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Abstract

WASP-107b is a warm (~740K) transiting planet with a Neptune-like mass of ~30.5 Mg
and Jupiter-like radius of ~0.94 Ry [1, 2] whose extended atmosphere is eroding [3]. Previous
observations showed evidence for water vapour and a thick high-altitude condensate layer in
WASP-107b’s atmosphere [4, 5]. Recently, photochemically produced sulphur dioxide (SO2)
was detected in the atmosphere of a hot (~1,200K) Saturn-mass planet from transmission
spectroscopy near 4.05 um [6, 7], but for temperatures below ~1,000 K sulphur is predicted to
preferably form sulphur allotropes instead of SO [8, 9, 10]. Here we report the 9o-detection of
two fundamental vibration bands of SOz, at 7.35 um and 8.69 pm, in the transmission spectrum
of WASP-107b using the Mid-Infrared Instrument (MIRI) of the JWST. This discovery estab-
lishes WASP-107b as the second irradiated exoplanet with confirmed photochemistry, extending
the temperature range of exoplanets exhibiting detected photochemistry from ~1,200K down
to ~740 K. Additionally, our spectral analysis reveals the presence of silicate clouds, which are
strongly favoured (~70) over simpler cloud setups. Furthermore, water is detected (~120),
but methane is not. These findings provide evidence of disequilibrium chemistry and indicate
a dynamically active atmosphere with a super-solar metallicity.

WASP-107b was observed with JWST MIRI on 19—20 January 2023. The SLITLESSPRISM sub-
array of the low-resolution spectrometer was used, offering a spectral resolution ranging from 30
and 100 over a wavelength span of 4.61 to 11.83 um. We performed three independent data reduc-
tions using the CASCADe [11], Eureka! [12], and TEATRO packages; see Supplementary Information
(SI). Each method extracted 51 spectroscopic light curves. For all channels, we obtained a minimal
level of correlated noise in the residuals, consistent with normally distributed noise. The 1o error
displayed a minimum of 80 ppm at 7.5 um. The transmission spectra derived from the different
reductions, shown in Figure 1 and tabulated in Extended Data Table 1, are within 30 agreement
and 95% of the points within 207; see SI.

We performed atmospheric retrievals using two independent frameworks, ARCiS [13] and petit-
RADTRANS (pRT) [14], including both our JWST data and previous near-infrared (1.121-1.629 pm)
HST data[4]. Free abundance retrievals were run including the following species: HoO, CO, COa,
CH4, C3H,, SO4, SO, HsS; SiO; HCN, NHgs, and PH3. The remaining atmosphere consisted of Hy
and He. A variety of cloud models were tested, ranging from cloud-free to more complex models,
the latter focusing mostly on silicate clouds (MgSiOs, SiO, and SiO); see SI.

Figure 2 shows the best fit to the data, including main contributions from molecular species
and clouds to the spectrum. The figure presents the results based on the CASCADe package, but
our conclusions are consistent across the three data reductions. Both retrieval codes detect SO, at
~9c0, H30 at ~120, and the presence of high-altitude clouds at ~90, with a ~70 preference for
silicate clouds over more simple cloud setups. We also tentatively detect HoS (~40), NH3 (~2-30),
and CO (~2-30), although the CO detection relies on the first three spectral points and requires
confirmation at shorter wavelengths. CHy is not detected, with an upper limit of its volume mixing
ratio (VMR) being a few times 1076, Table 1 presents the detection significance and VMR for each
species. Due to differences in cloud structure setups, the absolute VMRs are different between the
two retrieval codes. We therefore focus the discussion on the detection significance and relative
abundances.
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The MIRI data of WASP-107b presents the mid-infrared discovery of SO, in an exoplanet
atmosphere. Both the v1 symmetric stretch and the 3 asymmetric stretch vibration bands of SO4
(with fundamental frequency at 8.69 pm and 7.35 pm, respectively [15]) are detected (Figure 1 and
Figure 2). Recently, the (v1 + v3) combination band of SO; was assigned as carrier of a spectral
feature near 4.05 pm detected in the JWST NIRspec spectrum of WASP-39b[6, 16], a hot (~1,200 K)
irradiated Saturn-mass exoplanet. The MIRI detection of SOy in WASP-107b extends the range of
exoplanet temperatures with detected SOy from ~1,200 K down to ~740 K.

