDI) [7]. While retropropulsion may be used to
fly out these errors, correcting positional errors due to bank reversals has the potential to add propellant mass to the
vehicle. Bank-angle steering systems often require a center-of-gravity (CG) offset, in addition to spacecraft packaging,
to achieve a non-zero trim angle of attack (𝛼) and associated lift-to-drag ratio (𝐿/𝐷) for steering. Achieving the desired
CG offset for MSL and Mars 2020 required tungsten masses, which were a significant fraction of the landed payload
mass [8]. This may be problematic when scaling to a larger vehicle mass or higher lift-to-drag ratio that may add tons of
mass to the vehicle in the form of ballast, which also must be jettisoned during entry [9]. Lastly, the RCS jets on the
backshell of a bank-angle steering vehicle add additional hot gasses to the vehicle’s hypersonic wake, complicating the
aerothermal environment behind vehicle and interfering with the control authority of the thrusters [10–13].

Recent studies have investigated using the angle of attack and sideslip angle (𝛽) for trajectory control, i.e 𝛼-𝛽 steering.
Also referred to as direct force control (DFC), 𝛼-𝛽 steering has been investigated for Mars entry missions [9, 14, 15], as
well as for aerocapture missions at Mars [16], Venus [17], Titan [18], and Neptune [19]. A vehicle using 𝛼-𝛽 steering
avoids the need for open-loop reversals characteristic of bank-angle steering [7], although performing 𝛽 reversals is
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optimal for certain objective functions [20]. Results have shown that 𝛼-𝛽 steering may provide a greater robustness to
atmospheric dispersions [21], better landing mass fraction, and a lower propulsion system usage for powered descent,
relative to bank-angle steering [9]. 𝛼-𝛽 steering is also advantageous in that these systems do not nominally need large
ballast masses for CG offsets. Furthermore, a vehicle using 𝛼-𝛽 steering does not necessarily need a RCS, although a
mechanism to regulate the bank angle or bank rate is likely necessary [22]. Several actuation concepts for 𝛼-𝛽 steering
have been studied, including a morphing vehicle structure [7], CG movement systems [23], and aerodynamic flaps [24].

Controlling 𝛼 and 𝛽 on a blunt-body entry vehicle using several different effectors is a multiple input multiple output
(MIMO) control problem and is more challenging than controlling the bank angle due to the vehicle’s motion occurring
over several statically stable axes. For an 𝛼-𝛽 steering system to be feasible and provide performance advantages over
bank-angle steering, such a system must provide good control performance. Relatively simple proportional-derivative-
integral (PID) controllers have been used in studies of a human-scale vehicle using flaps and morphing structures
during Mars entries [7, 14], but control performance was not extensively studied. Both reference [23] and studies of
the Pterodactyl concept [24, 25] investigated a linear-quadratic regulator (LQR) for a CG movement system in a Mars
entry capsule and a deployable Earth entry vehicle with 8 flaps, respectively. Model predictive control (MPC), an
advanced control technique, has been studied for thruster firings and control surface deflections on the X-33 spaceplane
[26, 27] and was used to assess several flap configurations on a blunt body [28]. In this study a successive-linearization
MPC algorithm is formulated and applied to a blunt-body entry vehicle with flaps, along with LQR. The developed
controllers and simulation environment are capable of being applied to an arbitrary flap configuration and command
profile. This study then goes beyond previous studies by assessing flap controller performance under uncertainty in the
vehicle aerodynamics, mass properties, and initial conditions through Monte Carlo simulation.

II. Method

A. Vehicle Model and Coordinate System
This study considers an MSL-like axisymmetric blunt body entry vehicle. Flaps are placed at the shoulder of the

forebody heatshield at flap location angle 𝜃 𝑓 , and the flap deflection angle, 𝛿 𝑓 , is the compliment of the angle between
the flap and the cone (see Fig. 1). For example, a deflection angle of 20 deg corresponds to the flap perpendicular to the
flow at 𝛼 = 0 deg, and a deflection angle of −70 deg corresponds to a flap parallel to the flow at 𝛼 = 0 deg. Flap areas
are parameterized as a percentage of the aerodynamic reference area, and several different flap positions around the
vehicle are possible, as shown in Fig. 2. The mass properties of the entry vehicle body are given in Table 1, and the
moment of inertia values 𝐼𝑋𝑋, 𝐼𝑌𝑌 , and 𝐼𝑍𝑍 are the diagonal components of the principal moment of inertia tensor, I.
The CG is located on the centerline and is located 17 cm forward of the MSL CG postion along the 𝑋-axis [29].

Table 1 Mass Properties of Entry Vehicle

Parameter Value

𝐼𝑋𝑋 5688.61 kg-m2

𝐼𝑌𝑌 3772.07 kg-m2

𝐼𝑍𝑍 3772.07 kg-m2

CG Location [1.18 0 0]𝑇 m

Figure 3 shows the coordinate system and aerodynamic angles on the vehicle in the body frame (black) and
wind frame (red), and the relationship between 𝛼 and 𝛽, the freestream velocity vector V∞, and the vehicle velocity
components in the body frame (𝑢, 𝑣, 𝑤) can be seen in equations (1), (2), and (3) [30]. A positive 𝛼 and 𝛽 were defined
in this study as rotations about the positive 𝑌 and 𝑍̂ axes, with respect to the vehicle velocity vector. The transformation
from the wind to body frame is equivalent to a 1 − 3 − 2 sequential rotation of the vehicle by the bank angle (𝜎), 𝛽, and
𝛼, respectively. Additional details on the vehicle model and coordinate system can be found in Ref. [28].
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Fig. 1 Blunt body with flap-based steering system concept [22]: (a) vehicle dimensions and (b) flap positions.

Configuration A Configuration B Configuration C

Fig. 2 Flap position options on entry vehicle.

𝑢 = |V∞ | cos(𝛽) cos(𝛼) (1)
𝑣 = |V∞ | sin(𝛽) (2)
𝑤 = |V∞ | cos(𝛽) sin(𝛼) (3)

B. Equations of Motion
The controllers designed in this study use flap deflections to rotate the vehicle to achieve desired 𝛼 and 𝛽 commands.

