
Ground-Based Vision Tracker for Advanced Air Mobility and
Urban Air Mobility

Evan Kawamura ∗1, Keerthana Kannan †1, Thomas Lombaerts ‡1, Vahram Stepanyan§1, Chester Dolph ¶2, and Corey
Ippolito �1

1NASA Ames Research Center, Moffett Field, Mountain View, CA 94035
2NASA Langley Research Center, 1 Nasa Dr, Hampton, VA 23666

Advanced Air Mobility (AAM) and Urban Air Mobility (UAM) require aircraft surveillance
and monitoring for safety and security. Persistent tracking of flying objects provides Air
Traffic Control (ATC) and Air Traffic Management (ATM) continuous coverage and knowledge
of the National Airspace System (NAS). Future AAM and UAM operations will have more
aircraft than commercial aircraft in the NAS, coupled with the dense AAM/UAM operations
in urban environments, so employing the existing ATC/ATM architectures poses considerable
challenges. A first step in creating a similar ATC/ATM architecture for AAM/UAM will require
ground-based and airborne sensors to provide monitoring. This paper proposes a vision-based
tracking method with static cameras by utilizing image subtraction and blob detection, which
avoids adding additional electromagnetic interferences in the environment with sensors such as
radar. The Ground-Based Vision Tracker (GBVT) outputs the detected objects’ azimuth and
elevation angles from Unmanned Aerial System (UAS) flight tests. Future and ongoing work
includes sending the detected objects’ azimuth and elevation angles as inputs for an extended
Kalman filter (EKF) to estimate the position and velocity of the detected object.

I. Introduction

Advanced Air Mobility (AAM) and Urban Air Mobility (UAM) require aircraft surveillance and monitoring for
safety and security purposes. Since there will be numerous more AAM/UAM aircraft than commercial airplanes

flying in the airspace, it will be challenging to scale conventional Air Traffic Control (ATC) and Air Traffic Management
(ATM) procedures and protocol for AAM/UAM concepts of operation. One way to reduce scaling complexities and
increase efficiency is to implement distributed sensors in the environment for monitoring the airspace. Then, the
distributed sensors can provide aircraft tracking information to the modified ATC/ATM architectures by leveraging
automatic and passive tracking capabilities. Therefore, these modified ATC/ATM architectures will have an efficient and
scalable solution for monitoring the airspace with increased awareness, path planning, and contingency management.
The distributed sensing project uses radar and cameras in urban environments for several applications such as monitoring,
surveillance, tracking, and estimation [1].

There are radar-based tracking methods for UAS, which could extend to AAM tracking. Poitevin et al. describe
several challenges for detecting UAS by radar due to their speed and size. Consequently, radar-based detection methods
need to quickly scan large volumes and eliminate non-UAS targets (false alarms) [2]. One study shows radar-based
techniques for detecting UAS: millimeter wave (mmWave), ultra-wideband, 2.4 GHz, MIMO, and non-line-of-sight
(“seeing around or beyond the corner”) [3]. Accardo et al. conducted UAS flight tests with radar for obstacle detection
and tracking for noncooperative UAS collision avoidance [4]. Another study shows how a radar tracking system in urban
environments finds multiple non-UAS targets such as birds, people, and cars with filtered micro-Doppler signatures to
distinguish UAS targets from non-UAS targets [5]. Samaras et al. utilize a deep neural network to distinguish UAS
targets from non-UAS targets after obtaining radar measurements of various targets [6]. Mohajerin et al. demonstrate

∗Computer/GNC Engineer, Intelligent Systems Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA.
†Software Engineer, KBR Wyle Services, Intelligent Systems Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035,

USA.
‡Aerospace Research Engineer, KBR Wyle Services, Intelligent Systems Division, NASA Ames Research Center, Moffett Field, Mountain View,

CA 94035, USA.
§Aerospace Research Engineer, KBR Wyle Services, Intelligent Systems Division, NASA Ames Research Center, Moffett Field, Mountain View,

CA 94035, USA.
¶Aerospace Engineer, Aeronautics Systems Engineering Branch, NASA Langley Research Center, 1 Nasa Dr, Hampton, VA 23666.
�Aerospace Scientist, Intelligent Systems Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA

1

how associating different radar tracks of objects is crucial in crowded airspace, especially identifying UAS tracks from
other types of tracks such as airplanes and birds, and simulation results demonstrate 99% accuracy for correctly labeling
the Unmanned Aerial Vehicle (UAV) tracks [7].

There are several studies and projects about vision-based tracking. Fu et al. show how a real-time, adaptive
visual algorithm with a Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism, and
Multiple-Resolution (MR) representation strategy solves online learning and tracking arbitrary aircraft and intruders
in the air with experimental results [8]. Sattigeri et al. combined a vision-based target tracker with a neural network
and a Kalman filter to create an adaptive target state estimator [9]. Sivaraman and Trivedi conducted a survey of
on-road vision-based vehicle detectors to show various monocular and stereo vision-based trackers [10]. Toyama and
Hager utilize an Incremental Focus of Attention (IFA) hierarchical architecture, which yields robust, adaptive, and
real-time vision-based tracking [11]. Joo et al. combined onboard inertial navigation system (INS) telemetry data and a
ground-based monocular camera running optical flow into an Extended Kalman Filter (EKF) to generate robust and
accurate state estimation of the tracked UAV [12]. Bharati et al. utilize an adaptive object detection method, which
yields fast and robust object tracking for airplanes [13]. Ganti and Kim created a tracking system to identify and detect
UAS with image processing and mechanical tracking, which feeds into countermeasures such as keeping malicious or
harmful UAS away from restricted and residential areas [14]. Iswanto and Li designed a visual tracking algorithm that
combines mean-shift and a particle-Kalman filter such that the particle filter executes only when occlusions occur or the
mean-shift tracking result is not accurate [15]. The Edge Company has a system for detecting birds and drones with
optical artificial intelligence to identify, track, count, and classify the birds and drones in real-time, which provides
insight for monitoring the airspace around airports, vertiports, and spaceports [16].

