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Abstract64

WASP-107b is a warm (∼740K) transiting planet with a Neptune-like mass of ∼30.5M⊕65

and Jupiter-like radius of ∼0.94RJ [1, 2] whose extended atmosphere is eroding [3]. Previous66

observations showed evidence for water vapour and a thick high-altitude condensate layer in67

WASP-107b’s atmosphere [4, 5]. Recently, photochemically produced sulphur dioxide (SO2)68

was detected in the atmosphere of a hot (∼1,200K) Saturn-mass planet from transmission69

spectroscopy near 4.05µm[6, 7], but for temperatures below ∼1,000K sulphur is predicted to70

preferably form sulphur allotropes instead of SO2 [8, 9, 10]. Here we report the 9σ-detection of71

two fundamental vibration bands of SO2, at 7.35µm and 8.69µm, in the transmission spectrum72

of WASP-107b using the Mid-Infrared Instrument (MIRI) of the JWST. This discovery estab-73

lishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending74

the temperature range of exoplanets exhibiting detected photochemistry from ∼1,200K down75

to ∼740K. Additionally, our spectral analysis reveals the presence of silicate clouds, which are76

strongly favoured (∼7σ) over simpler cloud setups. Furthermore, water is detected (∼12σ),77

but methane is not. These findings provide evidence of disequilibrium chemistry and indicate78

a dynamically active atmosphere with a super-solar metallicity.79

WASP-107b was observed with JWST MIRI on 19 – 20 January 2023. The SLITLESSPRISM sub-80

array of the low-resolution spectrometer was used, offering a spectral resolution ranging from 3081

and 100 over a wavelength span of 4.61 to 11.83µm. We performed three independent data reduc-82

tions using the CASCADe [11], Eureka! [12], and TEATRO packages; see Supplementary Information83

(SI). Each method extracted 51 spectroscopic light curves. For all channels, we obtained a minimal84

level of correlated noise in the residuals, consistent with normally distributed noise. The 1σ error85

displayed a minimum of 80 ppm at 7.5µm. The transmission spectra derived from the different86

reductions, shown in Figure 1 and tabulated in Extended Data Table 1, are within 3σ agreement87

and 95% of the points within 2σ; see SI.88

We performed atmospheric retrievals using two independent frameworks, ARCiS [13] and petit-89

RADTRANS (pRT) [14], including both our JWST data and previous near-infrared (1.121 – 1.629 µm)90

HST data [4]. Free abundance retrievals were run including the following species: H2O, CO, CO2,91

CH4, C2H2, SO2, SO, H2S, SiO, HCN, NH3, and PH3. The remaining atmosphere consisted of H292

and He. A variety of cloud models were tested, ranging from cloud-free to more complex models,93

the latter focusing mostly on silicate clouds (MgSiO3, SiO2, and SiO); see SI.94

Figure 2 shows the best fit to the data, including main contributions from molecular species95

and clouds to the spectrum. The figure presents the results based on the CASCADe package, but96

our conclusions are consistent across the three data reductions. Both retrieval codes detect SO2 at97

∼9σ, H2O at ∼12σ, and the presence of high-altitude clouds at ∼9σ, with a ∼7σ preference for98

silicate clouds over more simple cloud setups. We also tentatively detect H2S (∼4σ), NH3 (∼2 – 3σ),99

and CO (∼2 – 3σ), although the CO detection relies on the first three spectral points and requires100

confirmation at shorter wavelengths. CH4 is not detected, with an upper limit of its volume mixing101

ratio (VMR) being a few times 10−6. Table 1 presents the detection significance and VMR for each102

species. Due to differences in cloud structure setups, the absolute VMRs are different between the103

two retrieval codes. We therefore focus the discussion on the detection significance and relative104

abundances.105
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The MIRI data of WASP-107b presents the mid-infrared discovery of SO2 in an exoplanet106

atmosphere. Both the ν1 symmetric stretch and the ν3 asymmetric stretch vibration bands of SO2107

(with fundamental frequency at 8.69µm and 7.35µm, respectively [15]) are detected (Figure 1 and108