The measured VMR of SO3 in WASP-107b (see Table 1) is several orders of magnitude higher
than expected for chemical equilibrium, which predicts HoS to be the dominant sulphur-bearing
molecule for Neptune-like planets [9]. Disequilibrium processes can drive abundances considerably
away from chemical equilibrium, with photochemistry and atmospheric transport being the dom-
inant mechanisms [17]. Notably, the SOy feature observed in WASP-39b has been attributed to
photochemical processes occurring within its atmosphere [10]. Indeed, UV irradiation initiates the
photodissociation of HyO, yielding H and OH radicals. These OH radicals are key for oxidising
sulphur that is liberated from HyS [10]. However, these models[10] predict-that SOy would not be
detectable using JWST MIRI for a planet with an equilibrium temperature of ~740 K. This is in
contrast with our detection of SO5 in the atmosphere of WASP-107b.

To unravel the production paths of SOy in WASP-107b, we computed a grid of disequilibrium
models (see ST). To ensure an accurate consideration of the upper-atmosphere chemistry, we ob-
served — contemporaneously with the JWST observations — the Near-Ultraviolet (NUV) emission
of the host star WASP-107 with Neil Gehrels Swift. Additionally, we reanalysed the 2018 X-ray
emission observed with XMM-Newton (see SI). Figure 3 provides evidence that only models incor-
porating photochemistry in combination with a super-solar metallicity predict a detectable level of
SOy in WASP-107b. Key disparities from prior predictions[10, 17] stem from UV radiation and
gravity. Previous models adopted a gravity of 1,000 cm/s? [10] and 2,140 cm/s? [17], while WASP-
107b’s gravity is ~260 cm/s2. Moreover, the NUV flux is a factor ~200 lower for WASP-107b than
for WASP-39b, and a factor ~100~1,000 lower in the FUV (see SI). A lower gravity, an overall
decreased UV flux, and a low FUV/NUV ratio collectively contribute to the increased formation of
SOs,; see Extended Data Figure 1.

The overarching scenario that unfolds is that the initiating pathways for SO, formation in
WASP-107b are twofold. First, HyO photodissociation in upper layers at pressures <$107° bar
generates atomic H and OH radicals, leading to sequential oxidation of sulphur liberated from HsS.
Second, in the pressure range of ~107° -1 bar, photolysis of various abundant molecules — beyond
just HoO — provides free atoms and radicals, partially redistributed through eddy diffusion. This
initiates a cascade of thermochemical reactions that progressively yield sufficient OH radicals for
SO; oxidation. Given the fact that a large fraction of these reactions are temperature-independent
and barrierless; the equilibrium temperature is not the sole determinant for SO5 formation. As long
as the UV irradiation and FUV/NUYV ratio remain moderate and the gravity is low, these processes
lead to detectable SO5 levels even at the low equilibrium temperature of WASP-107b.

The sensitivity to metallicity can be attributed to the larger abundance of sulphur and OH
radicals at higher metallicities. At a metallicity of 6x solar, the SOy spectral features contribute
partially to the 7.8 um feature and dominate at 210x solar (see Extended Data Figure 2). For
metallicities >6x solar, the gas-phase photochemical models predict a SO, VMR above ~5x10~7
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at pressures between 1077 —10"*bar (see Figure 3). This result is corroborated by the retrieval
outcomes, which show that the spectral contribution of SO, predominantly comes from the region
above the high-altitude cloud layer (situated at pressures of a few times 10~° bar; see Extended Data
Figure 4). This establishes SO as a key diagnostic for the atmospheric metallicity in exoplanet
atmospheres.

At super-solar metallicity, our models also predict a detectable CH, feature (see Extended
Data Figure 2). The confirmation of the HST CH,4 non-detection [4] in the MIRI wavelength
range raises questions regarding the predicted predominance of CHy in the atmosphere[18, 19].
One potential reason for the non-detection of CHy is that it is hidden by the high-altitude cloud
layer. In contrast to SO, CHy is photochemically destroyed at high altitudes, i.e. above the cloud
layer (see Extended Data Figure 3). Another explanation for the non-detection of CHy is the
influence of the strong irradiation experienced by WASP-107b, which can significantly impact the
thermodynamical properties of its atmosphere [20, 21, 22]. WASP-107b is highly inflated, pointing
to a deep atmosphere that has significantly higher temperatures [23, 24, 25, 26] than those predicted
by conventional models. The latter suggest an intrinsic heat flux (o7, with o the Boltzmann
constant and Tiy the intrinsic temperature) with corresponding Tin of 150 K [27]. We computed
chemical models with different intrinsic temperatures ranging from 250600 K to reproduce a hot
deep atmosphere (see Extended Data Figure 3). Our results show that the CH4 molar fraction
in the atmospheric layers probed by our MIRI observations is reduced by more than 3 orders-
of-magnitude when we increase Ti,; from 250 to 600 K. Interestingly, the SOs abundance in the
detectable upper atmosphere is almost unaffected since sulphur species do not quench in deep
regions [9] (see Extended Data Figure 3). Lowering the C/O ratio from solar (=0.55) to 0.10 yields
an additional decrease of the CH4 abundance by a factor ~15 (see Extended Data Figure 3).