This paper focuses on vision-based tracking with ground-based distributed sensors in the environment. The proposed
research in this paper demonstrates a Ground-Based Vision Tracker (GBVT) for distributed and calibrated cameras
in an urban environment to simulate future AAM/UAM operations for monitoring the airspace. Post-processing a
ground-based camera’s video of a UAV flight includes image subtraction to capture a moving UAV across the camera’s
field of view. The processed GBVT results feed into a Ground-Based Object Tracker (GBOT) EKF (see Ref. [17, 18] for
more details) for estimating the tracked object’s position and velocity. Figure 1 shows the high-level block diagram of
how the GBVT takes the distributed camera images and videos, processes them, outputs the tracked object information,
and feeds the data into the GBOT EKF (blue box). The block titled, “Tracks of Objects,” has the pixel coordinates,
azimuth/elevation angles, and object radius for each tracked object. The origin for the pixel coordinates for each tracked
object is at the top left corner of the image, and section III shows the computations for converting the target’s pixel
coordinates into the azimuth and elevation angles in the sensor’s frame.

Fig. 1 High-Level Block Diagram: GBVT and GBOT EKF

This paper’s organization is as follows. Section II discusses the proposed solution for the GBVT, and section III
shows the computations and drawings for the sensor azimuth and elevation angles. Section IV provides the details about
the UAS flight tests to test the GBVT, and section V describes the results for those tests. Finally, section VI ends with
concluding remarks, future work, and key takeaways.

II. Ground-Based Vision Tracker
There are two different implementations for the GBVT: one uses the MATLAB Computer Vision Toolbox, while

the other uses OpenCV in C++. However, both implementations utilize image subtraction and blob detection. There
are similar steps in the procedure but with differences due to programming language and data storage. Overall, the
MATLAB implementation of the GBVT served as a prototype for preliminary testing, and then re-implemented in C++
using OpenCV with minor adjustments. Therefore, most of the details provided in this paper will focus on the OpenCV

2

implementation.

A. MATLAB
Figure 2 shows the MATLAB image subtraction flowchart. The GBVT in MATLAB uses image subtraction to find

the objects that have moved since the last frame. The main steps are in Figure2 and also summarized here:
1) Obtain two frames (consecutive or skip)
2) Apply grayscale to both frames, i.e., convert RGB to grayscale
3) Apply image subtraction between the two frames
4) Increase the intensity (brightness) of the subtracted image to see the objects more easily
5) Apply threshold for the subtracted frames to remove objects with lower intensity
6) Convert the subtracted image to binary because blob detection needs binary images
7) Apply blob detection on the binary image to find the largest blobs (in this particular case, look for the five largest)
8) For each of the five detected blobs

1) Determine the azimuth and elevation angles
2) Determine the bounding box locations (pixel coordinates)
3) Update the centroid log/table with the new information: frame number, time, pixel coordinates, azimuth

and elevation angles, bounding box parameters: width, height, and top left pixel coordinates
The main two computer vision methods are: 1) image subtraction and 2) blob detection. The image subtraction is a

straightforward method that takes the absolute difference between the pixels in the two images:

Δ𝐼𝑚𝑔 = |𝐼𝑚𝑔𝑖 − 𝐼𝑚𝑔𝑖−1 | (1)

such that 𝐼𝑚𝑔 denotes an image and 𝑖 is the index for the ith image. MATLAB’s regionprops function looks at connected
regions and returns stats about those regions, which includes the area and centroid point. ∗

Fig. 2 MATLAB Image Subtraction Flowchart

∗https://www.mathworks.com/help/images/ref/regionprops.html

3

B. OpenCV: C++
Figure 3 shows how the C++ version of the GBVT (CGBVT) works and when it is in the calibration phase or tracking

phase based on the current frame number. Future flight tests will need real-time implementation of the GBVT. The
default and fixed frame rate options apply for post-processing. The variable frame rate involves real-time processing by
skipping to the next available frame after processing the current frame, but it is currently a work-in-progress. Overall, it
has three different timing modes:

1) The default rate processes all available frames.
2) The fixed frame rate has a constant frame difference between iterations.
3) After processing the current frame, the variable frame rate jumps to the next available frame.

Fig. 3 Image Tracker Flowchart: High-Level

Both implementations of the GBVT have calibration and tracking phases, and Figure 4 shows the image processing
pipeline for the CGBVT. The calibration phase contains only image/background subtraction and does not include blob
detection, i.e., stops at the fourth box in Figure 4. Conversely, the tracking phase includes both image/background
subtraction and blob detection, so it follows all the steps in Figure 4.

The CGBVT has a user interface for users to draw ROIs and masks to reduce the visual coverage for tracking. Users
can also pause tracking to redraw ROIs and masks to crop out undesired features and move the ROI to follow the desired
object, which yields better tracking results. Alternatively, users can draw a large ROI with masks to cover the coverage
area for the entire flight without pausing and redrawing. Future work can include automating the ROI and masks to
increase scalability to deploy the GBVT at several locations. Figure 5 shows a flowchart for the main steps in the image
tracker after feature detection and contains the steps for determining the detected object’s ID number.

Fig. 4 Image Processing Pipeline

Overall, the main steps for the CGBVT are:
1) Obtain two frames (consecutive or skip)
2) Apply grayscale to both frames, i.e., convert RGB to grayscale

4

Fig. 5 CGBVT: Tracking Phase Flowchart - pClosestDet is a pointer to the closest detection, tempDetection
and tempDetection2 are instances of the Detection class, ListOfDetection has a list of all the previous detections,
frameThreshold is set to 540 (“forget” detections after 540 frames pass)

5

3) Apply OpenCV’s background subtraction (MOG2) † between the two frames to learn the background model,
which helps remove static objects

4) Apply blob detection on the binary image ‡

5) Run the tracking phase (see Figure 5)
1) Compute the distance between the current and previous detections, i.e., pairwise comparison for all

current to previous blobs
2) Assign the same ID number for close detections that overlap
3) Assign a new ID number for current detections that do not overlap with previous detections

III. Distributed Cameras and Radar: Azimuth and Elevation Angles
This section follows Ref. [19] for computing the azimuth and elevation angles.
Let East North Up (ENU) be the World Coordinate System (WCS) and defined as an inertial frame fixed on the

ground with an origin, 𝑂𝑊𝐶𝑆 . Let the sensor frame, 𝑠, be defined as an x-fwd, y-right, z-down coordinate system with
its origin 𝑂𝑠 at the center of projection for the sensor. The x-axis points in the direction of the sensor, y-axis points to
the right, and the z-axis points down from the sensor’s point of view to complete a right-handed system.