The performance of the controllers are assessed by simulating the three degree-of-freedom (3DOF) rotation of the
flapped entry vehicle at a specified flight condition (i.e. dynamic pressure and Mach number), assuming the rotational
motion is decoupled from the translational motion of the vehicle during entry. The angular kinematics associated with
the vehicle are:

¤𝜎 = −𝜔𝑥 cos𝛼 sec 𝛽 − 𝜔𝑧 sin𝛼 sec 𝛽 (4)
¤𝛼 = 𝜔𝑥 cos𝛼 tan 𝛽 + 𝜔𝑦 + 𝜔𝑧 sin𝛼 tan 𝛽 (5)
¤𝛽 = −𝜔𝑥 sin𝛼 + 𝜔𝑧 cos𝛼 (6)
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Fig. 3 Vehicle coordinate system and aerodynamic angles.

And the angular dynamics are given by:
¤𝜔𝑥

¤𝜔𝑦

¤𝜔𝑧

 = I−1

[
M𝑏𝑜𝑑𝑦 + M𝑑𝑦𝑛𝑎𝑚𝑖𝑐 +

𝑛∑︁
𝑖=1

(
M 𝑓 𝑙𝑎𝑝,𝑖

)
− 𝜔𝐵 × I𝜔𝐵

]
(7)

Here M𝑏𝑜𝑑𝑦 and M𝑑𝑦𝑛𝑎𝑚𝑖𝑐 are the static and dynamic aerodynamic moment vectors of the vehicle body, respectively,
and are given by:

M𝑏𝑜𝑑𝑦 = 𝑞∞𝑠𝑟𝑒 𝑓 𝑐𝑟𝑒 𝑓


𝐶𝑙

𝐶𝑚

𝐶𝑛

 (8)

M𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
𝑞∞𝑠𝑟𝑒 𝑓 𝑐2

𝑟𝑒 𝑓

2𝑉∞


𝜔𝑥𝐶𝑙𝑝

𝜔𝑦𝐶𝑚𝑞

𝜔𝑧𝐶𝑛𝑟

 (9)

Where the aerodynamic reference area 𝑠𝑟𝑒 𝑓 = 𝜋𝑅𝑐
2, aerodynamic reference chord 𝑐𝑟𝑒 𝑓 = 2𝑅𝑐, angular velocity vector

𝜔𝐵 =

[
𝜔𝑥 𝜔𝑦 𝜔𝑧

]𝑇
, and 𝑞∞ = 1

2 𝜌∞𝑉
2
∞ is the freestream dynamic pressure. 𝑉∞ and 𝜌∞ are the freestream velocity

magnitude and density, respectively. The static and dynamic aerodynamic moment coefficients 𝐶𝑙 , 𝐶𝑚, 𝐶𝑛, 𝐶𝑙𝑝 , 𝐶𝑚𝑞
,

and 𝐶𝑛𝑟 are functions of 𝛼, 𝛽, the Mach number, and the CG position. Aerodynamic data from the Mars Science
Laboratory [29] and Phoenix missions [31] were used to construct an aerodynamics database for these aerodynamic
coefficients, and 𝐶𝑙𝑝 is assumed to be zero. The static aerodynamic moment from the 𝑖th flap, M 𝑓 𝑙𝑎𝑝,𝑖 , is a function of
𝛼, 𝛽, 𝜃 𝑓 , and 𝛿 𝑓 . The aerodynamic moments from each flap is calculated using Modified Newtonian aerodynamics [32],
a first-order approximation for hypersonic blunt bodies [33]. This implementation considers the contributions of the
front and sides of the flaps, and more details on the Modified Newtonian calculations used to determine the aerodynamic
moments from the falps can be found in Ref. [28].

While this study is primarily concerned with the 3DOF rotational motion of the entry vehicle, it may be desired to
assess how controller tracking impacts a vehicle’s entry trajectory. To do this, the 3DOF translational motion of the
entry vehicle over an oblate, rotating Mars can also be considered. These equations of motion are provided below for a
vehicle using 𝛼-𝛽 steering. Here, 𝑟 is the radial distance of the entry vehicle to the center of Mars, 𝜃𝑟 is the longitude, 𝜙
is the latitude, 𝑉𝑟 is the Mars-relative velocity magnitude, 𝛾𝑟 is the Mars-relative flight-path angle, 𝜓 is the Mars-relative
azimuth angle, and Ω is the rotation rate of Mars.

¤𝑟 = 𝑉𝑟 sin 𝛾𝑟 (10)
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¤𝜃𝑟 =
𝑉𝑟 cos 𝛾𝑟 sin𝜓

𝑟 cos 𝜙
(11)

¤𝜙 =
𝑉𝑟 cos 𝛾𝑟 cos𝜓

𝑟
(12)

¤𝑉𝑟 = −𝐷
𝑚

− 𝑔𝑟 sin 𝛾𝑟 − 𝑔𝜙 cos 𝛾𝑟 cos𝜓 +Ω2𝑟 cos 𝜙(sin 𝛾𝑟 cos 𝜙 − cos 𝛾𝑟 sin 𝜙 cos𝜓) (13)

¤𝛾𝑟 =
1
𝑉𝑟

[
𝐿

𝑚
+ (𝑉2

𝑟 /𝑟 − 𝑔𝑟 ) cos 𝛾𝑟 + 𝑔𝜙 sin 𝛾𝑟 cos𝜓 + 2Ω𝑉𝑟 cos 𝜙 sin𝜓

+Ω2𝑟 cos 𝜙(cos 𝛾𝑟 cos 𝜙 + sin 𝛾𝑟 cos𝜓 sin 𝜙)
] (14)

¤𝜓 =
1
𝑉𝑟

[
𝑌

𝑚 cos 𝛾𝑟
+ 𝑉

2
𝑟

𝑟
cos 𝛾𝑟 sin𝜓 tan 𝜙 + 𝑔𝜙

sin𝜓
cos 𝛾𝑟

−2Ω𝑉𝑟 (tan 𝛾𝑟 cos𝜓 cos 𝜙 − sin 𝜙) + Ω2𝑟

cos 𝛾𝑟
sin𝜓 sin 𝜙 cos 𝜙

] (15)

𝑔𝑟 and 𝑔𝜙 are the components of the acceleration due to gravity, including 𝐽2 effects [34]:

𝑔𝑟 =
𝜇

𝑟2

[
1 + 𝐽2

(
𝑅𝑚

𝑟

)2
(1.5 − 4.5 sin2 𝜙)

]
(16)

𝑔𝜙 =
𝜇

𝑟2

[
𝐽2

(
𝑅𝑚

𝑟

)2
(3 sin 𝜙 cos 𝜙)

]
(17)

And 𝐷, 𝐿, and 𝑌 are the aerodynamic drag, lift, and side forces given by:

𝐷 = 𝑞∞𝑠𝑟𝑒 𝑓𝐶𝐷 (18)

𝐿 = 𝑞∞𝑠𝑟𝑒 𝑓𝐶𝐿 (19)

𝑌 = 𝑞∞𝑠𝑟𝑒 𝑓𝐶𝑌 (20)

Where the aerodynamic coefficients 𝐶𝐷 , 𝐶𝐿 , and 𝐶𝑌 are also determined from the vehicle body aerodynamics database,
and the density used to calculate 𝑞∞ is determined using the Mars Global Reference Atmospheric Model [35].