The presence of silicate clouds in the atmospheres of strongly irradiated planets has been pre-
dicted for a long time[28]. Although a hint of silicate emission has been claimed for one single
object [29], clear observational evidence has been lacking. Recently, silicate clouds were detected
in a young, self-luminous planet at large separation from its host star [30]. The MIRI data of
WASP-107b present the detection of the 10 um Si-O stretching mode of solid silicate particles. The
retrieval models favour a high-altitude cloud layer composed of small (sub-micron) amorphous sili-
cate particles. At the pressure levels and temperatures where we find the cloud layer, gas phase SiO
can nucleate and condensate efficiently to form small solid state mineral particles[31]. However,
according to the traditional picture on cloud formation, these particles would eventually rain down
to deeper, hotter layers of the atmosphere, depleting the relatively cold upper atmosphere from gas
phase SiO. In the deeper, hotter layers, the particles evaporate, allowing the gas phase material to
mix and serve as building blocks for new nucleation/condensation cycles. Thus, we can conclude
that the presence of silicate clouds at such high altitudes in a relatively cold part of the atmosphere
is another indication of strong mixing from either a hot inner atmosphere (similar to the finding
related to CHy) or potentially from the intensely irradiated hot dayside.



Figure 1: JWST MIRI transmission spectrum of WASP-107b. Comparison of the JWST
MIRI transmission spectra obtained from the three independent reductions considered in this work
(coloured points, with 1-o error bars). The blue dots show the results from the CASCADe code, the
red dots using the Eureka! package and the black dots are from the TEATRO routines. The thick
dashed grey line indicates the band-averaged transit depth from the CASCADe analysis at 20,463 ppm
and the shaded area the 95% confidence interval of 39 ppm. The right y-axis gives the planetary
spectrum in units of atmospheric scale height of the planetary atmosphere, assuming a hydrogen
dominated atmosphere. The spectra have a constant wavelength bin width, corresponding to a
spectral resolution of 50 at 7.5 ym. The two horizontal bars indicate the v; symmetric stretch and
v3 asymmetric stretch vibration bands of SOs.



Figure 2: Transmission spectrum of WASP-107b with key contributions. The (red and
pink) points with 1-o error bars correspond to the measured JWST MIRI CASCAde transit depths of
the spectrophotometric light curves at different wavelengths. The (red and pink) points in the area
indicated by the grey band are from HST. The median spectrum model predicted from ARCiS [13]
retrievals is shown in blue and from petitRADTRANS (pRT) [14] in green (offset by 2,000 ppm for
clarity). The shaded regions of the model spectra correspond to the 1-,2-,3-0 credibility envelopes
predicted by the retrievals. The bottom part of the figure shows the silicate cloud and molecular
contributions for those gases inferred by our analysis of WASP-107b’s spectrum.



Figure 3: Predicted SO; molar fraction. Panel (a): Adopted temperature-pressure (7-P)
profile for WASP-107b following the analytical equation of ref. [32]; see SI. Panel (b): Predicted
SO molar fraction for four values of the metallicity (1, 2, 6, and 10 Zg; in black, green, red, and blue,
respectively) for models with (full line) and without (dotted line) the inclusion of photochemistry.
Predictions are calculated for a model with an intrinsic temperature of 400K, a solar C/O ratio,

and a log; (K, cgs)=10.



Table 1: Outcome of the retrieval analyses. Given are the detection significance and volume
mixing ratios (VMR) of the various components in the ARCiS and petitRADTRANS (pRT) retrieval
analysis.

