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A hybrid flush/synthetic air data sensing filter utilizing Kalman-Schmidt and Rach-Tung-
Striebel smoothers is developed to obtain entry vehicle atmosphere estimates.Thefilter/smoother
blends information from pressure sensors distributed on the heatshield with measurements of
the vehicle aerodynamic forces and moments computed frommass properties and inertial mea-
surement unit data, and prior estimates of the atmosphere. The filter produces estimates of the
atmospheric conditions along the entry trajectory, and systematic error estimates to reconcile
differences between the pressure and aerodynamic data sources. The filter is applied to data
acquired during the Mars Science Laboratory and Mars 2020 entry, descent, and landing at
Gale crater and at Jezero crater, respectively. The results show that the hybrid filter produces
estimates of the freestream flight condition with lower uncertainty than either the flush or
synthetic air data algorithms. The filter accomplishes this result by incorporating additional
data and computing estimates of systematic error parameters in the pressure data and the
aerodynamic model to further reduce the uncertainties.

Nomenclature

a = Acceleration, m/s2

1 = Reference length, m
I = State-parameter covariance
��, �. , �# = Axial, side, and normal force coefficients
�; , �<, �= = Roll, pitch, and yaw moment coefficients
F = Aerodynamic force, N
F'�( = Force due to reaction control system, N
f = Continuous-time process model
M = Partial derivative of 5 with respect to u
6 = Gravitational acceleration, m/s2

N = Partial derivative of h with respect to x
N0 = State-Atmosphere measurement relation matrix
h = Measurement model
I = Inertia, kg-m2

8 = Iteration index
Q = Kalman gain
: = Time index
R = Partial derivative of h with respect to u
M = Aerodynamic moment, N-m
M'�( = Moment due to reaction control system, N
S = Smoothing gain
" = Mach number
< = Mass, kg
V = State covariance
p = Pressure, Pa
?B = Static pressure, Pa
W = Process noise spectral density
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X = Measurement noise covariance
A = Radius, m
( = Reference area, m2

C = Time, s
u = Filter consider parameters
+� = Wind-relative velocity magnitude, m/s
E=, E4, E3 = North, east, and down components of velocity, m/s
F=, F4, F3 = North, east, and down components of wind, m/s
x = Filter state
y = Filter measurements
U = Angle of attack, rad
U) = Total angle of attack, rad
V = Angle of sideslip, rad
ΔC = Time step, s
' = Systematic error states
( = Process noise
Θ = Longitude, rad
\ = Pitch angle, rad
Λ = Declination, rad
, = Aerodynamic database uncertainty factors
. = Navigation state
d = Density, kg/m3

� = State transition matrix, partial derivative of 5 with respect to x
5 = Discrete-time process model
i = Roll angle, rad
k = Yaw angle, rad

 = Covariance of u
8 = Angular velocity, rad/s

I. Introduction
Reconstruction of as-flown atmospheres is an important part of the post-flight data analysis of planetary Entry,

Descent, and Landing (EDL). The reconstruction is of scientific interest for providing in-situ measurements of the
atmoto refine atmospheric modeling and ultimately to inform future missions and potentially improve key metrics such
as landing errors.

Reconstruction of planetary entry trajectories at Earth benefit from satellite observations and weather balloon data,
but there is a sparser set of observations available at other planets. The typical approach for characterizing the as-flown
atmosphere at planets other than Earth assumes that the vehicle aerodynamics are known, and the nominal aerodynamic
force coefficients are used on conjunction with measured accelerations from the on-board Inertial Measurement Unit
(IMU) and navigation state estimates to solve for the freestream atmosphere and atmospheric relative trajectory. A
history and details of the methodology of this approach for entry vehicle atmosphere estimation is given in [1].

The approach described in [1] has the drawback that any errors in the nominal aerodynamic model are injected
directly into the estimates of the freestream atmosphere. Errors in the aerodynamic models, in particular those based on
Computational Fluid Dynamics (CFD) solutions, often arise due to integration of the pressure distribution across areas
on the forebody where the flow physics is not well understood, such as near the shoulder where the forebody interfaces
with the backshell, backshell geometry, flow chemistry, and leeside areas for lifting capsule configurations.