Figure 17a shows the unit vectors, 𝒊𝑠 , 𝒋𝑠 , 𝒌̂𝑠 in the sensor frame in the x, y, z directions, respectively. Let 𝑃 denote a
target such that 𝑽𝑠𝑝 be the vector from 𝑂𝑠 to the target point 𝑃. Let 𝒓𝑥𝑦 be the projection of 𝑽𝑠𝑝 to the X-Y sensor
axis plane. Let 𝜓 denote the azimuth angle and defined as the angle between 𝒊𝑠 and 𝒓𝑥𝑦 , defined as positive right-hand
rotation around 𝒌̂𝑠 . Then, let 𝜃 denote the elevation angle defined as the angle between 𝒓𝑥𝑦 and 𝑽𝑠𝑝 , positive right from
𝒓𝑥𝑦 to 𝑽𝑠𝑝 (i.e., positive rotation around the cross-product of 𝒓𝑥𝑦 × 𝑽𝑠𝑝).

Finally, projecting the target point onto the X-Z plane provides an elevation angle 𝛼𝑥𝑧 in the XZ plane, as shown in
Figure 17b, which shows the mapping from 𝑂𝑤𝑐𝑠 to 𝑂𝑠 . Figure 6 shows the target’s azimuth and elevation angles (𝜓, 𝜃)
in 3D space and the X-Z plane.

(a) Point in 3D Space: Azimuth and Elevation (b) Projected Point onto the X-Z Plane: Azimuth and Elevation

Fig. 6 Azimuth and Elevation Angles (resembles figure 5 of Ref. [19])

Using the total pixel width, 𝑊 , and horizontal field of view in radians, 𝐹𝑂𝑉ℎ, provides the focal length, 𝑓 , as shown
in Eqn. (2).

𝑓 =
𝑊

2 · tan
(
𝐹𝑂𝑉ℎ

2

) (constant) (2)

†https://docs.opencv.org/4.x/d7/d7b/classcv_1_1BackgroundSubtractorMOG2.html
‡https://docs.opencv.org/4.x/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887

6

Fig. 7 Azimuth and Elevation Angles to Pixel Coordinates: 1) given the horizontal field of view and image width
in pixels, compute the focal length (Eqn. (2)), 2) compute the horizontal pixel offset, 𝑑𝑥 (Eqn. (3)), 3) compute the
azimuth and elevation angles (Eqn. (4))

The next equations describe the computations for converting the target pixels into azimuth and elevation angles (see
Figures 7-8). Equation (3) shows the difference between the target’s pixels and the midpoint of the total pixel width and
height, 𝑊&𝐻, respectively.

𝑑𝑥 = 𝑝𝑥 −𝑊/2 , 𝑑𝑦 = 𝑝𝑦 − 𝐻/2 (3)

Finally, compute the azimuth and elevation angles using the focal length from Eqn. (2) and the computed target pixel
offsets from Eqn. (3). The minus sign in the equation for 𝜃 in Eqn. (4) exists since 𝑝𝑦 is positive in the downward
direction, i.e., the pixel coordinates’ origin is at the image’s top left corner. Figures 7-8b show drawings for computing
the azimuth and elevation angles from the focal length, pixel coordinates, camera resolution, and fields of view.

𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛

(
𝑑𝑥

𝑓

)
, 𝜃 = −𝑎𝑟𝑐𝑡𝑎𝑛

(
𝑑𝑦√︁

𝑓 2 + 𝑑𝑥2

)
(4)

IV. Flight Tests
This section describes the UAS flight tests for testing the GBVT. The first subsection describes a preliminary test at

NASA Ames with one camera. The second subsection discusses the distributed sensing flight test with four ground
cameras.

A. Preliminary Test with One Camera
For this preliminary test with one camera, the UAS flies from left to right in the camera’s field of view. Figure 9a

shows the first frame for the preliminary UAS flight test at Ames, and Figure 9b shows the 7100th frame as the UAS
flew to the right and towards the end of the field of view. Table 1 summarizes the camera parameters.

B. Distributed Sensing Test with Four Cameras
Figure 10 shows a generic architecture diagram for the four image trackers for the Ames Build 1 scenario. Each

image tracker will run at some preset (1-30 Hz) frequency and receive color images for real-time implementation. Then,

7

(a) Pixel Coordinates to Elevation Angle with Camera: eleva-
tion angle (𝜃)

(b) Pixel Coordinates to Elevation Angles: 1) given 𝑑𝑥, 𝑑𝑦, and
𝑓 (blue, red, and black lines, respectively) from Eqns. (2) and
(3), compute

√︁
𝑓 2 + 𝑑𝑥2 (green line); 2) use 𝑑𝑦 and

√︁
𝑓 2 + 𝑑𝑥2

to solve for 𝜃 (elevation angle) from Eqn. (4)

Fig. 8 Pixel Coordinates to Azimuth and Elevation Angles

(a) Ames Preliminary UAS Flight Test: Frame 1 (b) Ames Preliminary UAS Flight Test: Frame 7100

Fig. 9 Preliminary UAS Flight Test

Table 1 Camera Specs for Preliminary Flight Test

Spec Value
Horizontal Field of View (◦) 110

Vertical Field of View (◦) 73.6
Aspect Ratio 1.91
pixel width 1274
pixel height 674

FPS 60

8

each image tracker will compute the azimuth and elevation angles for detected and tracked objects within their fields of
view, which feeds into the data association problem of keeping track of many objects [20]. Finally, the GBOT EKFs
presented in Ref. [17, 18, 21] receive multiple cameras’ associated objects’ azimuth and elevation angles.

