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A significant effort to upgrade the Program to Optimize Simulated Trajectories II 
(POST2), a heritage flight mechanics tool developed at NASA Langley Research Center, is 
ongoing to support current and future NASA missions. To meet mission requirements, it may 
be necessary for multiple specialized computational tools to interact to properly assess a 
system. An application programming interface for POST2 was developed to allow easier 
access for users and to enable communication between external applications. A demonstration 
of the POST2 application programming interface is presented by utilizing common 
engineering platforms such as MATLAB and Python. 

I. Introduction 
 The premier flight mechanics trajectory simulation tool at the NASA Langley Research Center (LaRC) is the 
Program to Optimize Simulated Trajectories II (POST2). Due to its flight validated heritage, POST2 has become a 
widely used tool for atmospheric ascent and entry, descent, and landing (EDL) modeling and simulation [1-11]. 
POST2 first began its development in the 1970s as a Fortran program, and since has been maintained and updated at 
LaRC to the C programming language with some C++ elements. A significant recent improvement to POST2 enabled 
thread safety and added the capability to calculate optimization solutions in parallel [12]. 
 As spacecraft and trajectories become more complex, the software and models used to assess the associated 
requirements need to be upgraded to sustain accurate and efficient performance. These models and programs are 
typically accessed by some type of user interface. For example, many tools have a command line interface (CLI) or 
graphical user interface (GUI). Currently, POST2 is executed with user provided options, commonly referred to as an 
input deck, via a CLI. However, to meet mission requirements it is often desired to have multiple applications interact 
with each other, allowing the strengths of each software to be leveraged. An application programming interface (API) 
provides a means for software to be stitched together and pass information back and forth [13]. 
 The POST2 API began development to enable a more flexible experience for users, but also to allow for external 
applications to interact with POST2 in ways that were not possible before. The foundation of the API was completed 
during the thread safety update, and these changes were augmented to provide methods for users or other software to 
interface with POST2. 
 This work details significant elements of the POST2 API. Since POST2 is written primarily in C, the API is also 
written in C, which permits greater interoperability with external applications. One major consideration when 
designing the API was the inefficiencies due to file input and output (I/O). The API still relies on processing an initial 
input file processing, then afterwards requires no additional file I/O unless requested by the user. Currently, the API 
will not write or construct a POST2 input file for the user. Additionally, uniformity in function naming and argument 
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structure was an important design feature (all POST2 API methods begin with post2_, and the arguments are all 
primitive C datatypes for simplicity and ease of interoperability). Lastly, where appropriate to return an error status, 
each method in the POST2 API will return one of two error codes: POST2_OK or POST2_ERROR. 
 A discussion of the hierarchy that a POST2 API user has control of will be discussed in Section II. Sections III 
and IV will outline the different aspects of user-controlled settings and data output. The levels of parallelism that are 
permitted and some example use cases are described in Section V. Specific use cases demonstrating some of the 
enabled capabilities in the API are then shown in Section VI. 

II. User Controlled Hierarchy 
The memory structure in POST2 is broken up into a hierarchy detailed in [12]. Following this framework, the user 

has control over two levels of objects within the API: a workspace and trajectory, with the trajectory being contained 
by a workspace as depicted in Fig. 1. A workspace is defined by the settings in a POST2 input deck, which is the 
fundamental set of information that determines how the simulation will execute. Since POST2 is a very general and 
modular flight mechanics software, input decks can vary widely in their complexity and structure. The input deck will 
contain information about which models to use, e.g., atmosphere, gravity, aerodynamics, and will detail how the 
simulation will evolve in time. POST2 is an event-based simulation, where an event during EDL might be main 
parachute deploy, so the event structure is defined in the input deck. 

POST2 events are input deck constructs that control the order of input execution during trajectory propagation. 
The events in a simulation will typically occur in a sequence (e.g., atmospheric entry interface, drogue parachute 
deploy, main parachute deploy, touchdown), which permits the user to update simulation parameters. Events can be 
optional, occur out of numerical sequence (i.e., a roving event), and can be triggered using multiple criteria. For 
example, atmospheric entry interface can be triggered by the vehicle(s) reaching a specific geodetic altitude, at which 
point the atmospheric model can be activated. However, a parachute might be deployed by a barometric sensor 
measuring a specific pressure level, so the drogue parachute deploy event would be triggered based on the vehicle(s) 
experiencing that dynamic pressure level. The parachute inflation model can then be activated, as well as all the 
interactions the parachute has with the vehicle such as drag forces. 

