

Orion Artemis I As Flown MMOD Analysis

2nd International Orbital Debris Conference

Kevin D. Deighton | Jacobs CLG JSC-XI5 (JETS II) Hypervelocity Impact Technology (HVIT) Team

> Eric L. Christiansen (NASA), Dana M. Lear (NASA), James L. Hyde (Barrios Technology-JETS II)

> > 12/5/2023

National Aeronautics and Space Administration

Orion Spacecraft

- The Bumper analysis software was employed to calculate the number of damages of various sizes expected to be caused by MMOD
- Environment models used:
 - ORDEM 3.2
 - MEM 3
 - 2022 Meteoroid Shower Forecast included
- Ballistic limit equations translate environment model impactors into damage size

National Aeronautics and Space Administration

Ballistic Limit Equation: Small Crater in Thermal Tile

4

- Primary post-flight inspection of thermal tile & main windows conducted at Kennedy Space Center, January 24-25, 2023
 - Multiple inspections of various portions of the capsule conducted as opening became available
- Thermal tiles bonded to substrate panels that had been removed from the vehicle
- Pieces of reflective tape remained on the tiles
 - Tape mostly burned off during reentry

National Aeronautics and Space Administration

Regions of Interest on Thermal Tile

Artemis I | ROI #25 Panel D | Feature Size = 0.89 x 0.86 mm, Depth = 1.04 mm

Five potential MMOD impact sites in the thermal tiles were identified and preliminarily characterized

Further laboratory characterization is planned

Artemis I | ROI #29 Panel D | Feature Size = 1.87 x 1.79 mm, Depth = n/a

Artemis I | ROI #36 Panel I | Feature Size = 2.86 x 3.62 mm, Depth = 1.22 mm

Artemis I | ROI #34 Panel C | Feature Size = 1.40 x 1.77 mm, Depth = 0.46 mm

Thermal Tile As-Flown vs. Post-Flight Inspection

Remaining Tape

- Reflective tape was applied to the thermal tiles to achieve various desired properties for the flight
- Most of the tape burned off during reentry
- Some tape remained, especially on Panel F, where the main windows are located
 - Scattered small squares of tape remained across the whole capsule (shown on Panel E)
- A Bumper analysis was performed to calculate the number of tape damages expected to be caused by MMOD
 - Analysis included adjustment for how much tape remained

Panel F

Panel E

Tape Damage

Tape prediction consistent with findings ٠

- Most of tape burned off \rightarrow only 18% of predicted impacts are on remaining tape
- Expected to find 2 holes on Panel F, found 1 ٠ ROI
 - Most complete panel ٠
- Expected 1 more ROI across vehicle, found it on Panel D ٠
 - Panel I would have been more likely due to ٠ more remaining tape

Panel I nore re	would have b maining tape	been more l	ikely due to	102
Location	Full Panel Number	Remaining Tape	Adjusted Number	Found
Panel A	1.59	10%		
Panel B	2.01	5%	0.10	
Panel C	3.63	2%	0.07	
Panel D	1.11	5%	0.06	
Panel E	1.05	7.5%	0.08	
Panel F	2.87	70%	2.01	Found 1 ROI
Panel G	1.05	10%	0.10	
Side Hatch	0.86	5%	0.04	
Panel H	3.56	5%	0.18	
Panel I	1.15	40%	0.46	
Total	18.88		3.41	

Found 2 ROIs

Artemis I | ROI #26 Panel D | Feature Size ≈ 1 x 0.5 mm, Depth = n/a

Artemis I | ROI #13 Panel F | Feature Size = 0.77 x 0.60 mm, Depth = n/a

Window ROIs

Diameter = 0.730 mm

Artemis I | +Y Side Window (2) | Central Pit Depth = 0.0279 mm (KSC MIT measurement of dental mold)

Diameter = 0.428 mm Based on radius determined from maximum glass damage Assumption: impact obliquity or other factors artificially clipped extent of damage in some directions

Window Comparison

Summary

- NASA inspected the Orion capsule for possible MMOD damage and, separately, a Bumper risk
 assessment was performed to predict the number of craters expected to be found
 - Similar to past programs
- Comparison of Prediction to Findings
 - Backshell Tile
 - 5 potential MMOD craters were found
 - Prediction of crater numbers matches well with inspection findings for depths > 1 mm
 - Shallower craters: Bumper predicted more craters than were found, which is consistent with historical trends and may be explained by the difficulty in finding very small craters
 - Extraction of the five potential MMOD damage site tiles is in work to provide more data to improve this assessment
 - Backshell Tape
 - 2 holes in the remaining reflective tape were found and may have been caused by MMOD
 - Prediction of hole numbers (3.4 holes) consistent with inspection finding
 - Predicted ;ocations of holes consistent with inspection finding
 - Windows
 - 2 potential MMOD craters were found in the main windows
 - Prediction of crater numbers matches well with inspection findings for diameters > 0.5 mm
 - Smaller craters: Bumper predicted more craters than were found, which is consistent with historical trends and may be explained by the difficulty in finding very small craters
- Conclusions
 - These comparisons demonstrate a high degree of accuracy in Bumper risk assessment
 - The inspection findings will aid future refinement of environment models to improve accuracy still further