C. Successive-Linearization Model Predictive Control Algorithm
MPC is a control method for MIMO systems in which an online optimization problem is solved to obtain the

necessary control action. This optimization problem includes a performance index and constraints, potentially including
inequality constraints on the states and inputs and equality constraints enforcing the plant model. This ability to handle
constraints when calculating the control is an attractive feature of MPC, relative to other control algorithms such as PID
or LQR. MPC is typically applied in a receding horizon, where the predictions within the optimization march further
into the future every time the controller is called [36]. Some implementations of MPC utilize a linear time-invariant
(LTI) system plant, but a single LTI model was found to be insufficient to capture the nonlinear attitude dynamics of the
entry vehicle with flaps considered in this study. In a past study, a fully nonlinear MPC was utilized for this problem at
the cost of a high computational burden [28]. Furthermore, fully nonlinear MPC is a non-convex problem with no
guarantees of converging to to an optimal solution [36]. A successive-linearization MPC algorithm can potentially
obtain similar performance to a fully nonlinear MPC algorithm by linearizing the nonlinear model every time the
controller is called to obtain a locally-accurate LTI model to be used over short time horizons, and such an algorithm was
implemented in Ref. [37] for robotics applications. With a successive linearization MPC algorithm, the optimization
problem solved to determine the control action is convex, which guarantees an optimal solution can be quickly found.
The successive-linearization MPC algorithm used for this application is described below in its general form and is
inspired by the algorithms described in Refs. [37] and [38], as well as the MATLAB MPC Toolbox [39].

The MPC algorithm operates over a finite time horizon where the state is predicted into the future for a prediction
horizon 𝑝, where 𝑝 is a finite number of prediction steps. 𝑐 control actions occurring at consistent times to the prediction
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steps are also considered, where 𝑐 is the control horizon. If 𝑐 < 𝑝, then the the control action over the remaining
prediction steps is constant at its final value. This MPC algorithm uses a quadratic programming vector z which is a
(𝑝𝑛𝑥 + 𝑐𝑛𝑢) × 1 vector, where 𝑛𝑥 and 𝑛𝑢 are the number of states and inputs, respectively. Essentially, z contains 𝑝 sets
of the state 𝑥, followed by 𝑐 steps of the input 𝑢. The goal of the algorithm is to choose z to achieve desired controller
performance, while also satisfying constraints. A quadratic cost 𝐽𝑀𝑃𝐶 is considered, in which it is desired to track
some reference states xref while also using small control actions:

𝐽𝑀𝑃𝐶 = z𝑇𝐻z + f𝑇z (21)

Here 𝐻 is a (𝑝𝑛𝑥 + 𝑐𝑛𝑢) × (𝑝𝑛𝑥 + 𝑐𝑛𝑢) matrix. 𝐻 corresponds to the quadratic term in the cost and has the block
diagonal form

𝐻 =



𝑄1 0 · · · 0 0 0 · · · 0
0 𝑄2 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 𝑄𝑝 0 0 · · · 0
0 0 · · · 0 𝑅0 0 · · · 0
0 0 · · · 0 0 𝑅1 · · · 0
...

...
. . .

...
...

...
. . . 0

0 0 · · · 0 0 0 · · · 𝑅𝑐−1



(22)

Here 𝑄 and 𝑅 are diagonal matrices, where each of the entries are weights on the states and inputs, respectively. Each
of the 𝑄 and 𝑅 matrices in 𝐻 need not be equal, however for this application, the weights are chosen to be constant
over the entire prediction horizon, i.e. 𝑄1 = 𝑄2 = · · · = 𝑄𝑝 and 𝑅0 = 𝑅1 = · · · = 𝑅𝑐−1. f is a 𝑝𝑛𝑥 + 𝑐𝑛𝑢 × 1 vector
corresponding to the linear component of the cost and is given by:

𝑓 = −2



𝑄1xref

𝑄2xref
...

𝑄𝑝xref

0


(23)

To obtain control actions from the MPC optimization problem that make sense for the given vehicle, equality constraints
describing the vehicle dynamics must be provided in the optimization problem. This is done by linearizing and
discretizing the nonlinear plant model. Upon calling the MPC algorithm, the nonlinear state derivative model ¤x = f (x, u)
is linearized about the current state x0 and current input u0, with ¤x0 = f (x0, u0), into the form:

¤xL = 𝐴(xL − x0) + 𝐵(uL − u0) + ¤x0 (24)

Here, xL and uL are the state and input vectors for the linearized continuous-time system. 𝐴 and 𝐵 are Jacobian matrices,
given by:

𝐴 =
𝜕f
𝜕x

����
x0 ,u0

𝐵 =
𝜕f
𝜕u

����
x0 ,u0

(25)

The MPC works by solving a finite-size optimization problem and thus requires a discrete-time model. The linearized
continuous-time model in Eq. (24) can then be discretized in order to incorporate a plant model into the MPC
optimization problem. Following a similar procedure to that of Ref. [37], the solution to the linearized equations of
motion can be used to discretize the system. Over a single step between time 𝑡 = 𝑇𝑠𝑘 and 𝑡 = 𝑇𝑠 (𝑘 + 1), this solution of
the linearized equations of motion is

xL [𝑘 + 1] = 𝑒𝐴𝑇𝑠xL [𝑘] +
∫ 𝑇𝑠 (𝑘+1)

𝑘𝑇𝑠

𝑒𝐴(𝑇𝑠 (𝑘+1)−𝜏 ) (𝐵uL (𝜏) + ¤x0 − 𝐴x0 − 𝐵u0) 𝑑𝜏 (26)
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Here, 𝑇𝑠 is the sampling time, in which the system is discretized, and the total length of time the MPC predicts into the
future is equal to 𝑝𝑇𝑠 . A zero-order hold is then applied to the system, assuming control inputs are constant over each
step. In the case that 𝐴 is invertible, this yields

xL [𝑘 + 1] = 𝑒𝐴𝑇𝑠xL [𝑘] + 𝐴−1
(
𝑒𝐴𝑇𝑠 − 𝐼

)
(𝐵uL [𝑘] + ¤x0 − 𝐴x0 − 𝐵u0) (27)