Figure 2). Recently, the (ν1 + ν3) combination band of SO2 was assigned as carrier of a spectral109

feature near 4.05µm detected in the JWST NIRspec spectrum of WASP-39b[6, 16], a hot (∼1,200 K)110

irradiated Saturn-mass exoplanet. The MIRI detection of SO2 in WASP-107b extends the range of111

exoplanet temperatures with detected SO2 from ∼1,200 K down to ∼740 K.112

The measured VMR of SO2 in WASP-107b (see Table 1) is several orders of magnitude higher113

than expected for chemical equilibrium, which predicts H2S to be the dominant sulphur-bearing114

molecule for Neptune-like planets [9]. Disequilibrium processes can drive abundances considerably115

away from chemical equilibrium, with photochemistry and atmospheric transport being the dom-116

inant mechanisms [17]. Notably, the SO2 feature observed in WASP-39b has been attributed to117

photochemical processes occurring within its atmosphere [10]. Indeed, UV irradiation initiates the118

photodissociation of H2O, yielding H and OH radicals. These OH radicals are key for oxidising119

sulphur that is liberated from H2S [10]. However, these models[10] predict that SO2 would not be120

detectable using JWST MIRI for a planet with an equilibrium temperature of ∼740 K. This is in121

contrast with our detection of SO2 in the atmosphere of WASP-107b.122

To unravel the production paths of SO2 in WASP-107b, we computed a grid of disequilibrium123

models (see SI). To ensure an accurate consideration of the upper-atmosphere chemistry, we ob-124

served – contemporaneously with the JWST observations – the Near-Ultraviolet (NUV) emission125

of the host star WASP-107 with Neil Gehrels Swift. Additionally, we reanalysed the 2018 X-ray126

emission observed with XMM-Newton (see SI). Figure 3 provides evidence that only models incor-127

porating photochemistry in combination with a super-solar metallicity predict a detectable level of128

SO2 in WASP-107b. Key disparities from prior predictions [10, 17] stem from UV radiation and129

gravity. Previous models adopted a gravity of 1,000 cm/s2 [10] and 2,140 cm/s2 [17], while WASP-130

107b’s gravity is ∼260 cm/s2. Moreover, the NUV flux is a factor ∼200 lower for WASP-107b than131

for WASP-39b, and a factor ∼100 – 1,000 lower in the FUV (see SI). A lower gravity, an overall132

decreased UV flux, and a low FUV/NUV ratio collectively contribute to the increased formation of133

SO2; see Extended Data Figure 1.134

The overarching scenario that unfolds is that the initiating pathways for SO2 formation in135

WASP-107b are twofold. First, H2O photodissociation in upper layers at pressures <∼10−5 bar136

generates atomic H and OH radicals, leading to sequential oxidation of sulphur liberated from H2S.137

Second, in the pressure range of ∼10−5 – 1 bar, photolysis of various abundant molecules – beyond138

just H2O – provides free atoms and radicals, partially redistributed through eddy diffusion. This139

initiates a cascade of thermochemical reactions that progressively yield sufficient OH radicals for140

SO2 oxidation. Given the fact that a large fraction of these reactions are temperature-independent141

and barrierless, the equilibrium temperature is not the sole determinant for SO2 formation. As long142

as the UV irradiation and FUV/NUV ratio remain moderate and the gravity is low, these processes143

lead to detectable SO2 levels even at the low equilibrium temperature of WASP-107b.144

The sensitivity to metallicity can be attributed to the larger abundance of sulphur and OH145

radicals at higher metallicities. At a metallicity of 6× solar, the SO2 spectral features contribute146

partially to the 7.8µm feature and dominate at >∼10× solar (see Extended Data Figure 2). For147

metallicities ≥6× solar, the gas-phase photochemical models predict a SO2 VMR above ∼5×10−7
148
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at pressures between 10−7 – 10−4 bar (see Figure 3). This result is corroborated by the retrieval149

outcomes, which show that the spectral contribution of SO2 predominantly comes from the region150

above the high-altitude cloud layer (situated at pressures of a few times 10−5 bar; see Extended Data151