Significance [o] log;o(VMR)

Component ARCiS pRT ARCiS pRT
H,0 13.2 125 —2.197032 3811938
SOz 88 91 503703 —6.721073%
HsS 47 35  —265'030 —3.88703%
NH;3 2.3 3.4 —5.471“0):23 —6.041050
co 2.8 2.3 241102 4587010
PH3 7(b) 7(”') _629‘_"%3[91 —7601_(1)23
HCN BON——C ,9_261-%:23 79.194:%:%(;
CoHy ) (@) _gogtlr g9+l
SiO _(b) _(a) _6_084:1:90 _9.03t1:47
SO ~®) () _y73gt2T6

Silicate Clouds 7.2 7.1

(@) included in retrieval, but not tested for detection significance because posterior indicates an
upper limit.

() not favoured (Bayes factor < 2).

(©) not included.
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392

Extended Data

Extended Data — Table 1: Measured transit depth of WASP-107b. First and fifth column
list the wavelength, and the other columns the transit depths as obtained with Eureka!, CASCADe
and TEATRO. Each wavelength bin has a full width of 0.15 pm.

Extended Data — Figure 1: Impact of gravity and UV irradiation on predicted SO, molar
fraction. The base model (shown in black in each panel) has an intrinsic temperature of 400K, a
solar C/O ratio, a metallicity of 10x solar, a logyy (K, cgs) = 10, and uses the SED of HD 85512 [34]
— used as a proxy for WASP-107 — as input stellar spectrum (see SI). Panel (a): Temperature-
pressure (T-P) profile for a gravity g of 2.6m/s? (black, purple and brown), 4.3 m/s? (blue), and
10m/s? (orange). Panel (b): Predicted SOy molar fractions for different gravity values with colours
corresponding to panel (a). While the black curve uses the HD 85512 SED as input spectrum, the
purple curve uses the WASP-39 SED instead (see SI), and the brown curve the HD 85512 SED
scaled with a factor 100.

Extended Data — Figure 2: Predicted transit depth for WASP-107b assuming a cloudless
atmosphere. The four panels display for a metallicity of 1, 2, 6, and 10 Zs, the total transit depth
(in black) and the transit depth without relative contributions of SO5 (light blue), HoO (dark blue),
COgy (light green), CH4 (pink) and NHj (orange). Predictions are calculated for a model with an
intrinsic temperature of 400 K, a solar C/O ratio, and a log;,(K,, cgs) = 10.
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Extended Data — Figure 3: Sensitivity of SO, and CH, molar fractions to various input
parameters. Shown are the impact of the intrinsic temperature, C/O ratio and eddy diffusion
coefficient on predicted SO, and CH4 molar fractions. The base model (shown in black in each
panel) has an intrinsic temperature of 400K, a solar C/O ratio, a metallicity of 10x solar, and
a logyg(K,z, cgs) =10. Panel (a): Temperature-pressure (T-P) profile for intrinsic temperatures
of 250, 400, and 600K (light blue, black, and orange, respectively). Panel (b): Predicted SO5
(full line) and CHy (dotted line) molar fractions for different T-P structures (and hence intrinsic
temperatures), with colours corresponding to panel (a). Panel (¢): Predicted SOz and CHy molar
fraction for different C/O ratios. Comparison with predictions for a solar C/O ratio (of 0.55, black
line) for which either the carbon or oxygen atomic abundance has been adapted (indicated by ‘C’
or ‘O’ between parenthesis, respectively). Panel (d): Predicted SO, and CHy molar fraction for
different values of the eddy diffusion coefficient K,,.

Extended Data — Figure 4: Contribution function for the atmosphere as retrieved by ARCiS.
Shown in the contour colours are the relative contributions of various layers in the atmosphere to
the transit spectrum as a function of wavelength. The dark horizontal line in this plot is located
at the geometrically thin cloud layer, dominating the spectrum at all wavelengths. The spectral
variation on top of this baseline predominantly comes from below the cloud layer at the wavelengths
where water features are present, while it is dominated by regions above the cloud layer for the
spectral features of SO5. This is consistent with the pressures where we expect SO5 to be abundant
in the atmosphere from our photochemical modelling (see Figure 3). The molecular contribution
to the spectral variation in the 9.5 —11 um region is significantly fainter than at other wavelengths.
This is the region where the silicate feature is most prominent and thus also the spectral variation
is dominated by the cloud layer.

Extended Data ~ Figure 5: Silicate cloud detection significance. The detection significance,
measured in g, of the silicate cloud model is presented in comparison to both the cloud-free model
(indicated by the blue dashed curve) and the parameterised cloud model (represented by the red
solid line) as a function of the maximum wavelength used in the analysis. Even when limiting the
analysis to wavelengths below 10 um, the silicate cloud remains favoured, at a significance of 5.70,
over the parameterised cloud configuration.
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