In any given POST2 API instance, there can be more than one workspace, where each is defined by its own input 
deck. For example, a simulation might be broken up into a deorbit and then a descent and landing segment. Each of 
these segments can be defined by different input decks and each is assigned its own unique workspace, described by 
a workspace key (an integer). The function to create and initialize a workspace based on an input deck is 
post2_init(), where the workspace key and the input deck path are arguments. This will allocate and set the 
value of all workspace data associated with the problem defined by the passed in input deck. The number of 
workspaces that can exist within a single POST2 API instance is only limited by the amount of available memory on 
the machine the API is executing on. When all work within the workspace is completed, the user may free the memory 
associated with that workspace by utilizing the post2_free_workspace() method. 

Within each workspace there exists at least one trajectory; however, there can be numerous trajectories in each 
workspace. The trajectory object contains the bulk of the data that is needed for the simulation, including any 
vehicle(s). Similar to initializing a new workspace, the function to create and initialize a new trajectory is 
post2_init_trajectory(). Given that a trajectory is contained within a workspace, the arguments to the 
initialization function are the associated workspace key and trajectory key, where the trajectory key (an integer) 
describes the trajectory. Each trajectory within a workspace will follow the same simulation code path, and their data 
is assigned according to the input deck that defines the workspace. Methods of how to modify the data for each 
workspace and trajectory are described in Section III. When all work within a trajectory is completed, the user may 
free the memory associated with that trajectory by calling the post2_free_trajectory() function. If a 
workspace was freed already via a call to post2_free_workspace(), then all trajectories within that workspace 
are also freed for the user. 
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Fig. 1 A depiction of the hierarchy of objects that a user has control of in the POST2 API. 

III. User Controlled Simulation Settings 
The hierarchy described in Section II shows the two levels of API objects that a user can create, a workspace and 

a trajectory, and how these objects relate to each other. The settings that correspond to workspaces and trajectories 
are divided in a similar manner, and they are referred to as inputs and values, respectively, as is shown in Fig. 2. While 
the methods of how to modify inputs and values appear to be similar, their behavior is quite different. 

 

 
Fig. 2 A brief display of the settings that a user has control of in the POST2 API, and which level of the 

hierarchy they correspond to. 

A. Workspace Inputs 
Setting a workspace input is akin to opening a POST2 input deck in a text editor and modifying it directly. 

However, usage of the API requires no file input or output (I/O) outside of the initial processing of the input deck. 
Instead of modifying a file and rereading it, the API allows for a user to update the POST2 memory directly and 
programmatically, enabling the alteration of POST2 data from external applications in an efficient manner. The 
methods of setting inputs for a given workspace take the form of post2_set_*_input(), where the wildcard 
character, *,  is replaced by the type of input to be set. The user has the ability to modify scalar inputs, specific indices 
of an array input (one or two dimensional), string inputs, and specific characteristics of look-up tables (y-values, 
multipliers, and biases). 

An example of a scalar workspace input that a user may want to modify could be the value of a variable where a 
specific event is triggered. For instance, for an EDL mission at Earth that requires a parachute, it may be of interest to 
analyze the effect of main parachute deploy altitude on the landing location of the entry vehicle, so the user may want 
to change the specific altitude where the main parachute deploys. Elements of an initial position vector may be 
modified by setting an array input value. String inputs are used for multiple purposes, such as the variable to examine 
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to determine whether an event has been triggered. Instead of triggering main parachute deploy at a specific altitude, 
the user can designate to trigger main parachute deploy based on Mach number using a string input, and then declare 
the Mach number using a scalar input. The inputs set can work with each other, like in the previous Mach number 
example; however, if the same variable is set multiple times, the most recent input will be used. 

Just as trajectories are contained within a workspace, all trajectories will be affected by any of the inputs set for a 
given workspace. 