Figure 11 shows the sensor locations (yellow circles), and their locations are given in Table 2 [22, 23]. Figures 12
and 13 show the UAV path (blue line) during the flight tests at NASA Ames Research Center. See Ref. [18] for more
details about flight test designs for ground-based distributed sensing.

Fig. 10 Generic Distributed Sensing Architecture: frame rates vary between 30 or 60, depending on the camera
settings - see Tables 1 & 3

The OpenCV C++ image tracker also utilizes image subtraction § and blob detection ¶. Preliminary tests have a
calibration phase that takes the first 150 frames to learn the background model and uses the OpenCV MOG2 Background
Subtractor. For rendering and tracking, none of the detections, matching, or plotting occur until after the calibration
phase. Two drawbacks for the current implementation of the OpenCV image tracker are: 1) the image tracker does
not track the UAV for the frames during the calibration phase, and 2) it must find the UAV in the first frame after
the calibration phase, i.e., frame 151 in the preliminary tests. The number of frames during the calibration phase is
arbitrary, and future work may consider a more robust and flexible image tracker framework to avoid needing to detect
the UAV in the first frame immediately after the calibration phase. Figure 14 shows a diagram of the distance between
two detections and the overlap radius. For simplicity, the tracker currently detects the UAV and only considers future
detections that are within an overlap distance of:

overlap = 𝑑 − 2 · overlap radius (5)

with “2” as a scaling factor and “overlap radius” is a tuning parameter, which was set to seven pixels.

Table 2 NASA Ames Build 1 Scenario Sensor Locations and Angles

Location Latitude (◦) Longitude (◦) Alt. (m) Heading (◦) Elev. (◦) Range (m)
1 37.429540 -122.067712 1.54 66.53 9.68 600
2 37.425155 -122.059832 1.54 246.54 29.29 600
3 37.423476 -122.061238 1.57 303.14 34.0 600
4 37.426551 -122.067970 1.52 44.78 26.31 600
O 37.426861 -122.066015 0 N/A N/A N/A

Different GoPro HERO10 Black camera lenses and modes will be selected and optimized to have the UAV within at
least two camera fields of view throughout most of the UAV’s flight path (see Figure 11), and the estimated horizontal
field of view per camera is 40◦. �. The horizontal field of view for each GoPro HERO10 Black camera was set to 110◦.
The camera at ground node 2 had different settings than those at ground nodes 1, 3, & 4 since it was recording in a

§https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html
¶https://learnopencv.com/blob-detection-using-opencv-python-c/
�https://community.gopro.com/s/article/HERO10-Black-Digital-Lenses-FOV-Informations?language=en_US

9

Fig. 11 Ames Research Center Flight Test - Build 1: sensor stations (yellow) & origin, O (black dot)

37°25'30"N

37°25'35"N

37°25'40"N

37°25'45"N

L
a

ti
tu

d
e

122°04'10"W 122°04'W 122°03'50"W 122°03'40"W 122°03'30"W

Longitude

UAV Path: Latitude & Longitude

County of Santa Clara, Bureau of Land Management, Esri, HERE, Garmin, INCREMENT P, NGA, USGS
 200 ft

 50 m

UAV Path

Fig. 12 UAV Path: Latitude & Longitude (thick blue line)

10

Fig. 13 UAV Path: Google Earth

Fig. 14 Overlap Radius Diagram: “1” and “2” are blob centroid points in consecutive frames, 𝑑 is the distance
between the two centroid points, and overlap radius is a tuning parameter, which was set to seven pixels

11

different mode, which yields different resolution and frames per second values. Table 3 shows the difference in the
camera specs between ground nodes 1, 3, & 4 vs. 2.

Table 3 Distributed Sensing Camera Specs for UAS Flight Test

Spec GN1,3,4 GN2
Aspect Ratio 4:3 16:9
pixel width 4000 3840
pixel height 3000 2160

FPS 60 30

V. Results
This section describes the outcomes from the post-processed GBVT experiments. The first subsection presents the

findings of the preliminary test conducted with a singular camera, where the UAV traverses from the leftmost to the
rightmost extent within the camera’s field of view. The second subsection shows the outcomes from the UAV flight test
with a ground-based distributed sensing network of four distinct cameras.

A. Preliminary Test with One Camera
A preliminary distributed sensing test involved using a ground-based, fixed-angle camera to acquire flight test data to

evaluate the GBVT. Figure 15 illustrates the intermediate steps of image subtraction, depicting the original and masked
images after applying the subtraction process. Figure 15a displays the current image, while Figure 15b exhibits the
subtracted image following the steps outlined in Figure 2. Setting the intensity factor to 5 and the threshold pixel value
to 240 ensures the elimination of all pixels below this threshold. Preliminary tests of the GBVT in MATLAB involve

(a) Original Image (b) Mask after Image Subtraction

Fig. 15 Results of Image Subtraction: Frame 2480

tracking five objects using image subtraction and blob detection (bwareafilt) ∗∗. Objects (centroids) 2-4, exhibiting
relatively low and flat elevation angles between approximately 40 and 55 seconds, are likely to be cars, corresponding to
the observed vehicles in the video (see Figure 16). The fifth detection displays random outliers, so Figure 16 does not
show it for brevity. The average runtime per iteration is 0.2675 seconds, showcasing near real-time capabilities. With
the video recorded at 60 frames per second, the frame subtraction step involves 55 frames, allowing sufficient time
and difference for detecting UAV motion. It is possible to reduce frame subtraction to 30 frames (0.5 seconds for a
60 fps camera); however, this leads to multiple false positives. Figure 17 presents the azimuth and elevation angles
of the tracked UAV for the OpenCV C++ implementation. The OpenCV-tracked UAV azimuth and elevation angles
closely resemble the MATLAB implementation from Figure 16 but lack the initial false positives. The CGBVT exhibits
smoother results and avoids missing detections, as observed in the gaps in the azimuth and elevation angles for Centroid 1