Expanding this expression yields

xL [𝑘 + 1] = 𝑒𝐴𝑇𝑠xL [𝑘] + 𝐴−1
(
𝑒𝐴𝑇𝑠 − 𝐼

)
𝐵 (uL [𝑘] − u0) + 𝐴−1

(
𝑒𝐴𝑇𝑠 − 𝐼

)
¤x0 − 𝐴−1

(
𝑒𝐴𝑇𝑠 − 𝐼

)
𝐴x0 (28)

Using the Taylor expansion of 𝑒𝐴𝑇𝑠 , it can be seen that

𝐴−1𝑒𝐴𝑇𝑠 𝐴 = 𝐴−1
(
𝐼 + 𝐴𝑇𝑠 +

(𝐴𝑇𝑠)2

2!
+ (𝐴𝑇𝑠)3

3!
+ · · ·

)
𝐴 = 𝑒𝐴𝑇𝑠 (29)

After making the following substitutions

𝐴𝐷 = 𝑒𝐴𝑇𝑠 𝐵𝐷 = 𝐴−1
(
𝑒𝐴𝑇𝑠 − 𝐼

)
𝐵 x̄D = 𝐴−1

(
𝑒𝐴𝑇𝑠 − 𝐼

)
¤x0 + x0 (30)

and replacing xL [𝑘 + 1] and xL [𝑘] with xk+1
D and xk

D, respectively, the following discrete-time model is obtained.

xk+1
D = 𝐴𝐷 (xk

D − x0) + 𝐵𝐷 (uK
D − u0) + x̄D (31)

In implementation 𝐴 may not be invertible, which means the following integrals will need to be computed.

𝐵𝐷 =

∫ 𝑇𝑠 (𝑘+1)

𝑘𝑇𝑠

𝑒𝐴(𝑇𝑠 (𝑘+1)−𝜏 )𝐵𝑑𝜏 x̄D =

∫ 𝑇𝑠 (𝑘+1)

𝑘𝑇𝑠

𝑒𝐴(𝑇𝑠 (𝑘+1)−𝜏 ) ¤x0𝑑𝜏 + x0 (32)

From Ref. [40], the following expressions can be used to evaluate the integrals for 𝐵𝐷 and x̄D.

[
𝐴𝐷 𝐵𝐷

0 𝐼

]
= 𝑒


𝐴 𝐵

0 0

𝑇𝑠 (33)

[
𝐴𝐷 x̄D − x0

0 𝐼

]
= 𝑒


𝐴 ¤x0

0 0

𝑇𝑠 (34)

The discrete time system in Eq. (31) can be enforced as an equality constraint across the prediction horizon by
incorporating it into the following linear equation:

𝐴𝑒𝑞z = beq (35)

In the above equation, 𝐴𝑒𝑞 is a 𝑝𝑛𝑥 × (𝑝𝑛𝑥 + 𝑐𝑛𝑢) block matrix of the form

𝐴𝑒𝑞 =



−𝐼 0 0 · · · 0 0 𝐵𝐷 0 0 · · · 0 0
𝐴𝐷 −𝐼 0 · · · 0 0 0 𝐵𝐷 0 · · · 0 0
0 𝐴𝐷 −𝐼 · · · 0 0 0 0 𝐵𝐷 · · · 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...

0 0 0 · · · −𝐼 0 0 0 0 · · · 𝐵𝐷 0
0 0 0 · · · 𝐴𝐷 −𝐼 0 0 0 · · · 0 𝐵𝐷


(36)
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And beq is a 𝑝𝑛𝑥 × 1 vector of the form

beq =



𝐵𝐷u0 − x̄D

𝐴𝐷x0 + 𝐵𝐷u0 − x̄D

𝐴𝐷x0 + 𝐵𝐷u0 − x̄D
...

𝐴𝐷x0 + 𝐵𝐷u0 − x̄D


(37)

The vector z contains the discrete time state xk
D and input uK

D as its entries and has the following form

z =

[
x1

D
𝑇 x2

D
𝑇 · · · xp

D
𝑇 u0

D
𝑇 u1

D
𝑇 · · · uc−1

D
𝑇
]𝑇

(38)

Besides merely enforcing an approximation to the vehicle dynamics in the MPC optimization, it can be useful to
enforce constraints on the input magnitudes and rates to assure that the commanded inputs are reasonable for the system.
Constraints on the input magnitudes are of the form

uK
D ≤ umax − uK

D ≤ −umin (39)

Constraints on the input rates can be placed by assuming the maximum magnitude of a difference in subsequent input
commands is equal to the maximum rate multiplied by 𝑇𝑠:

uK
D − uK−1

D ≤ ¤umax𝑇𝑠 −
(
uK

D − uK−1
D

)
≤ −¤umin𝑇𝑠 (40)

Both of these constraints can be incorporated in the following matrix form

𝑃z ≤ ℎ (41)

Here 𝑃 is a 4𝑝𝑛𝑢 × (𝑝𝑛𝑥 + 𝑐𝑛𝑢) matrix containing values of 1 and −1, and h is a 4𝑝𝑛𝑢 vector containing the values of
the constraints. With the cost, equality constraints, and inequality constraints formed, they can all be combined into the
following MPC optimization problem:

min
z

𝐽𝑀𝑃𝐶 = z𝑇𝐻z + f𝑇z

s.t. 𝐴𝑒𝑞z = beq

𝑃z ≤ h

(42)

The above quadratic programming problem is convex and can be quickly solved with a commercial solver. For this
implementation, the MPC optimization problem is solved using the quadprog function in MATLAB with the active-set
algorithm [41]. Solving this optimization problem yields a solution z∗ which minimizes 𝐽𝑀𝑃𝐶 . The component of
z∗ corresponding to u0

D is commanded as the input to be utilized, i.e. only the first input of the solution to the MPC
optimization problem is directly used. z∗ is then passed back into the quadratic programming solver as the initial guess
for the subsequent call to the controller. z0 = 0 is used as the initial guess for the first call to the controller.