Figure 4). This establishes SO2 as a key diagnostic for the atmospheric metallicity in exoplanet152

atmospheres.153

At super-solar metallicity, our models also predict a detectable CH4 feature (see Extended154

Data Figure 2). The confirmation of the HST CH4 non-detection [4] in the MIRI wavelength155

range raises questions regarding the predicted predominance of CH4 in the atmosphere [18, 19].156

One potential reason for the non-detection of CH4 is that it is hidden by the high-altitude cloud157

layer. In contrast to SO2, CH4 is photochemically destroyed at high altitudes, i.e. above the cloud158

layer (see Extended Data Figure 3). Another explanation for the non-detection of CH4 is the159

influence of the strong irradiation experienced by WASP-107b, which can significantly impact the160

thermodynamical properties of its atmosphere [20, 21, 22]. WASP-107b is highly inflated, pointing161

to a deep atmosphere that has significantly higher temperatures [23, 24, 25, 26] than those predicted162

by conventional models. The latter suggest an intrinsic heat flux (σT 4
int, with σ the Boltzmann163

constant and Tint the intrinsic temperature) with corresponding Tint of 150 K [27]. We computed164

chemical models with different intrinsic temperatures ranging from 250 – 600 K to reproduce a hot165

deep atmosphere (see Extended Data Figure 3). Our results show that the CH4 molar fraction166

in the atmospheric layers probed by our MIRI observations is reduced by more than 3 orders-167

of-magnitude when we increase Tint from 250 to 600 K. Interestingly, the SO2 abundance in the168

detectable upper atmosphere is almost unaffected since sulphur species do not quench in deep169

regions [9] (see Extended Data Figure 3). Lowering the C/O ratio from solar ( = 0.55) to 0.10 yields170

an additional decrease of the CH4 abundance by a factor ∼15 (see Extended Data Figure 3).171

The presence of silicate clouds in the atmospheres of strongly irradiated planets has been pre-172

dicted for a long time [28]. Although a hint of silicate emission has been claimed for one single173

object [29], clear observational evidence has been lacking. Recently, silicate clouds were detected174

in a young, self-luminous planet at large separation from its host star [30]. The MIRI data of175

WASP-107b present the detection of the 10µm Si-O stretching mode of solid silicate particles. The176

retrieval models favour a high-altitude cloud layer composed of small (sub-micron) amorphous sili-177

cate particles. At the pressure levels and temperatures where we find the cloud layer, gas phase SiO178

can nucleate and condensate efficiently to form small solid state mineral particles [31]. However,179

according to the traditional picture on cloud formation, these particles would eventually rain down180

to deeper, hotter layers of the atmosphere, depleting the relatively cold upper atmosphere from gas181

phase SiO. In the deeper, hotter layers, the particles evaporate, allowing the gas phase material to182

mix and serve as building blocks for new nucleation/condensation cycles. Thus, we can conclude183

that the presence of silicate clouds at such high altitudes in a relatively cold part of the atmosphere184

is another indication of strong mixing from either a hot inner atmosphere (similar to the finding185