∗∗https://www.mathworks.com/help/images/ref/bwareafilt.html

12

Centroid 1: Azimuth and Elevation Angles

0 50 100 150

Time (s)

-50

0

50

A
z
im

u
th

 A
n
g
le

 (
d
e
g
)

20 40 60 80 100 120 140

Time (s)

-7

-6

-5

-4

E
le

v
a
ti
o
n
 A

n
g
le

 (
d
e
g
)

(a) Object 1 (UAV)

Centroid 2: Azimuth and Elevation Angles

0 20 40 60 80 100 120

Time (s)

-50

0

50

A
z
im

u
th

 A
n
g
le

 (
d
e
g
)

0 20 40 60 80 100 120

Time (s)

-15

-10

-5

0

E
le

v
a
ti
o
n
 A

n
g
le

 (
d
e
g
)

(b) Object 2 (car)

Centroid 3: Azimuth and Elevation Angles

0 20 40 60 80 100 120

Time (s)

-50

0

50

A
z
im

u
th

 A
n
g
le

 (
d
e
g
)

0 20 40 60 80 100 120

Time (s)

-20

-10

0

10

20

E
le

v
a
ti
o
n
 A

n
g
le

 (
d
e
g
)

(c) Object 3 (car)

Centroid 4: Azimuth and Elevation Angles

0 10 20 30 40 50 60

Time (s)

-60

-40

-20

0

20

A
z
im

u
th

 A
n
g
le

 (
d
e
g
)

0 10 20 30 40 50 60

Time (s)

-15

-10

-5

0

E
le

v
a
ti
o
n
 A

n
g
le

 (
d
e
g
)

(d) Object 4 (car)

Fig. 16 Azimuth and Elevation Angles per Detection: MATLAB Image Tracker for Single-Camera Case -
centroid 1 is the UAV, and the others are cars that appear/hide behind trees and buildings

13

in Figure 16a. OpenCV’s background subtraction function notably facilitates learning the background model, enhancing
tracking performance by removing static objects. In contrast, the MATLAB implementation lacks background learning,
resulting in less consistent tracking, mainly when the UAV appears smaller towards the end. The subsequent step for
GBVT involves its execution with multiple cameras (videos), leveraging the OpenCV implementation. Key takeaways

0 50 100 150

time (seconds)

-60

-40

-20

0

20

40

60

a
z
im

u
th

 a
n

g
le

 (
°

)

Azimuth Angle vs. Time

(a) Azimuth Angle

0 50 100 150

time (seconds)

-7

-6.5

-6

-5.5

e
le

v
a

ti
o

n
 a

n
g

le
 (

°
)

Elevation Angle vs. Time

(b) Elevation Angle

Fig. 17 Tracked UAV Azimuth and Elevation Angles: CGBVT

from this preliminary GBVT test include:
1) Image subtraction effectively removes several static objects, and its combination with blob detection enables

multi-object tracking.
2) Objects exhibiting slight movements appearing in the subtracted image emphasize the importance of applying a

threshold to eliminate less intense pixels (slight movements like jitter, shaking, etc.) or objects.
3) The incorporation of a region of interest (ROI) allows the GBVT to focus on desired targets by narrowing the

search area.
4) The use of masks effectively removes undesired regions where targets are unlikely to be found, such as grass,

buildings, and trees.
5) Implementing a purely computer vision tracking method demonstrates promising results, suggesting that

incorporating Kalman filters may be unnecessary. However, including estimated object kinematics may enhance
tracking performance and object classification, particularly considering the varying flight patterns between birds
and quadcopter UAVs, where birds typically exhibit faster and more sporadic movements.

B. Distributed Sensing Test with Four Cameras
This subsection shows the distributed sensing results for the four cameras from Figure 11. The first subsubsection

shows the GBVT image processing pipeline, and the second subsubsection describes the tracking performance metrics
and definitions.

1. GBVT Image Processing Pipeline
Figure 18 shows a screenshot that details the image tracker’s image processing pipeline, following the sequential

operations outlined in Fig. 4. The calibration phase lasts for 150 frames for ground nodes 1-3. The CGBVT for ground
node 2 uses only 10 frames in its calibration phase because CGBVT tests the features for pausing the video and redrawing
the ROI, which provides quick learning for the background model. This figure clarifies the procedural sequence of the
GBVT pipeline. The upper-leftmost panel displays the unaltered frame, with black masks excluding undesirable regions
and a rectangular delineation designating the region of interest (ROI). The adjacent right panel highlights tracking
efficacy within the ROI, indicating active tracking with a conspicuous blue bounding box encapsulating the UAV. The
subsequent upper-right panel exhibits the resulting image after background subtraction, eliminating pixels corresponding
to static objects and leaving only the UAV (depicted in white). The lower-leftmost panel incorporates a red circle
around the latest detection (keypoint) and an encompassing bounding box. The final panel displays multiple white dots,

14

representing previous detections of the object, with the red dot designating the presently tracked object, including its
bounding box. Finally, the command prompt in the lower-right corner provides information about the current frame,
including the completion percentage computed based on the current frame number and the remaining frames.

Fig. 18 Image Tracker Screenshot: Image Processing Pipeline for Ground Node 1 (6/26/23 flight test) - the black
rectangle and lines remove the street light and powerlines to help remove false positives

Figure 19 shows a screenshot of the GBVT image processing pipeline and tests the GBVT’s tracking capabilities by
pausing the video and redrawing the ROI to reduce the number of false positives and negatives. The detection precision
and recall metrics shown later will provide more details about how this pause-and-redraw-ROI tracking strategy performs
better than the standard method with one ROI that encompasses the entire UAV trajectory.