B. Trajectory Values 
 While workspace inputs affect all trajectories within a workspace, trajectory values are targeted to affect specific 
trajectories. Multiple trajectories may be initialized, via post2_init_trajectory(), and simulated within the 
API,  by utilizing the post2_run() method. The post2_run() method executes a single trajectory, defined by 
the trajectory key argument, from a specific workspace, defined by the workspace key argument. This trajectory will 
follow the exact settings laid out in the input deck and any workspace inputs, as well as the trajectory values set. For 
any trajectory value set that conflicts with a workspace input, the trajectory value will have precedence and will be 
used.  
 The methods of setting trajectory values take the form post2_set_*_value(), where the wildcard character, 
*, is replaced by the type of value to be set. Trajectory variables that can be modified are scalar values, specific indices 
of an array value (one or two dimensional), and string values. Table data is not able to be modified at the trajectory 
level as tables are readable by all trajectories, hence table data can only be modified via a workspace input. 
 Modifying trajectory values is especially useful for situations where specific parameters might want to be varied 
but the majority of settings for the simulation should remain the same. An example of this would be a parametric 
sweep where only a single parameter is changed between trajectories, such as the entry flight path angle (EFPA), and 
the effect this variation has on the peak heating of an entry vehicle.  Also, a sensitivity study or Monte Carlo analysis 
could be employed by using trajectory values where each Monte Carlo sample is a single trajectory with only the 
dispersed parameter modified. Additionally, investigating the effect that multiple different guidance schemes have on 
the performance of a system could be done via trajectory values. 

IV. User Controlled Data Output 
Prior to the API development, the process of getting output data from the POST2 simulation was in the form of 

parsing an output file (either ASCII text or MATLAB file format). However, as described previously, the POST2 API 
was designed with limited file I/O in mind. Therefore, methods were defined to allow a user to access POST2 data 
directly from memory without writing to an output file. 

Within the API, there is no default set of data to collect for a given execution of a trajectory within a workspace. 
To instruct the API to collect specific data, a call to the post2_set_output_variable() function must be 
made for each variable that is desired by passing the name of the variable as the argument. The requested data is 
associated with a workspace, so all trajectories within a workspace will log the same variables. 

The default behavior of logging data is to capture the value of any requested variables at each time step throughout 
the entire simulation, which utilizes the most memory of the output options. There are three additional options 
available that modify how often data is logged. A call to the post2_set_output_at_intervals()will capture 
the time history of all variables at a specified interval that is a multiple of the simulation time step. The 
post2_set_output_at_events()method will instruct the API to only log data at the defined POST2 events 
in the input deck. This decreases the amount of memory needed because there are usually far fewer events than there 
are time steps in a simulation. The last option for modifying output cadence is the 
post2_set_output_at_final_state(), which is the least memory-intensive option since it will only 
capture data at the simulation’s final state. It is important to note that this is the simulation’s final state, which is not 
guaranteed to be the end of the designed trajectory, but it could be when an error was encountered during the trajectory 
propagation. 

Once the trajectory propagation has completed, the user has many options to inspect simulation information and 
any data that was logged. The number of time steps and events that occurred can be accessed via calls to 
post2_get_number_of_timesteps() and post2_get_number_of_events(), respectively. The 
methods of getting logged data from a trajectory within a workspace take the form of post2_get_value_*(), 
where the wildcard character, *, is replaced by the type of output to be gathered. A user can request a value at a 
specific time step that occurred, e.g., the initial or final time step. Data can be gathered at a specific POST2 event, 
referred to either by event number or event name. Lastly, the entire time history of a requested variable can be returned 
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as a reference to a memory location. For this particular method, it is important to use the 
post2_free_time_history() method when the data is no longer needed for analysis. 

A brief example usage of the API is shown in the Appendix. More complex examples that utilize different 
frameworks is included in the documentation that is provided as part of the POST2 distribution. 

 

V. Parallelism with the API 
The work completed as part of the thread safety improvement ensured thread safe execution of the POST2 

trajectories within a simulation. Leveraging this foundation, the additional updates were implemented to allow for 
thread safe execution of API workspaces. Thread safe execution of workspaces and trajectories allows for multiple 
layers of concurrent calculations within the API. The first layer of parallelism corresponds to running multiple 
workspaces in parallel. Utilizing this capability, and with the proper simulation set up, a user may split their overall 
simulation structure into multiple segments or phases of flight. Fig. 3 depicts an example simulation that has two 
distinct segments being simulated in parallel: ascent and booster return. An additional potential use case of parallel 
workspaces could be the use of a trajectory collocation optimization scheme, provided the simulation could be divided 
into segments where each trajectory is a collocation node.   