Flush Air Data Sensing (FADS) systems have been developed in which a number of pressure ports are installed
in the vehicle forebody to directly measure the pressure distribution. These ports can be located at areas where there
is confidence in the ability of computational and/or experimental models to predict the pressures based on known
freestream conditions. Thus, errors due to modeling uncertainties can be mitigated. Literature reviews on the application
of the FADS approach for entry vehicle state estimation are described in [2–4]. Real-time FADS data processing has
been demonstrated for aircraft applications with a pilot in the loop in [5], and for sharp-nosed automated hypersonic
aircraft in [6]. Proposed real-time sharp-nosed FADS algorithms have been explored in [7]. To date, FADS applications
to blunt-body entry vehicles have been limited to post-flight evaluation of the trajectory. Simulation studies have
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indicated benefits of the use of FADS in real-time guidance for planetary entry [8]. Navigation system performance
studies with FADS have been presented in [9, 10].

One drawback to FADS is that the system requires additional sensors and other supporting electronics, which
are subject to the possibility of hardware failure. These failures can lead to corrupt air data estimates [11]. One
mitigation approach is to develop a sensor fault detection algorithm to isolate and remove corrupted measurement data
[12–15]. Another mitigation approach is to develop backup systems that can be used in the event of total air data system
failure. Typically these approaches rely on a filter approach leveraging an aerodynamic model of the aircraft to compute
estimates of the atmospheric-relative state. One such approach was termed the Synthetic Air Data System (SADS) [16],
where an aerodynamic model of an aircraft is fused with inertial navigation and global positioning system data in a
Kalman filter to estimate the freestream conditions. The approach was developed as a back-up for a traditional aircraft
air data sensing system, or as a potential low-cost primary system for small robotic aerial vehicles. A frequency domain
approach was explored in [17] and application to fighter aircraft air data estimation using a neural network approach
was explored in [18].

The SADS approach was extended to the problem of entry vehicle atmospheric state estimation in [19]. A Kalman-
Schmidt filter framework was implemented to process data from aerodynamic force and moment pseudo-measurements
to compute estimates of the atmospheric state along the trajectory. These force and moment pseudo-measurements
were computed based on vehicle mass properties and the linear acceleration and angular rate outputs from an on-board
IMU. The proposed method was tested against measured flight data from the Mars Science Laboratory (MSL) Entry,
Descent, and Landing Instrumentation (MEDLI) sensors, which included an array of seven pressure ports installed in
the heatshield configured as a FADS system [2]. Results from the SADS filter were in reasonable agreement to those
computed from the FADS measurements, though with higher uncertainties than the FADS results. The SADS approach
was also applied to data from the Mars Phoenix and InSight atmospheric entries [20], which were not instrumented
with FADS systems. The SADS results were compared to those of the classical aerodatabase (ADB) reconstruction [1].
The results indicated that the SADS method can produce estimates of the atmosphere with lower uncertainties than the
classical ADB method, and furthermore can provide estimates the atmospheric winds.

Model-aided air data estimation approaches have also been investigated in [21–25]. These methods blend synthetic
air data with various air data sensors such as pitot-static tubes or air flow vanes to produce estimates of the atmospheric-
relative trajectory, in a variety of filter frameworks. The model-aided approaches provide redundancy for air data sensors
in a single unified filter architecture by providing aircraft model data to fill in any information that is not provided by the
flow sensors. The use of pitot-static tubes and air flow vanes are, however, not suitable for high speed applications such
as atmospheric entry due to the aeroheating environments.

This paper describes the development of a hybrid approach in which both FADS pressure measurements and an
aerodynamic model are combined in a single filter to estimate the freestream atmospheric-relative state of an entry
vehicle. In this approach, the FADS measurements and SADS pseudo-measurements are processed jointly in the filter
framework. This approach offers redundancy similar to the model-aided estimation approaches mentioned above and is
suitable for entry vehicle or other high speed flight applications.

The remainder of this paper is organized as follows. Section II described the formulation of the proposed hybrid
filter, which include measurements models and the FADS, SADS, and prior atmosphere estimate. A simplified process
model based on the hydrostatic equilibrium equation and the ideal gas law is implemented for propagating state estimates
through time. The proposed filter is applied to data from MSL and Mars 2020 EDL in Section III including as overview
of the available data sources and results of the filter implementation. Concluding remarks are given in Section IV.