Figure 20 shows a screenshot of the GBVT image processing pipeline as the UAV approaches the end of its trajectory
and heads towards the landing zone. The camera at GN3 captures the last portion of the flight with a few birds and
some masks to remove undesired areas such as grass and trees. As the UAV approached the landing zone, it appeared
larger and had several blobs instead of only one. Figure 21 illustrates the representation of the UAV as a claw, with two
motors resembling outer fingers and an inner finger located near the UAV’s center of mass. Given the smaller size of the
motors, their blob radii are diminished compared to the center blob (middle finger of the claw). Future investigations
could explore methodologies such as selecting the largest blob or centroid while disregarding smaller neighboring blobs.
Alternatively, dilating the detected blobs to merge them before determining the centroid of the blob represents another
avenue for consideration.

Figure 22 shows a screenshot of the GBVT’s image processing pipeline at ground node 4, with many birds in the
scenery occasionally overlapping with the UAV. The GBVT has certain limitations when it comes to overlapping objects.
An occurrence of note is the potential for labeling issues when tracked objects traverse the same path, specifically when
intersecting. For example, in Figure 23, the image tracker assigns label 106 to two distinct objects: a bird (left) and a
UAV (right). This labeling discrepancy arises as both entities traverse or intersect at a point along the path identified as
106.

Potential avenues for future research encompass investigating and mitigating the overlap problem. Introducing
artificial intelligence or machine learning methodologies may offer a solution by classifying objects based on size, speed,
and direction/heading. Alternative approaches may assess the probability of object A retaining its identity compared to
a newly detected object.

Another notable phenomenon pertains to the labeling of objects that overlap with one another. As depicted in Figure
24, the image tracker adjusts the UAV’s identifier from 106 to 219 due to a path overlapping with a bird (identified by
219). The current image tracker methodology adheres exclusively to computer vision and image processing techniques.
However, future investigations may contemplate incorporating a Kalman filter to predict the tracked target’s next position

15

Fig. 19 Image Tracker Screenshot: Image Processing Pipeline for Ground Node 2 (6/26/23 flight test) - testing
the GBVT’s ROI and tracking capabilities by pausing and redrawing the ROI to follow the UAV throughout its
trajectory, which eliminates false positives and negatives; future work can include a function to automatically
redraw ROIs when the object is nearing the end of the ROI

Fig. 20 Image Tracker Screenshot: Image Processing Pipeline for Ground Node 3 (6/26/23 flight test) - the UAV
(319) heads towards the landing zone at ground node 3 (orange mat in the bottom left); for clarity, the black box
in the top row’s middle window is the same mask in the first window in the top left

16

Fig. 21 Image Tracker: “Claw Phenomenon” for Ground Node 3’s Camera - tracking subcomponents of the
target as distinct objects

Fig. 22 Image Tracker Screenshot: Image Processing Pipeline for Ground Node 4 (6/26/23 flight test) - several
birds confuse the GBVT, making it difficult to detect the UAV (226) and process the pixel coordinates and azimuth
& elevation angles, especially during overlaps or “collisions”

17

Fig. 23 Image Tracker: Same Label (106) for Two Objects - Label 106 enhances clarity, depicting a bird (left)
and UAV (right); IDs are not unique for overlapping objects

based on the current state and kinematics. Implementing this type of Kalman filter could estimate the state of a detected
object in subsequent iterations, thereby preventing the assignment of identical identifiers to overlapping objects.

(a) UAV labeled with ID#: 106 (b) UAV labeled with ID#: 219

Fig. 24 Image Tracker Label Change During Overlapping Paths at Ground Node 4

2. Detector Precision and Recall
Reference [24] offers comprehensive performance metrics and values concerning the detector’s precision and recall.

The definitions and performance metrics employed by the GBVT align with those provided in the reference above. True
positives (TP) denote the number of drone detections (centroids) located within 100 pixels of the ground truth, false
positives (FP) signify the number of detections (centroids) corresponding to clouds, birds, aircraft, and other objects
within a 100-pixel proximity to the ground truth, and false negatives (FN) represent the instances of missed drone
detections. Notably, one pixel corresponds to an angular resolution of 0.05 degrees, resulting in a 100-pixel radius

18

equivalent to 5 degrees. The detector precision (DP) and detector recall (DR) are defined as follows:

𝐷𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝐷𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)

Each video encapsulates up to 8 minutes and 54 seconds of footage. Ground nodes 1 and 4’s videos capture the UAV
throughout one video, while ground nodes 2 and 3’s videos span two segments. Table 4 enumerates the detection
precision and recall values for ground node 1, demonstrating notable accuracy. Ground node 1 exhibits high precision
values, primarily due to false positives (birds) scarcity. However, the occurrence of false negatives, i.e., missed
detections, is attributed to two primary factors: 1) the presence of masks over powerlines and a streetlight (refer to
Figure 25) and 2) the UAV appears very small when it is far away from the camera. Ground node 2 exhibits a slight

Table 4 Detector Precision and Recall for Ground Node 1’s Camera

ID
True Positives

(TP)
False Positives

(FP)
False Negatives

(FN)
Detection Precision

(DP)
Detetion Recall

(DR)

83 11674 0 8 100% 99.93%
91 921 34 11 96.44% 98.82%
97 1243 224 93 84.73% 93.04%
139 1504 40 419 97.41% 78.21%
165 4898 86 1580 98.27% 75.61%