D. Linear-Quadratic Regulator
LQR is also discussed here as a simpler MIMO control alternative to MPC. Similar to the MPC algorithm described

above, LQR involves linearizing the state derivative about an equilibrium point (xe, ue) into the form ¤x = 𝐴x + 𝐵u. 𝐴
and 𝐵 are found here similarly to Eq. (25), with the exception that the Jacobians are evaluated at (xe, ue). The control
law for LQR is

u = −𝐾xc + ue (43)
Where xc = x − xe, and 𝐾 is a static gain matrix that solves the infinite time-horizon optimization problem

𝐽𝐿𝑄𝑅 =

∫ ∞

0

(
xc

𝑇𝑄xc + u𝑇𝑅u
)
𝑑𝑡 (44)

As with MPC, the matrices 𝑄 and 𝑅, respectively, in Eq. (44) allow the user to penalize the relative importance of
state-tracking accuracy and control effort, for each of the different states and inputs. Although the controller is linearized
around the equilibrium state xe, in implementation, xe can be replaced with the commanded state when calculating xc in
Eq. (43) in order to track states other than the equilibrium state. It is possible to solve the optimization problem in (44)
every time the controller is called to obtain a new 𝐾 . In this implementation, however, 𝐾 is only computed once offline
at the beginning of the simulation, and each call to the controller solely requires the matrix operations in Eq. (43).
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E. Simulation Environment and Control Application
Both the successive-linearization MPC algorithm and LQR were implemented into a controller simulation

environment for a blunt-body Mars entry vehicle with flaps. The simulation environment numerically integrates
equations of motion (4)-(7) as the truth dynamics with a fourth-order Runge-Kutta integration scheme and a constant
time step of 0.01 s. The nonlinear state derivative equations which are linearized to be used with MPC and LQR are
similar to those used in the truth dynamics, with the exception that a cubic fit to the moment coefficient data from the
aerodynamics database is used to allow for analytical Jacobians to be calculated. The simulation environment allows for
controllers to be automatically generated and simulated for a vehicle configuration with an arbitrary number of flaps,

flap area, and flap positioning. The state vector to be controlled by the vehicle is 𝑥𝑇 =

[
𝛼 𝛽 𝜔𝑦 𝜔𝑧 𝑒𝛼 𝑒𝛽

]𝑇
.

Here 𝑒𝛼 and 𝑒𝛽 are integral error states used in both controllers to reduce steady state error. The time derivatives of
these integral error states are:

¤𝑒𝛼 = 𝛼 − 𝛼𝑑𝑒𝑠 (45)

¤𝑒𝛽 = 𝛽 − 𝛽𝑑𝑒𝑠 (46)

Where 𝛼𝑑𝑒𝑠 and 𝛽𝑑𝑒𝑠 are the desired angle of attack and sideslip angle, respectively. Both controllers use the flap
deflections to try to track commanded 𝛼 and 𝛽 values while also keeping 𝜔𝑦 and 𝜔𝑧 near zero. Every time a controller
is called, the vehicle obtains a new set of commanded flap deflections. The simulation environment takes into account
that these flaps cannot move instantaneously and cannot exceed certain flap deflection angles, subjecting the deflections
to the rate, acceleration, and position limits given in Table 2. The MPC algorithm incorporates these flap deflection and
deflection rate limits using (39) and (40), while LQR does not use any constraints in the calculation of flap deflection
commands. Relevant parameters in the design of the MPC and LQR controllers are given in Tables 3 and 4, respectively.
Discussions of how these parameters can impact vehicle performance are given in Ref. [28]. In this implementation, the
equilibrium state for LQR is when all states are equal to zero. The subscripts in 𝑄 or 𝑅 denote the the state or input in
which the given weight is applied to. Note the lower controller frequency of MPC is a result of its higher computational
requirements. All controller simulations were performed in MATLAB R2021b on a 2021 M1 MacBook Pro with 32 GB
RAM.

Table 2 Flap Deflection Limits

Parameter Value

Minimum flap deflection angle −70 deg
Maximum flap deflection angle 20 deg
Minimum flap deflection rate −18 deg/s
Maximum flap deflection rate 18 deg/s

Minimum flap deflection acceleration −1000 deg/s2

Maximum flap deflection acceleration 1000 deg/s2

III. Results

A. Nominal Performance
Controller tracking performance was first tested for a nominal case without any uncertainty in the truth dynamics.

MPC and LQR were both designed for Configuration A in Fig. 2, and several 𝛼 and 𝛽 profiles were considered for
assessing different sets of steering commands and flight conditions. The commands corresponding to profile 1 are 𝛼 and
𝛽 commands created by scaling bank commands from the Apollo Final Phase guidance algorithm, the commands in
profiles 2 and 3 come from solutions to optimal control problems. The dynamic pressure and Mach number profiles
corresponding to the trajectories for each of these profiles are shown in Fig. 4 and are fed into the simulation environment.
Results showing the 𝛼 and 𝛽 command tracking for this trajectory are shown in Figures 5, 6, and 7 for profiles 1, 2,
and 3, respectively. These plots indicate that MPC is able to do a better job tracking the command profile than LQR.
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Table 3 MPC Parameters

Parameter Value

𝑄𝛼 4
𝑄𝛽 4
𝑄𝜔𝑦

1.5625
𝑄𝜔𝑧

1.5625
𝑄𝑒𝛼 5
𝑄𝑒𝛽 5
𝑅𝛿 𝑓

0.05
𝑇𝑠 0.2 s
𝑝 6
𝑐 4

Controller frequency 5 Hz

Table 4 LQR Parameters

Parameter Value

𝑄𝛼 80
𝑄𝛽 80
𝑄𝜔𝑦

60
𝑄𝜔𝑧

60
𝑄𝑒𝛼 65
𝑄𝑒𝛽 65
𝑅𝛿 𝑓

20
𝑢𝑒 -30 deg

Controller frequency 50 Hz

Qualitatively, the LQR results tend to lag behind the command profile, relative to MPC, and there tends to be a larger
and longer-lasting oscillatory behavior for LQR near the start of the trajectories when the dynamic pressure is low.

This improved tracking performance of MPC can be verified quantitatively by considering the integral error in the
tracking.