II. Hybrid Filter Formulation
This section describes the formulation of the proposed hybrid FADS/SADS atmosphere estimation filter. The

approach combines estimates of the navigation state of the vehicle with FADS pressure measurements, SADS force
and moment pseudo-measurements, and prior estimates of the atmosphere to produce a combined estimate of the
atmospheric state along the vehicle flight path.

In the following sections, the filter state is defined as

x = [d, ?B , F=, F4, F3 , ']ᵀ (1)

where ' are systematic error parameters to be estimated as filter states. These parameters are discussed in the following
section.
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The navigation state of the vehicle is defined as

. = [A,Θ,Λ, E=, E4, E3 , i, \, k]ᵀ (2)

Parameters consisting of the combination navigation state and aerodynamic parameters that are not estimated as filter
states (denoted as ,) are modeled as consider parameters, given by u = [., ,]ᵀ. These parameters have uncertainties
described as zero mean with covariance 
 that is considered in the filter weighting and uncertainty estimates.

A. Measurement Model

Fig. 1 Aerodynamic Coordinate Frame Definition.

Themeasurements to be processed in the hybrid filter formulation include FADS pressuremeasurements, aerodynamic
force and moment pseudo-measurements, and prior predictions of the atmosphere along the trajectory.

1. Flush Air Data Sensing
FADS pressure models are typically based on analytical potential [26] or Newtonian flow theories [27], and can

include correction factors based on experimental [28] and/or numerical [29] data. Alternately, the model can be based
on tabulated CFD solutions [2–4, 30]. In any case, the pressure model can be written as a function of the atmosphere
and model parameters as p = p (x, u). Components of the state ' can include systematic error parameters such as
multiplicative (scale factor) and additive (bias) errors to be estimated in the filter.

2. Synthetic Air Data Sensing
The aerodynamic force and moment acting on the vehicle can be computed from the IMU measurements of

acceleration, a (after transformation from the IMU location to the vehicle center of mass), and angular rate, 8. The
force and moment predictive model is based on an aerodynamic database that relates the force and moment coefficients
(shown in Fig. 1 ) to the atmosphere and trajectory state. The force and moment equations are
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F (x, u) = <a − F'�( =
d+2

�
(

2


−�� (U, V, ", ' , ,)
�. (U, V, ", ' , ,)
−�/ (U, V, ", ' , ,)

 (3)

M (x, u) = I ¤8 + 8 × I8 −M'�( =
d+2

�
(1

2


�; (U, V, ", ' , ,)
�< (U, V, ", ' , ,)
�= (U, V, ", ' , ,)

 (4)

Note that the Mach Number, " (x, u), and flow angles, U (x, u) and V (x, u), are functions of the atmospheric state
and the navigation state. The aerodynamic flow angles are shown in Fig. 1.

The components of the state corresponding to ' consist of systematic error parameters such as multiplicative and
additive constants that are used to adjust the force and moment coefficients to fit the measurement data. The parameters
_ are other aerodynamic terms that are uncertain but are not estimated in the filter.

3. Atmosphere
Prior estimates of atmosphere conditions along the trajectory can be tabulated as a function of the position and

time. These data provide an initial reference for the atmospheric conditions. The relation between the measurement and
the state is N0x where N0 =

[
O 0

]
, where O here is a 5x5 identity matrix, and 0 is a zero matrix with 5 rows and

length(') columns.

4. Combined Measurement Model
Assembling the pressure, aerodynamics, and atmosphere measurements, the resulting model is

y = h (x, u) =


p (x, u)
F (x, u)
M (x, u)
N0x


(5)

Partial derivatives of h with respect to x and u are defined as N = (mh/mx) and R = (mh/mu).