related to CH4) or potentially from the intensely irradiated hot dayside.186
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Figure 1: JWST MIRI transmission spectrum of WASP-107b. Comparison of the JWST
MIRI transmission spectra obtained from the three independent reductions considered in this work
(coloured points, with 1-σ error bars). The blue dots show the results from the CASCADe code, the
red dots using the Eureka! package and the black dots are from the TEATRO routines. The thick
dashed grey line indicates the band-averaged transit depth from the CASCADe analysis at 20,463 ppm
and the shaded area the 95% confidence interval of 39 ppm. The right y-axis gives the planetary
spectrum in units of atmospheric scale height of the planetary atmosphere, assuming a hydrogen
dominated atmosphere. The spectra have a constant wavelength bin width, corresponding to a
spectral resolution of 50 at 7.5 µm. The two horizontal bars indicate the ν1 symmetric stretch and
ν3 asymmetric stretch vibration bands of SO2.
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Figure 2: Transmission spectrum of WASP-107b with key contributions. The (red and
pink) points with 1-σ error bars correspond to the measured JWST MIRI CASCAde transit depths of
the spectrophotometric light curves at different wavelengths. The (red and pink) points in the area
indicated by the grey band are from HST. The median spectrum model predicted from ARCiS [13]
retrievals is shown in blue and from petitRADTRANS (pRT) [14] in green (offset by 2,000 ppm for
clarity). The shaded regions of the model spectra correspond to the 1-,2-,3-σ credibility envelopes
predicted by the retrievals. The bottom part of the figure shows the silicate cloud and molecular
contributions for those gases inferred by our analysis of WASP-107b’s spectrum.
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Figure 3: Predicted SO2 molar fraction. Panel (a): Adopted temperature-pressure (T -P )
profile for WASP-107b following the analytical equation of ref. [32]; see SI. Panel (b): Predicted
SO2 molar fraction for four values of the metallicity (1, 2, 6, and 10 Z⊙; in black, green, red, and blue,
respectively) for models with (full line) and without (dotted line) the inclusion of photochemistry.
Predictions are calculated for a model with an intrinsic temperature of 400 K, a solar C/O ratio,
and a log10(Kzz, cgs) = 10.
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Table 1: Outcome of the retrieval analyses. Given are the detection significance and volume
mixing ratios (VMR) of the various components in the ARCiS and petitRADTRANS (pRT) retrieval
analysis.

Significance [σ] log10(VMR)

Component ARCiS pRT ARCiS pRT

H2O 13.2 12.5 −2.19+0.42
−0.26 −3.81+0.38

−0.29

SO2 8.8 9.1 −5.03+0.33
−0.18 −6.72+0.30

−0.23

H2S 4.7 3.5 −2.65+0.49
−0.38 −3.88+0.41

−0.33

NH3 2.3 3.4 −5.47+0.34
−0.66 −6.04+0.30

−0.25

CO 2.8 2.3 −2.41+0.29
−0.28 −4.58+0.40

−0.59

PH3 –(b) –(a) −6.29+1.29
−2.24 −7.60+0.89

−1.39

HCN –(b) –(a) −9.26+1.73
−1.63 −9.19+1.20

−1.15

C2H2 –(b) –(a) −9.08+1.73
−1.73 −9.19+1.19

−1.14

SiO –(b) –(a) −6.08+1.90
−3.34 −9.03+1.47

−1.40

CH4 –(b) –(b) −8.52+2.09
−2.09 −8.83+1.25

−1.23

CO2 –(b) –(b) −8.05+2.46
−2.37 −8.49+1.79

−1.70

SO –(b) –(c) −7.38+2.76
−2.74

Silicate Clouds 7.2 7.1

(a) included in retrieval, but not tested for detection significance because posterior indicates an
upper limit.
(b) not favoured (Bayes factor < 2).
(c) not included.
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• Supplementary Information is linked to the online version of the paper at www.nature.com/nature.188
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The DOI link can also be used to retrieve the publicly available HST WFC3 data used in this194

paper from MAST. The NUV data are in an online publicly-accessible archive: https://he195

asarc.gsfc.nasa.gov/cgi-bin/W3Browse/swift.pl. The HST data are available in the196

MAST archive and can be found using DOI: https://doi.org/10.17909/as3s-x893. The197
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readthedocs.io/en/latest/ for the petitRADTRANS-code [14]. The XSPEC package [33]208

is available at https://heasarc.gsfc.nasa.gov/xanadu/xspec/. The HEASoft package209

(including the Swift UVOT tools) is available at https://heasarc.gsfc.nasa.gov/lheaso210

ft/download.html (version 6.31.1 was used in our work). The NUV Swift-project pipeline is211

available at https://swift.gsfc.nasa.gov/quicklook/swift_process_overview.html.212

The VULCAN chemical network can be found at https://github.com/exoclime/VULCAN/b213
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Extended Data392

Extended Data – Table 1: Measured transit depth of WASP-107b. First and fifth column
list the wavelength, and the other columns the transit depths as obtained with Eureka!, CASCADe
and TEATRO. Each wavelength bin has a full width of 0.15 µm.