(a) Ground Node 1: ID 83 (b) Ground Node 1: ID 97

Fig. 25 Ground Node 1: ROI and Masks - Mask placement increases the number of false negatives, i.e., missed
detections

camera shift at the commencement of the initial video, resulting in false positives, false negatives, and various other
detections within the scenery, such as powerlines, trees, and grass. Post-processing and cleaning of the raw data
contribute to an increased tracking duration for the UAV. Several false negatives persist, as indicated in Table 5. After
the camera stabilizes, most detection precision and recall values exceed 90%. ID 16, however, demonstrates a lower
detection precision value at 71.13% due to birds flying within 100 pixels of the UAV. The GBVT’s methodology of
pausing the video and redrawing the ROI for tracking a small search area yields accurate results. Future work may
contemplate implementing a dynamic ROI or bounding box that dynamically follows the tracked target to enhance
tracking performance regarding detection precision and recall. Table 6 provides the detection precision and recall values
for ground node 3’s camera, capturing the UAV’s final trajectory and landing segment. The initial stages depict the UAV
as diminutive, rendering detection challenging and inconsistent. Consequently, the UAV’s ID (319) in the first video
assumes a substantial value. Furthermore, a multitude of false negatives leads to a diminished DR value. As the UAV
approaches the landing zone, it appears larger, enabling the tracker to detect the UAV’s arms, motors, or propellers.
However, the GBVT treats these components as separate detections, culminating in more false positives, even though

19

Table 5 Detector Precision and Recall for Ground Node 2’s Camera (V1 = 1st video & V2 = 2nd video, subscript
is the ID number)

ID
True Positives

(TP)
False Positives

(FP)
False Negatives

(FN)
Detection Precision

(DP)
Detetion Recall

(DR)

𝑉10 339 563 368 37.58% 47.95%
𝑉14 2898 274 1159 91.36% 71.43%
𝑉116 101 41 3 71.13% 97.12%
𝑉20 3266 132 132 96.12% 96.12%
𝑉258 924 65 22 93.43% 97.67%
𝑉274 783 5 9 99.37% 98.86%
𝑉294 965 23 30 97.67% 96.98%

they do not correspond to birds, powerlines, or other aircraft. Fortunately, as the UAV nears the landing zone, the arms,
motors, or propeller detections deviate farther from the UAV’s center, surpassing the 100-pixel radius specified in the
false positives definition. Consequently, the count of false positives for detection precision lacks these detections. Table

Table 6 Detector Precision and Recall for Ground Node 3’s Camera (V1 = 1st video & V2 = 2nd video, subscript
is the ID number)

ID
True Positives

(TP)
False Positives

(FP)
False Negatives

(FN)
Detection Precision

(DP)
Detetion Recall

(DR)

𝑉1319 6590 221 7091 96.76% 48.17%
𝑉20 4121 1234 461 76.96% 89.94%

7 outlines the detection precision and recall values for ground node 4’s camera. Regrettably, numerous false negatives
ensue due to the UAV’s diminutive size, rendering it a smaller blob than the birds. Ground node 4’s camera, hosting the
most birds and overlapping objects among all cameras, encounters heightened complexity. Consequently, it features
an extensive array of ID numbers. Noteworthy segments where the GBVT achieves commendable precision for the
UAV with percentages exceeding 80% occur at IDs 106, 305, and 393. Despite the prevalence of numerous birds flying
near the UAV and overlapping its path, resulting in diminished detection precision and recall, there are accurate recall
values with percentages higher than 80% at IDs: 219 and 226. A dynamic ROI or bounding box can enhance tracking
performance, as shown in Table 5.

Table 7 Detector Precision and Recall for Ground Node 4’s Camera

ID
True Positives

(TP)
False Positives

(FP)
False Negatives

(FN)
Detection Precision

(DP)
Detetion Recall

(DR)

106 4283 632 1577 87.14% 73.09%
219 1715 647 5 72.61% 99.71%
226 2948 1373 577 68.22% 83.63%
305 722 44 1277 94.26% 36.12%
315 172 61 2532 73.82% 6.36%
393 274 35 1421 88.67% 16.17%
444 1426 707 695 66.85% 67.23%

20

VI. Conclusion
The UAV flight test videos present auspicious outcomes in the context of ground-based distributed sensing within

the airspace, particularly in the tracking and monitoring of AAM/UAM aircraft, especially in scenarios such as corridor
surveillance. Prospective AAM/UAM operations necessitate the integration of ground-based and airborne sensors to
effectively monitor the airspace.

Under the assumption of precise camera calibration, future work may involve the incorporation of an undistortion
step within the pre-processing pipeline. This augmentation serves to enhance the system’s robustness, thereby refining
the accuracy of azimuth and elevation angles pertaining to the target before transmission to the EKF embedded within the
distributed sensor system. Other future endeavors involve distinguishing different objects during overlapping segments,
clustering nearby blobs together to remove claw effects in the UAV and its motors/propellers, and implementing a
dynamic ROI that moves with the target. The ultimate objective of these enhancements is to bolster the precision of
estimations regarding the target’s states.

Subsequent phases of experimentation involving UAS flight tests, coupled with the real-time implementation of the
GBVT, constitute essential strides toward the preliminary development of an AAM/UAM distributed sensing architecture.
This architecture aims to mirror characteristics akin to those observed in ATC/ATM systems.

Acknowledgments
The authors would like to thank the Transformative Tools and Technologies (TTT) Project under the NASA

Aeronautics Research Mission Directorate (ARMD) for funding this research. The authors would also like to thank Loc
Tran (NASA Langley Research Center) for his insight and expertise in image processing and computer vision.

References
[1] Ippolito, C. A., Hashemi, K., Kawamura, E., Gorospe, G., Holforty, W., Kannan, K., Stepanyan, V., Lombaerts, T., Brown, N.,

Jaffe, A., et al., “Concepts for Distributed Sensing and Collaborative Airspace Autonomy in Advanced Urban Air Mobility,”
AIAA SciTech 2023 Forum, 2023, p. 20.

[2] Poitevin, P., Pelletier, M., and Lamontagne, P., “Challenges in detecting UAS with radar,” 2017 International Carnahan
Conference on Security Technology (ICCST), IEEE, 2017, pp. 1–6.

[3] Güvenç, I., Ozdemir, O., Yapici, Y., Mehrpouyan, H., and Matolak, D., “Detection, localization, and tracking of unauthorized
UAS and jammers,” 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), IEEE, 2017, pp. 1–10.

[4] Accardo, D., Fasano, G., Forlenza, L., Moccia, A., and Rispoli, A., “Flight test of a radar-based tracking system for UAS sense
and avoid,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, 2013, pp. 1139–1160.