B. Process Model
Following [3, 19, 20], a reasonable simplified process model relating to the change in atmosphere along the trajectory

can be formulated based on the hydrostatic equation and assuming a random walk for the rate of change of temperature
and winds. Similarly the systematic error states can be modeled as a random walk process. The process model takes the
form

¤x = f (x, u) + ( (6)

where

f (x, u) = 6 (A,Θ,Λ) dE3


d/?B

1
0

 (7)

where 0 here is a zero row vector of length 3+length(' ). The continuous process model can be written in discrete form as

x:+1 = 5 (x: , u: ) = x: + f (x: , u: ) ΔC (8)

Partial derivatives of 5 with respect to x and u are defined as � = (m5/mx) and M = (m5/mu).
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C. Estimator Formulation
The hybrid estimation approach is based on an Iterative Extended Kalman-Schmidt Filter (IEKSF) [31] that runs

forward through the dataset, and a Rauch-Tung-Streibel (RTS) smoother [32] that runs backwards through the data
after the forward pass. Estimates of the state are denoted by x̂: |<, meaning the estimate at time : conditioned on data
through time <. The case of : > < is known as prediction, : = < is filtering, and : < < is smoothing. Similarly, the
state error covariance is V̂: |<.

1. Iterative Extended Kalman-Schmidt Filter
Beginning with the filter initial conditions at time : = 0, the filter prediction step is given by

x̂: |:−1 = 5
(
x̂:−1 |:−1, u:−1

)
(9)

V̂: |:−1 = �:−1 V̂:−1 |:−1�
ᵀ
:−1 +�:−1I:−1 |:−1M

ᵀ
:−1 + M:−1I:−1 |:−1�

ᵀ
:−1 + M:−1
:−1M

ᵀ
:−1 + W:−1 (10)

Î: |:−1 = �:−1Î:−1 |:−1 + M:−1
:−1 (11)

where Î is the state-parameter covariance.
Measurements at time : are processed according to the iterative update

Q8: = V̂: |:−1N
8ᵀ
:

[
N8: V̂: |:−1N

8ᵀ
:
+ N8: Î: |:−1R

8ᵀ
:
+ R8: Î: |:−1N

8ᵀ
:
+ X:

]−1
(12)

x̂8+1
: |: = x̂: |:−1 + Q8:

[
y: − h

(
x̂8
: |: , u:

)
− N8:

(
x̂: |:−1 − x̂8: |:

)]
(13)

where the superscript 8 indicates the iteration index, and Q8
:
is the Kalman gain. After convergence, the state and

state-parameter covariance are updated as

V̂: |: = (O − Q:N: ) V̂: |:−1 (O − Q:N: )ᵀ + Q:X:Qᵀ: (14)

Î: |: = Î: |:−1 − Q:
(
N: Î: |:−1 + R:
:

)
(15)

2. Rauch-Tung-Streibel Smoother
After proessing all = measurements by the forward filter, the information content contained in x̂= |=, V̂= |=, and Î= |=

can be mapped backward in time to the beginning of the measurements at time index : = 1 using the RTS smoother.
The smoother initializes at time : + 1 = = and maps the information content back to : = 1 using the relations [32]

S: = V̂: |:�: V̂
−1
:+1 |: (16)

x̂: |= = x̂: |: + S:

(
x̂:+1 |= − x̂:+1 |:

)
(17)

V̂: |= = V̂: |: + S:

(
V̂:+1 |= − V̂:+1 |:

)
Sᵀ
:

(18)

III. Application to the Mars 2020 Entry Atmosphere Reconstruction
The proposed hybrid flush/synthetic air data sensing filter was applied to flight data from the Mars 2020 entry,

descent, and landing [33] that occurred on February 18th, 2021. The Mars 2020 capsule was instrumented with sensors
to measure the aerodynamic and aerothermodynamic performance of the aeroshell during entry. This sensor system
was known as the Mars 2020 Entry, Descent, and Landing Instrumentation (MEDLI2). The sensors included an
array of seven pressure ports on the heatshield, arranged as a FADS system for post-flight trajectory and atmosphere
reconstruction [4]. The hybrid filter approach was also applied to MSL’s MEDLI dataset acquired during Mars EDL
on August 6th, 2012. The main results and conclusions drawn from the MEDLI application match with those from
the MEDLI2 application, therefore just the MEDLI2 results are shown here for brevity. The remainder of this section
provides a summary of the data sources and results of the proposed hybrid filter approach described in this paper.