Extended Data – Figure 1: Impact of gravity and UV irradiation on predicted SO2 molar
fraction. The base model (shown in black in each panel) has an intrinsic temperature of 400 K, a
solar C/O ratio, a metallicity of 10× solar, a log10(Kzz, cgs) = 10, and uses the SED of HD 85512 [34]
– used as a proxy for WASP-107 – as input stellar spectrum (see SI). Panel (a): Temperature-
pressure (T -P ) profile for a gravity g of 2.6 m/s2 (black, purple and brown), 4.3 m/s2 (blue), and
10 m/s2 (orange). Panel (b): Predicted SO2 molar fractions for different gravity values with colours
corresponding to panel (a). While the black curve uses the HD 85512 SED as input spectrum, the
purple curve uses the WASP-39 SED instead (see SI), and the brown curve the HD 85512 SED
scaled with a factor 100.

Extended Data – Figure 2: Predicted transit depth for WASP-107b assuming a cloudless
atmosphere. The four panels display for a metallicity of 1, 2, 6, and 10 Z⊙, the total transit depth
(in black) and the transit depth without relative contributions of SO2 (light blue), H2O (dark blue),
CO2 (light green), CH4 (pink) and NH3 (orange). Predictions are calculated for a model with an
intrinsic temperature of 400 K, a solar C/O ratio, and a log10(Kzz, cgs) = 10.
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Extended Data – Figure 3: Sensitivity of SO2 and CH4 molar fractions to various input
parameters. Shown are the impact of the intrinsic temperature, C/O ratio and eddy diffusion
coefficient on predicted SO2 and CH4 molar fractions. The base model (shown in black in each
panel) has an intrinsic temperature of 400 K, a solar C/O ratio, a metallicity of 10× solar, and
a log10(Kzz, cgs) = 10. Panel (a): Temperature-pressure (T -P ) profile for intrinsic temperatures
of 250, 400, and 600 K (light blue, black, and orange, respectively). Panel (b): Predicted SO2

(full line) and CH4 (dotted line) molar fractions for different T -P structures (and hence intrinsic
temperatures), with colours corresponding to panel (a). Panel (c): Predicted SO2 and CH4 molar
fraction for different C/O ratios. Comparison with predictions for a solar C/O ratio (of 0.55, black
line) for which either the carbon or oxygen atomic abundance has been adapted (indicated by ‘C’
or ‘O’ between parenthesis, respectively). Panel (d): Predicted SO2 and CH4 molar fraction for
different values of the eddy diffusion coefficient Kzz.

Extended Data – Figure 4: Contribution function for the atmosphere as retrieved by ARCiS.
Shown in the contour colours are the relative contributions of various layers in the atmosphere to
the transit spectrum as a function of wavelength. The dark horizontal line in this plot is located
at the geometrically thin cloud layer, dominating the spectrum at all wavelengths. The spectral
variation on top of this baseline predominantly comes from below the cloud layer at the wavelengths
where water features are present, while it is dominated by regions above the cloud layer for the
spectral features of SO2. This is consistent with the pressures where we expect SO2 to be abundant
in the atmosphere from our photochemical modelling (see Figure 3). The molecular contribution
to the spectral variation in the 9.5 – 11µm region is significantly fainter than at other wavelengths.
This is the region where the silicate feature is most prominent and thus also the spectral variation
is dominated by the cloud layer.

Extended Data – Figure 5: Silicate cloud detection significance. The detection significance,
measured in σ, of the silicate cloud model is presented in comparison to both the cloud-free model
(indicated by the blue dashed curve) and the parameterised cloud model (represented by the red
solid line) as a function of the maximum wavelength used in the analysis. Even when limiting the
analysis to wavelengths below 10µm, the silicate cloud remains favoured, at a significance of 5.7σ,
over the parameterised cloud configuration.
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Extended Data Fig. 1ACCELE
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Extended Data Fig. 2
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Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 5
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