 

 
Fig. 3 Example simulation with concurrent workspaces. 

 At the second level of the API hierarchy, a user has the ability to simulate trajectories in parallel. This level of 
parallelism currently can be exploited for more efficient optimization solutions with POST2, where each trajectory 
simulation represents a perturbation of a control variable. Another use case for parallel trajectories is a side-by-side 
comparison of models or integration methods. An analysis of the effect of varying the fidelity of flight software, such 
as sensor models, could be completed more efficiently in parallel. Alternatively, the sensitivity to integration method, 
a two step Runge-Kutta versus a four step Runge-Kutta for example, can be analyzed simultaneously. Additionally, a 
parametric sweep can be simulated concurrently, where EFPA is the modified parameter for example, as shown in 
Fig. 4. An area of interest for EDL is uncertainty quantification (UQ), which is a rapidly changing field of study. The 
standard practice for UQ is to utilize Monte Carlo Simulations, which results in many samples that are independent 
of one another. These samples, or trajectories in the case for POST2, can be simulated in parallel by leveraging the 
API. 
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Fig. 4 Simple depiction of multiple trajectories running concurrently within a workspace, each with a 

different value for entry flight path angle. 

 A combined third level of parallelism is permitted in the API, where there are concurrent workspaces that contain 
concurrent trajectories as depicted in Fig. 5. Ultimately, the user chooses which levels of parallelism might serve their 
use case best. 
 

 
Fig. 5 The combined multi-level parallelism that is permitted in the POST2 API. All workspaces operate 

concurrently, and all trajectories in a given workspace are simulated concurrently. 

VI. Example use cases of the API 
The POST2 API enables many use cases that are not detailed in this work, and the examples shown in this section 

will not be an exhaustive list. Since the API is written in C, many languages and frameworks have methods to interface 
with external libraries, so the potential options for interoperability are extensive. In this work, two common platforms 
used in engineering applications calling the POST2 API will be highlighted: Python and MATLAB. As part of the 
API development, classes and methods were designed in Python and MATLAB to allow for more seamless utilization 
of POST2. 

A common use case of the API might be a design space exploration or a parametric sweep. For this case, a Python 
framework that leverages the C Foreign Function Interface (CFFI) module [14] to call the POST2 API was utilized. 
The class defined for the developed framework has methods that closely resemble the direct API calls. Since the API 
is executed through a module created by CFFI, all data pertaining to the API instance resides within the same Python 
process. Thus, features such as data visualization can be directly leveraged within Python, through the use of common 
third-party packages such as matplotlib, as depicted in Fig. 6. Each curve represents an independent trajectory that 
only differs from its counterparts by the entry flight path angle. Additionally, parallelism through existing Python 
modules can be leveraged to run this problem, since the trajectories are independent from each other. When executing 
the same set of simulations in parallel, a speedup of approximately 5X was achieved. 
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Fig. 6 A parametric sweep, completed using the POST2 API in Python, demonstrating the effect of entry 

flight path angle on dynamic pressure. 

 
A key POST2 capability is trajectory optimization. While POST2 includes robust optimizers, there is no universal 

optimization algorithm for all situations. Therefore, it may be of interest to use off-the-shelf optimizers from external 
frameworks like Python or MATLAB. Such external frameworks provide a much larger set of algorithms than POST2, 
and the trajectory being optimized might be better suited to a different optimization approach than what is available 
in POST2. 

A class with methods that closely resemble the API was defined to make the interface between MATLAB and 
POST2 more seamless. While many frameworks offer optimizers, this work will focus on those optimization 
algorithms within MATLAB. An additional class was created to allow for easier use of these optimization algorithms, 
and the algorithm that is leveraged here is MATLAB’s fmincon. A targeting problem for a powered descent segment 
was solved using engine throttle, time of flight, and flight path angle as controls, and vertical velocity, horizontal 
velocity, and geodetic altitude as constraints. The visualization capability was also leveraged to provide real-time 
feedback while the optimizer was running, which can alert the user if the optimization problem is ill-posed or if the 
optimizer appears to diverge. Additionally, post-convergence feedback can be gathered to determine how well 
constraints were met and how saturated controls may have been. This information can be obtained from the POST2 
native output file; however, it is not visualized or as easily readable as what is shown in Fig. 7. 
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Fig. 7 Output after a successful convergence to a targeted solution from MATLAB's fmincon optimizer. 