𝑒𝛼 =

∫ 𝑡 𝑓

𝑡0

|𝛼 − 𝛼𝑑𝑒𝑠 |𝑑𝑡 𝑒𝛽 =

∫ 𝑡 𝑓

𝑡0

|𝛽 − 𝛽𝑑𝑒𝑠 |𝑑𝑡 (47)

These numerical results are reported in Table 5, where the integral errors are larger for LQR than for MPC. Part of
the improved performance of MPC here, relative to LQR, is that both controllers have been designed to provide good
tracking and stability for dispersed cases in Monte Carlo simulations. In the process of tuning LQR, it was found that a
nominal LQR case could obtain similar tracking performance to MPC if 𝑅𝛿 𝑓

for LQR was decreased to obtain a more
aggressive controller response. While this more aggressive LQR controller worked well for a single case, attempting to
use it for different command profiles and in uncertainty analysis often led the vehicle to become unstable and tumble out
of control. LQR was therefore made more conservative to accommodate a variety of command profiles and uncertainty
by increasing 𝑅𝛿 𝑓

; this comes at the cost of decreased tracking accuracy in the nominal case. The tumbling behavior of
LQR when it is too aggressive were not observed for MPC and is likely due to LQR not enforcing constraints on the flap
deflections or flap deflection rates. Without these constraints, the commanded flap deflections from LQR can end up
being too aggressive for the rate- and acceleration-limited flaps to achieve, resulting in a deviation in the actual flap
commands, compared to what LQR commands. This eventually results in a build up of flap oscillations and the vehicle
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(a) (b)

(c)

Fig. 4 Dynamic pressure and Mach number profile for controller simulation: (a) profile 1, (b) profile 2, and (c)
profile 3.

tumbling. A main difference between MPC and LQR is that MPC incorporates some of these flap deflection constraints
into its calculation of the commanded flap deflections, resulting in flap commands that the flap actuators can closely
achieve. Furthermore, the MPC has also has an advantage over LQR in that this implementation linearizes the plant
model every time the controller is called, providing a more accurate model, in contrast with LQR which utilizes a static
gain matrix computed offline. The flap deflections used to obtain the tracking in Figures 5-7 are shown in Figures 8-10,
respectively. Both MPC and LQR have similar shaped flap deflection profiles, which are vertically shifted from each
other and reflect the shape of the 𝛼 and 𝛽 profiles. The flap deflections from MPC have more a more aggressive “back
and fourth” behavior, relative to LQR. This behavior likely allows for the more aggressive tracking that MPC provides
and may also be due to the controller frequencies, of which MPC is run ten times lower, relative to LQR. Even though
MPC here does a better job of tracking the commands, compared to LQR, these results show that there can potentially
be many different flap deflection profiles that result in similar tracking performance. Hence, it is the relative deflection
of the flaps which allows the vehicle to successfully track a command profile, rather than the absolute size of the flap
deflections, themselves.

Although 𝛼 and 𝛽 tracking is the primary concern for this blunt-body vehicle with flaps, rolling moments from the
sides of the flaps, as well as yawing motion at a non-zero 𝛼, results in the vehicle deviating from its nominal bank angle
of zero deg. The resulting banking of the vehicle is shown in Fig. 11 for the different command profiles and control
algorithms. Here, bank is a state not being controlled by the vehicle, although it may be possible to simultaneously
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(a) (b)

Fig. 5 Nominal command profile tracking for profile 1 with MPC and LQR: (a) angle of attack and (b) sideslip
angle.

(a) (b)

Fig. 6 Nominal command profile tracking for profile 2 with MPC and LQR: (a) angle of attack and (b) sideslip
angle.

Table 5 Integral Error for Nominal Case

𝑒𝛼, deg-s 𝑒𝛽 , deg-s

Profile 1: MPC 9.826 8.886
Profile 1: LQR 30.756 24.184
Profile 2: MPC 19.971 2.866
Profile 2: LQR 51.419 10.463
Profile 3: MPC 38.958 6.970
Profile 3: LQR 74.351 14.208

control bank in addition to 𝛼 and 𝛽 by using the sides of the flaps. Even though the induced bank magnitude is small in
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(a) (b)

Fig. 7 Nominal command profile tracking for profile 3 with MPC and LQR: (a) angle of attack and (b) sideslip
angle.

(a) (b)

Fig. 8 Nominal flap deflections for command tracking of profile 1: (a) MPC and (b) LQR.

some cases, for profile 2, the induced bank magnitude exceeds 30 deg. The induced bank experienced by flap-based
steering systems is a problematic for such systems and may result in an additional roll or bank mechanism, such as
a rudder or RCS, needing to be included on a flight vehicle. Lastly, despite its increased tracking performance, the
successive-linearization MPC requires a higher computational load than LQR (which only requires simple matrix
addition and multiplication). Despite this, the mean time for this profile to obtain the commanded flap deflections once
the MPC is well below the 0.2 s between subsequent calls to the controller. For example, for profile 1, the mean time to
obtain commanded deflections was 0.0029 s.
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(a) (b)

Fig. 9 Nominal flap deflections for command tracking of profile 2: (a) MPC and (b) LQR.

(a) (b)

Fig. 10 Nominal flap deflections for command tracking of profile 3: (a) MPC and (b) LQR.
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Fig. 11 Bank profile as a result of 𝛼 and 𝛽 tracking in nominal case.

B. Monte Carlo Performance: Effect of Control Algorithm
Uncertainty quantification through Monte Carlo simulation was used to assess the robustness of the flap-based

steering system for both LQR and MPC. 1000 Monte Carlo Samples were used in each simulation, and dispersions were
placed on the initial attitude and attitude rates of the vehicle, the moment coefficients, the CG position, and the moment
of inertia tensor. A summary of the dispersions utilized are shown in Table 6. The dispersions are only included in the
truth dynamics, and both controllers still use the same nominal linearization of the equations of motion. These Monte
Carlo simulations were performed for each of the three command profiles shown previously for Configuration A with
3% area flaps. This uncertainty quantification is to assess controller performance, not entry guidance; in a given Monte
Carlo simulation, all samples use the same command profile to test controller tracking. Results containing all 1000

Table 6 Monte Carlo Dispersions

Variable Dispersion Distribution

Axial CG position ±25 mm 3𝜎 Gaussian
Radial CG position ±0.55 mm 3𝜎 Gaussian
Radial CG angle 0:360 deg Uniform

Moment of inertia matrix ±5% 3𝜎 Gaussian
Moment coefficient adder amplitude ±0.0046 3𝜎 Gaussian

Moment coefficient multiplier amplitude ±35% 3𝜎 Gaussian
Random fluctuations in moment coefficient adder and multiplier -10%:10% Uniform