A. Measurement Data
This section summarizes the data sources from the Mars 2020 entry at Mars that are available for use in the hybrid

atmosphere estimation filter. The data sources include the FADS pressure data, aerodynamic forces and moments
derived from IMU and mass properties, and an initial atmosphere profile.
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1. Pressure Data
The layout of the seven heatshield pressure ports is shown in Fig. 2(a). Note that the Mars 2020 flew a guided, lifting

entry, so the stagnation area (in the region of MPH01 and MPH02) is located off the centerline in the pitch plane. Of the
seven pressures, one stagnation transducer (MPH01) had a full scale range of 35 kPa to measure pressure across the
entire flight range. The other six transducers had a full scale range of 7 kPa. These transducers saturated during the
hypersonic flight phase, desaturating prior to supersonic flight to provide high resolution data in that flight regime.

(a) Mars 2020 pressure port layout. (b) Mars 2020 pressure measurements

Fig. 2 Mars 2020 heatshield pressure ports and measurement data.

The measured pressures during entry are shown in Fig. 2(b). The pressures were sampled at a rate of 8 Hz. Note
that the C = 0 time corresponds to the on-board guidance start time, which occurred approximately 540 s prior to entry
interface. Additional details on the measurement system can be found in [4].

2. Aerodynamic Force and Moment
The on-board IMU sampled linear accelerations and angular rates at a rate of 200 Hz during entry. Raw and filtered

IMU data are shown in [4]. The filtered accelerations and rates were used with the mass properties to compute the
aerodynamic force and moment acting on the vehicle for use as the synthetic pseudo-measurements. Force and moment
due to Reaction Control System (RCS) firings were accounted for based on the commanded RCS firing history and the
known jet force and direction.

Examples of the aerodynamics are shown in Fig. 3. This figure shows the pitching moment and axial force constructed
from the IMU data and mass properties. The other force and moment axes were constructed for pseudo-measurement
processing but are not shown here.

3. Aerodynamic Database
The capsule aerodynamic database provided force and momement coefficients in the coordinate frame shown in Fig. 1.

The database consisted of CFD solutions of thin-layer Navier-Stokes equations evaluated along a reference trajectory
and tabulated as a function of Mach number, velocity, and total angle of attack. Uncertainties in the aerodynamic
database were modeled as a set of additive and multiplicative error terms that can be used to perturb the outputs. These
uncertainty inputs were normalized such that a value of zero corresponds to the nominal condition and a value of ±1
corresponds to a ±3f value dispersion. The values of the additive and multiplicate uncertainties are shown in Table 1.
Additional details on the aerodynamic database can be found in [34]. Note that the database used in this study includes
an updated base pressure model derived from the MEDLI2 backshell pressure transducer data [35] to correct the axial
force coefficient in the supersonic flight regime.
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(a) Mars 2020 aerodynamic force. (b) Mars 2020 aerodynamic moment

Fig. 3 Mars 2020 aerodynamics.

Table 1 Aerodynamic uncertainties, 3f [34].

�� �# , �. �< �= �;

Hypersonic ±3% ±0.01, ±10% ±0.006, ±20% ±0.003, ±20% ±0.000326
Supersonic ±10% ±0.01, ±10% ±0.005, ±20% ±0.005, ±20% ±0.0004

4. Prior Atmosphere Model
Initial atmosphere profiles were constructed as tables evaluated as a function of position along a nominal reference

trajectory. These tables provided an initial guess of the atmospheric conditions along the trajectory, which were refined
by the filter processing of the pressure and aerodynamic measurements. These data were tabulated from Mars Climate
Sounder measurements of the atmosphere near the Mars 2020 landing site [36, 37]. Example data showing the density
and pressure are in Fig. 4(a) and the corresponding winds are shown in Fig. 4(b).

(a) Pressure, density. (b) Winds.

Fig. 4 Atmosphere.
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B. Filter Results
The results of the application of the hybrid filter approach applied to the Mars 2020 entry data are shown in this

section. The hybrid filter is compared to results of the FADS processing from [4] and SADS processing (similar to
[19] but for the Mars 2020 application). The filters were initiated at a time of approximately 580 s from the on-board
guidance start, or roughly 40 s after entry interface, where there was sufficient signal in the recorded pressures and
computed aerodynamics to enable reasonable filter estimates of the atmosphere. The reconstructions were terminated at
the time of parachute deployment.