VII. Summary 
An application programming interface was developed for a widely used flight mechanics tool to allow for 

interfacing with external applications, which followed a recent upgrade to allow for parallel trajectory simulations. 
This API for POST2 was developed with very limited I/O in mind outside of the initial input deck processing, to 
maintain efficient execution. Currently, the API is reliant on the input deck for the overall simulation structure, and it 
will not create an input deck for the user. One main reason why an API is useful is to allow coupling of multiple tools 
to solve a complex problem, where the strengths of each tool can be leveraged accordingly. All of the methods within 
the API use primitive C data types to allow for simpler interoperability with external applications.  Additionally, a 
user might have the most productive workflow within a given framework or language, and the API allows them the 
option to remain within this framework while leveraging POST2. 

The objects that a user has control over, a workspace and trajectory, and the methods associated with their 
instantiation and freeing were discussed. Functionality to enable a user to modify POST2 memory directly, either a 
workspace input or a trajectory value, leading to efficient processing through bypassing file I/O was also discussed. 
While nearly all POST2 supported data types can be altered via API calls, there are additional capabilities needed to 
support the full set of data. Output of data is another crucial element in the API design. Which data and at what cadence 
the data are logged can be controlled by the user. This allows the user to limit the memory consumption of the API by 
selecting to record data at their desired rate.  

Additional modifications were made to POST2 enabling parallel workspace simulations based on previous 
upgrades that enable parallel trajectory simulations. Both levels of parallelism can be exploited via the API, as well 
as a combination of the two. A demonstration of parallel computation while utilizing Python was showcased in an 
example of a parametric sweep. The parallel execution of all the independent trajectories lead to a computation time 
approximately five times faster than the sequential execution. Additionally, the visualization packages available in 
Python allow for more immediate feedback of analysis. 

Another showcase of utilizing the API from an external application was displayed in MATLAB. The fmincon 
optimizer was used to solve a targeting problem, which involved directly modifying POST2 memory to alter control 
values to ensure constraints are met. Real-time and post-convergence feedback of the optimizer’s process is more 
readily visualized within the MATLAB framework, making for useful information about how well constraints are met 
or how saturated controls may be. The use of external optimizers can be powerful to ensure state of the art algorithms 
are employed for the most optimal and efficient solutions. 
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Appendix 
A simple example demonstrating how a user might leverage the POST2 API in C is provided below as reference. 

Additional detail is provided in the documentation that is included with the POST2 distribution. 
 
// Initializing Workspace 1 based on information in input deck 
post2_init(1, “/path/to/input/deck”); 
 
// Initializing Trajectory 1 within Workspace 1 
post2_init_trajectory(1, 1); 
 
// Requesting Workspace 1 to track geodetic altitude 
post2_set_output_variable(1, “gdalt”); 
 
// Requesting Workspace 1 to track planet-relative velocity magnitude 
post2_set_output_variable(1, “velr”); 
 
// Executing Trajectory 1 in Workspace 1 
post2_run(1, 1); 
 
// Getting time history of geodetic altitude from Trajectory 1 in Workspace 1 
double * gdalt = post2_get_value_time_history(1, 1, “gdalt”); 
 
// Getting value of planet-relative velocity magnitude at event 100 from 
// Trajectory 1 in Workspace 1 
double velr_100 = post2_get_value_at_event(1, 1, “velr”, 100); 
 
// Getting value of planet-relative velocity magnitude at event named “PDI” 
// from Trajectory 1 in Workspace 1 
double velr_pdi = post2_get_value_at_event_name(1, 1, “velr”, “PDI”); 
 
// Getting final state value of geodetic altitude from Trajectory 1 in 
// Workspace 1 
double gdalt_final = post2_get_value_at_final_timestep(1, 1, “gdalt”); 
 
// … do analysis with gathered data 
 
// Cleanup 
// Freeing time history of geodetic altitude gathered earlier 
post2_free_time_history(gdalt); 
 
// Freeing all memory associated with Workspace 1, including Trajectory 1 
post2_free_workspace(1); 
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