Initial 𝛼 and 𝛽 -2:2 deg Uniform
Initial 𝜔𝑦 and 𝜔𝑧 -5:5 deg/s Uniform

profiles using both controller options are shown in Figures 12 and 13, 14 and 15, and 16 and 17 for 𝛼 and 𝛽, for each of
the three command profiles. These results indicate both MPC and LQR are able to successfully track the command
profiles under uncertainty, with a range of dispersions. Some dispersions, such as those in the moment coefficient
multiplier, CG position, and moments of inertia, generally have little impact on controller performance and the resulting
𝛼-𝛽 tracking. Other dispersions, however, have larger impacts. Non-zero initial conditions result in an initial transient
phase with large oscillations, as can be seen in most of the tracking results. These oscillations are further impacted by
the low dynamic pressure available for the flaps at the start of each of these command profiles, which make it challenging
to quickly achieve the desired commands and damp oscillations. The LQR results have a visibly larger oscillation
magnitude, as well as a longer time to damp out the oscillations. Another significant dispersion is the moment coefficient

15



adder, which can result in an offset in tracking with the MPC (see Figures 12a and 13a). This tracking offset decreases
over the course of the trajectories due to corrections from integral error terms, which increase in their contribution over
time. Lastly, although the moment coefficient multiplier typically does not significantly impact controller performance,
profiles 1 and 3 for MPC have a case with noticeable oscillations as a result of a moment coefficient multiplier larger
than the 3𝜎 value. This multiplier is not an issue for LQR, which has state feedback to quickly null errors. Mean
results for the mean and integral errors of tracking performance of the Monte Carlo simulations are provided in Table 7.
Included for the integral errors are both the total integral error over the trajectory, as well as the steady integral error
corresponding to the remaining results after 10 s, once the oscillations from the initial transient phase have been damped.
The given results indicate that the MPC provides and improved controller performance under uncertainty, relative to
LQR. The lower error for MPC is a result of both smaller oscillations during the transient phase and decreased tracking
error during the steady phase. The higher steady integral error for LQR as well as the noticeable lag of LQR behind the
command profile are evidence of the improved performance of MPC. Among all command profiles, MPC shows lower
mean and integral errors, relative to LQR. With profile 1, for example, the MPC has mean integral errors 2.82 and 2.29
times lower than LQR for 𝛼 and 𝛽, respectively. Generally, the standard deviation of the integral errors are also lower
for MPC, relative to LQR, although LQR has the opposite trend, with LQR having a slightly lower standard deviation
for integral errors. Standard deviation results are provided in Table 8. Despite the increased spread of results for MPC
with profile 1, the highest integral error for MPC is still lower than the lowest integral error for LQR. As mentioned in
the preceding section, LQR had to be made intentionally conservative to not have any trajectories that tumbled during
any of the Monte Carlo samples for any of the considered command profiles. It is possible that larger and/or unmodeled
dispersions, as well as more challenging command profiles could lead to further instabilities with LQR. Despite this,
both controllers likely can provide suitable performance for a flight vehicle, especially if LQR is made conservative
enough. Flight implementation of MPC may be more challenging, however, due to its higher computational cost on the
limited processing power available from rad-hard flight computers.

Table 7 Mean Monte Carlo Results: Control Algorithm

MPC: 1 LQR:1 MPC: 2 LQR: 2 MPC: 3 LQR: 3

Integral 𝛼 error 29.898 deg-s 84.376 deg-s 55.731 deg-s 135.200 deg-s 104.753 deg-s 195.456 deg-s
Integral 𝛽 error 23.617 deg-s 54.100 deg-s 17.077 deg-s 72.714 deg-s 27.932 deg-s 85.364 deg-s
Mean 𝛼 error 0.191 deg 0.537 deg 0.279 deg 0.677 deg 0.456 deg 0.850 deg
Mean 𝛽 error 0.150 deg 0.344 deg 0.086 deg 0.364 deg 0.123 deg 0.371 deg

Integral 𝛼 error (steady) 25.923 deg-s 73.129 deg-s 28.270 deg-s 87.429 deg-s 60.852 deg-s 131.799 deg-s
Integral 𝛽 error (steady) 20.459 deg-s 45.055 deg-s 6.631 deg-s 36.006 deg-s 16.960 deg-s 49.482 deg-s
Downrange difference 0.981 km 0.208 km 0.766 km 1.479 km 1.521 km 1.605 km
Crossrange difference 0.076 km 0.070 km 0.071 km 0.197 km 0.091 km 0.153 km

Terminal altitude - - - - 9.287 km 9.161 km

Table 8 Monte Carlo Standard Deviation Results: Control Algorithm

MPC: 1 LQR:1 MPC: 2 LQR: 2 MPC: 3 LQR: 3

Integral 𝛼 error 3.793 deg-s 3.256 deg-s 18.225 deg-s 35.543 deg-s 27.704 deg-s 44.210 deg-s
Integral 𝛽 error 4.493 deg-s 3.243 deg-s 7.903 deg-s 27.405 deg-s 8.257 deg-s 27.642 deg-s
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(a) (b)

Fig. 12 Monte Carlo results for angle of attack in profile 1: (a) MPC and (b) LQR.

(a) (b)

Fig. 13 Monte Carlo results for sideslip angle in profile 1: (a) MPC and (b) LQR.
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(a) (b)

Fig. 14 Monte Carlo results for angle of attack in profile 2: (a) MPC and (b) LQR.

(a) (b)

Fig. 15 Monte Carlo results for sideslip angle in profile 2: (a) MPC and (b) LQR.
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(a) (b)

Fig. 16 Monte Carlo results for angle of attack in profile 3: (a) MPC and (b) LQR.

(a) (b)

Fig. 17 Monte Carlo results for sideslip angle in profile 3: (a) MPC and (b) LQR.