The filter systematic error states included 14 aerodynamic parameters, 7 pressure bias states, and 7 pressure scale
factor states. A list of the aerodynamic parameter states can be found in Table 2. These states were modeled in the
filter as random constants with an initial 3f uncertainty of 1. The pressure bias states were modeled as random walk
processes with an initial 3f uncertainty of 1 Pa, assuming an in-flight zero was applied to the data prior to entry
interface. The random walk process noise was set to produce a 3f bias uncertainty of 25 Pa after 200 s. The pressure
scale factor states were also modeled as random walk processes with an initial 3f uncertainty of 0.1% and the random
walk process noise was set to create a growth of 0.01% after 200 s. These process noise settings are consistent with
thermal calibration and pressure profile testing that shows evidence of hysteresis in the form of a zero drift with a small
scale factor thermal sensitivity [38, 39].

(a) Density. (b) Density uncertainty.

Fig. 5 Reconstructed density.

Some example results are shown in the following figures. In each case, the FADS result is shown with magenta
curves, the SADS results are shown in the black curves, and the new hybrid results are shown in red curves. Fig. 5(a)
shows the reconstructed density time history. The estimated values for the three filters follow a similar time history. The
density uncertainties shown in Fig. 5(b) shows that the FADS result produces an estimate with smaller uncertainty than
the SADS method, which is consistent with the findings from [19]. The hybrid filter result produces an estimate with
slightly smaller uncertainty than the FADS solution.

One component of wind, the north wind, is shown in Fig. 6(a) with uncertainties shown in Fig. 6(b). The SADS
solution essentially tracks the prior wind profile from Fig. 4(b). Note that the step changes in the wind estimates of the
FADS and hybrid filters at the time of approximately 670 s corresponds to the de-saturation of the supersonic range
pressure transducers, as shown in Fig. 2(b). Prior to this time, the filters were only processing the single stagnation point
pressure measurement and so had reduced sensitivity to winds. In this range the FADS and hybrid filters also tracked
the prior wind profile. The SADS method shows slightly lower uncertainties than the FADS filter in this range since
the latter was processing a single pressure measurement. The hybrid filter approach has a slightly lower uncertainty
than both methods, as expected. After desaturation, the FADS and hybrid filters are more sensitive to the winds since
all seven pressure measurements are available for processing and so the estimates are adjusted with higher frequency
content, with a corresponding reduction in uncertainties. Following similar trends to the density estimate, the FADS
solution after desaturation produces estimates with lower uncertainties than SADS and the hybrid filter further reduces
the FADS uncertainties by incorporating additional data and computing estimates of systematic errors. The other
components of winds follow a similar trend and so are not shown here.
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(a) North wind. (b) North wind uncertainty.

Fig. 6 Reconstructed north wind.

(a) Angle of attack. (b) Angle of attack uncertainty.

Fig. 7 Reconstructed angle of attack.

Results similar to the wind reconstruction are reflected in the angle of attack estimates and uncertainties, as shown
in Figs. 7(a) and (b), respectively. The angle of attack histories are in agreement between the three results, and the
uncertainties are similar in the hypersonic phase of flight where only one FADS pressure port is active. After desaturation
of the supersonic pressure transducers, the FADS solution produces smaller uncertainties than the SADS result. The
hybrid filter result produces a further reduction in uncertainty by compensating for systematic errors in the pressure
measurements. The sideslip angle estimates follow a similar trend and so are not shown here.

Estimates of dynamic pressure and uncertainties are shown in Fig. 8(a) and (b). Here, the SADS result shows a
consistently higher uncertainty than the FADS solution, which is consistent with the findings from [19]. The single
stagnation pressure measurement in the hypersonic phase provides sufficient data to reconstruct the dynamic pressure
with lower uncertainty than the SADS result. The hybrid filter is able to further improve on the FADS solution by both
considering the aerodynamic measurements and by compensating for systematic errors. The same trends can be seen in
the reconstructed Mach number and uncertainties shown in Fig. 9(a) and (b), respectively.
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(a) Dynamic pressure. (b) Dynamic pressure uncertainty.

Fig. 8 Reconstructed dynamic pressure.

(a) Mach number. (b) Mach number uncertainty.

Fig. 9 Reconstructed Mach number.