Once complete, the 𝛼 and 𝛽 profiles from the Monte Carlo simulation can then be passed through Eq. (10)-(15) to
simulate the translational motion during entry. Initial conditions with an initial altitude of 135 km, inertial velocity of
6.1 km/s, inertial flight-path angle of -15.5 deg, inertial azimuth angle of 90 deg, and latitude and longitude of zero deg
are used and allow for an assessment of the effect of 𝛼 and 𝛽 tracking of the controllers on entry flight performance.
Results are shown in Fig. 18 for the resulting entry trajectories corresponding to the MPC command tracking of profile 1.
As with the controller tracking results, 1000 samples are considered, plotted here in an altitude versus velocity plot and
a crossrange versus downrange plot. The results indicate that tracking accuracy of the MPC results in a tight clustering
trajectories, despite the imperfect tracking of the MPC in the presence of dispersions. In particular, the maximum
difference in terminal position for the trajectories are about 0.981 km and 0.076 km for downrange and crossrange,
respectively. Note that these entry trajectories only to assess the effect of varied command tracking performance and do
not consider dispersions in the translational motion, such as density or aerodynamic force coefficients. Additionally the
trajectory calculations considered here assume the vehicle has RCS or other control system to hold the vehicle at zero
bank; only the impacts 𝛼 and 𝛽 on the trajectory are considered, not any induced bank. Comparing the downrange
and crossrange results in Table 7 for the different command profiles between MPC and LQR indicates both control
algorithms result in similar performance. LQR often has larger differences in downrange and crossrange, relative to
MPC, although for profile 1, LQR has a noticeably smaller downrange difference, relative to MPC. This trend for
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profile 1 is likely due to the larger standard deviation in tracking error for MPC, relative to LQR, as shown in Table
8. Additionally, profile 3, which seeks to maximize the final altitude during entry to increase margin in the descent
timeline, has about a 0.13 km increase in altitude for MPC, relative to LQR. This indicates that the improved tracking
performance of MPC has some small but present impacts on actual entry flight performance.

(a) (b)

Fig. 18 Translational motion results from Monte Carlo 𝛼 and 𝛽 profiles: (a) altitude versus velocity and (b)
crossrange versus downrange.

C. Monte Carlo Performance: Effect of Flap Configuration
Control system performance in the presence of uncertainty was also evaluated for various flap configurations. The

different flap configurations include varied flap areas on Configuration A, as well as Configuration B, and Configuration
C, and results were evaluated using the MPC algorithm with profile 1. Each case used the same tuning of the MPC, and
the results in Table 9 indicate the tracking errors for 𝛼 and 𝛽, as well as the difference in downrange and crossrange
errors improve as flap area increases. In particular with 2% area flaps, the vehicle lacks sufficient control authority to
trim to the desired commands, resulting in an increased error. This tracking performance is shown in Fig. 19. Provided
the vehicle has flap areas which have the control authority available to trim to the desired commands, the vehicle can
then successfully track the commands. This is evident for example by the 2% flaps having an integral error for 𝛼 1.48
higher than for the vehicle with 3% area flaps. There appear to be performance enhancements of 4% flaps over 3% flaps
for 𝛼 and 𝛽 tracking due to the increased control authority available, however these improvements are marginal.

Table 9 Mean Monte Carlo Results: Flap Configuration

A: 2% A: 3% A: 4% B: 3% C: 4%

Integral 𝛼 error 44.213 deg-s 29.898 deg-s 28.718 deg-s 29.480 deg-s 29.737 deg-s
Integral 𝛽 error 25.686 deg-s 23.617 deg-s 22.548 deg-s 25.283 deg-s 24.956 deg-s
Mean 𝛼 error 0.282 deg 0.191 deg 0.183 deg 0.188 deg 0.189 deg
Mean 𝛽 error 0.164 deg 0.150 deg 0.144 deg 0.161 deg 0.159 deg

Integral 𝛼 error (steady) 39.562 deg-s 25.923 deg-s 25.102 deg-s 25.377 deg-s 25.722 deg-s
Integral 𝛽 error (steady) 21.833 deg-s 20.459 deg-s 19.770 deg-s 21.838 deg-s 21.757 deg-s
Downrange difference 1.413 km 0.981 km 0.727 km 0.842 km 0.785 km
Crossrange difference 0.113 km 0.076 km 0.047 km 0.078 km 0.059 km

Comparing configurations A, B, and C to each other also indicates only marginal performance differences in 𝛼 and

20



(a) (b)

Fig. 19 Monte Carlo results for 2% flaps: (a) angle of attack and (b) sideslip angle.

𝛽 tracking or the downrange and crossrange differences. This again indicates that this successive linearization MPC
provides effective performance for various flap configurations. Provided that a given configuration can achieve the
desired commands, there are many possible configurations that could be used. These results considering uncertainty are
similar to the findings in Ref. [28], which considered nominal cases. One disadvantage of using Configuration C is the
rolling moments from the sides of the flaps do not cancel out as much as for confiurations A and B. This results in the
potential for a significant amount of bank during entry, even in nominal cases. Even though 𝛼 and 𝛽 command profiles
are tracked successfully during Monte Carlo simulations, the bank angle remains an uncontrollable state. When the CG
is located off the center line as a result of uncertainty, the normal and side aerodynamic forces on the vehicle induce an
additional rolling moment. The results in Fig. 20 show that both configurations A and C have a significant amount
of induced bank over the entry. This induced banking can be on the order of several hundred degrees and would be
problematic on a flight vehicle unless mitigated against, although the mean terminal bank angle is -0.65 deg and -143.70
deg for configurations A and C, respectively. This again shows that a method for regulating the bank angle is necessary,
even for vehicles using 𝛼-𝛽 steering and also indicates the induced bank problem may be more challenging on vehicles
lacking a fully symmetric flap configuration.

(a) (b)

Fig. 20 Monte Carlo results for bank angle: (a) Configuration A and (b) Configuration B.
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IV. Conclusions
In this study a successive linearization model predictive controller and linear-quadratic regulator for a Mars entry

vehicle with flaps were designed and tested under uncertainty. Results indicated both controllers are able to track
command profiles for the angle of attack and sideslip angle in nominal cases and when there is uncertainty such that the
controller plant model differs from the truth dynamics. In the presence of uncertainty, the model predictive controller
was found to have mean and integral errors on the order of two times lower than associated with the linear-quadratic
regulator. The linear-quadratic regulator sometimes resulted in the entry vehicle tumbling, forcing a conservative
tuning in order to provide successful tracking in all Monte Carlo samples. The lack of tumbling behavior for the model
predictive controller is indicative of increased robustness relative to the linear-quadratic regulator, although using the
model predictive controller requires increased computational resources. The model predictive controller is successful in
being applied to several vehicle configurations in the presence of uncertainty without re-tuning. Provided a configuration
has sufficient control authority to trim to desired angle of attack and sideslip angle commands, there is only a marginal
differences in command tracking. Induced bank as a result of an off-axis center-of-gravity was found to be a potential
drawback of systems modulating angle of attack and sideslip angle on blunt-body entry vehicles, as they may be forced
to also carry a reaction control system for managing the bank angle. Induced bank on entry vehicles with an odd number
of flaps may be further problematic, as the net aerodynamic moment from the sides of the flaps can result in an average
of several hundred degrees of induced bank.
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