As shown previously, the new hybrid filter is able to produce estimates of the atmospheric-relative trajectory with
smaller uncertainties than either the FADS or SADS filters alone. In part, the reduction in uncertainty is accomplished
by including systematic error parameters as filter states and thus providing corrections to the measurements. The
estimates of the pressure bias states are shown in Fig. 10(a). Recall that these states were modeled as random walk
processes that were allowed to vary over the trajectory. The bias uncertainties are shown in Fig. 10(b). Here, the curve
labeled FADS corresponds to the uncompensated bias states from the FADS filter solution. The uncompensated bias
states reach an uncertainty of approximately 25 Pa at the time of parachute deployment. The hybrid filter is able to
reduce the bias uncertainties to under 10 Pa over the entire trajectory.

Results for the scale factor error estimates are shown in Fig. 11(a) with associated uncertainties shown in Fig. 11(b).
The curve labeled FADS in Fig. 11(b) corresponds to the uncompensated scale factor uncertainties. The hybrid filter is
able to reduce the scale factor uncertainties along the trajectory by solving for these parameters as filter states. Note that
the scale factor uncertainties appear close to constant values because these were modeled as random walk processes with
a variance smaller relative to the bias errors, which was informed by ground testing of the pressure transducers [38, 39].
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(a) Transducer bias. (b) Transducer bias uncertainty.

Fig. 10 Reconstructed pressure measurement bias.

(a) Transducer scale factor. (b) Transducer scale factor uncertainty

Fig. 11 Reconstructed pressure measurement scale factor.

The estimated aerodynamic parameters are listed in Table 2. Recall that these parameters are nondimensionalized
inputs such that the mean value is zero and the ±3f error corresponds to ±1. The estimated values from the filter are
shown along with the corresponding 3f uncertainties based on the state covariance estimate. The filter was able to
converge on a reasonable set of aerodynamic parameters that are within the preflight 3f uncertainty bounds. Note that
the results in Table 2 include those for both the MSL and the Mars 2020 application. In each case, the uncertainties of
the derived uncertainty parameters is similar between the two vehicles. However, not all of the estimated parameters
are in agreement even though the two vehicles had the same nominal aeroshell shape. In particular, the axial force
coefficient derived from the MSL data was higher than nominal while that derived from Mars 2020 was below nominal.
These findings are consistent with the aerodynamic reconstruction based on FADS solutions [2, 4, 34]. Reconciling
differences between the reconstructed aerodynamic parameters of the two entry capsules is for future work.
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Table 2 Aerodynamic parameter estimates.

MSL Mars 2020
Parameter Estimate 3f Estimate 3f
Hypersonic �� Multiplier 0.5151 0.0655 -0.7193 0.0764
Supersonic �� Multiplier 0.3321 0.0610 -0.1964 0.0665
Hypersonic �# Adder -0.3641 0.4991 -0.3245 0.5067
Hypersonic �# Multiplier 0.2786 0.8713 0.1778 0.8745
Supersonic �# Adder -0.2633 0.6098 -0.1504 0.6334
Supersonic �# Multiplier 0.1406 0.9075 0.0833 0.9121
Hypersonic �. Adder 0.0413 0.1372 -0.0853 0.1813
Supersonic �. Adder 0.1312 0.4940 0.0399 0.5505
Hypersonic �< Adder -0.0097 0.0246 0.0891 0.0243
Hypersonic �< Multiplier 0.2421 0.4550 -0.2439 0.7026
Supersonic �< Adder -0.0258 0.1059 0.1554 0.0995
Supersonic �< Multiplier -0.3848 0.8418 -0.1416 0.8958
Hypersonic �= Adder -0.0206 0.0293 0.0637 0.0335
Supersonic �= Adder -0.1223 0.0797 -0.1169 0.0747

IV. Conclusions
A hybrid estimator for simultaneous processing flush air data and synthetic air data sensing measurements for entry

vehicle atmosphere estimation is developed. The approach uses a Kalman-Schmidt Filter and Rauch-Tung-Streibel
Smoother for blending flush air data pressure measurements with an aerodynamic model of the entry capsule to
produce estimates of the freestream atmospheric conditions along the trajectory. The hybrid approach combining both
sets of measurement data enables the estimation of systematic error parameters in the form of bias and scale factors.
Sample results indicate that the hybrid filter produces estimates of the atmospheric-relative trajectory that have lower
uncertainties. The hybrid filter approach is expected to be useful for future atmospheric entry trajectory reconstruction
problems where flush air data measurements are available.
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