[5] Martinez, M., “UAS detection, classification, and tracking in urban terrain,” 2019 IEEE Radar Conference (RadarConf), IEEE,
2019, pp. 1–6.

[6] Samaras, S., Magoulianitis, V., Dimou, A., Zarpalas, D., and Daras, P., “UAV classification with deep learning using surveillance
radar data,” International Conference on Computer Vision Systems, Springer, 2019, pp. 744–753.

[7] Mohajerin, N., Histon, J., Dizaji, R., and Waslander, S. L., “Feature extraction and radar track classification for detecting UAVs
in civillian airspace,” 2014 IEEE Radar Conference, IEEE, 2014, pp. 0674–0679.

[8] Fu, C., Carrio, A., Olivares-Mendez, M. A., Suarez-Fernandez, R., and Campoy, P., “Robust real-time vision-based aircraft
tracking from unmanned aerial vehicles,” 2014 ieee international conference on robotics and automation (ICRA), IEEE, 2014,
pp. 5441–5446. https://doi.org/10.1109/ICRA.2014.6907659.

[9] Sattigeri, R., Johnson, E., Calise, A., and Ha, J., “Vision-based target tracking with adaptive target state estimator,” AIAA
Guidance, Navigation and Control Conference and Exhibit, 2007, p. 6828. https://doi.org/10.2514/6.2007-6828.

[10] Sivaraman, S., and Trivedi, M. M., “Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking,
and behavior analysis,” IEEE transactions on intelligent transportation systems, Vol. 14, No. 4, 2013, pp. 1773–1795.
https://doi.org/10.1109/TITS.2013.2266661.

[11] Toyama, K., and Hager, G. D., “Incremental focus of attention for robust vision-based tracking,” International Journal of
Computer Vision, Vol. 35, 1999, pp. 45–63. https://doi.org/10.1023/A:1008159011682.

21

https://doi.org/10.1109/ICRA.2014.6907659
https://doi.org/10.2514/6.2007-6828
https://doi.org/10.1109/TITS.2013.2266661
https://doi.org/10.1023/A:1008159011682

[12] Joo, S., Ippolito, C., Al-Ali, K., and Yeh, Y.-H., “Vision aided inertial navigation with measurement delay for fixed-wing
unmanned aerial vehicle landing,” 2008 IEEE aerospace conference, IEEE, 2008, pp. 1–9. https://doi.org/10.1109/AERO.2008.
4526557.

[13] Bharati, S. P., Nandi, S., Wu, Y., Sui, Y., and Wang, G., “Fast and robust object tracking with adaptive detection,”
2016 IEEE 28th international conference on tools with artificial intelligence (ICTAI), IEEE, 2016, pp. 706–713. https:
//doi.org/10.1109/ICTAI.2016.0112.

[14] Ganti, S. R., and Kim, Y., “Implementation of detection and tracking mechanism for small UAS,” 2016 International Conference
on Unmanned Aircraft Systems (ICUAS), IEEE, 2016, pp. 1254–1260.

[15] Iswanto, I. A., and Li, B., “Visual object tracking based on mean-shift and particle-Kalman filter,” Procedia computer science,
Vol. 116, 2017, pp. 587–595. https://doi.org/10.1016/j.procs.2017.10.010.

[16] The Edge Company, “BCMS Ventur Bird Drone Detection System,” Mare Nostrum Communicazione, 2021. URL https:
//www.theedgecompany.net/bcms-ventur-bird-drone-detection-system/.

[17] Lombaerts, T., Kawamura, E., Kannan, C., Keerthanaand Dolph, Stepanyan, V., Gorospe, G., and Ippolito, C. A., “Development
and Field Test Results of Distributed Ground Sensor Fusion Based Object Tracking,” AIAA SciTech 2024 Forum, 2024.

[18] Stepanyan, V., Ippolito, C., Kannan, K., Kawamura, E., Lombaerts, T., Holforty, W., and Dolph, C., “Flight Test Design and
Implementation for Airspace Independent Surveillance through a Distributed Ground Based Sensor Network,” AIAA SciTech
2024 Forum, 2024.

[19] Kawamura, E., Dolph, C., Kannan, K., Lombaerts, T., and Ippolito, C. A., “Simulated Vision-based Approach and Landing
System Advanced Air Mobility,” AIAA SciTech 2023 Forum, AIAA-2023-2195, 2023. https://doi.org/10.2514/6.2023-2195.

[20] Russell, S. J., and Norvig, P., Artificial Intelligence A Modern Approach, 3rd ed., Pearson Education, Inc., 2010.

[21] Lombaerts, T., Kannan, K., Kawamura, E., Dolph, C., Stepanyan, V., George, G., and Ippolito, C., “Distributed Ground
Sensor Fusion Based Object Tracking for Autonomous Advanced Air Mobility Operations,” AIAA SciTech 2023 Forum,
AIAA-2023-0896, 2023. https://doi.org/10.2514/6.2023-0896.

[22] Kannan, K., Baculi, J., Lombaerts, T., Kawamura, E., Gorospe, G., Holforty, W., Ippolito, C., Stepanyan, V., Dolph, C., and
Brown, N., “A Simulation Architecture for Air Traffic Over Urban Environments Supporting Autonomy Research in Advanced
Air Mobility,” AIAA SciTech 2023 Forum, AIAA-2023-0895, 2023. https://doi.org/10.2514/6.2023-0895.

[23] Stepanyan, V., Kannan, K., Kawamura, E., Lombaerts, T., and Ippolito, C., “Target Tracking with Distributed Sensing and
Optimal Data Migration,” AIAA SciTech 2023 Forum, AIAA-2023-2194, 2023. https://doi.org/10.2514/6.2023-2194.

[24] Dolph, C. V., Minwalla, C., Glaab, L. J., Logan, M. J., Danette Allen, B., and Iftekharuddin, K. M., “Detection and Tracking
of Aircraft from Small Unmanned Aerial Systems,” Journal of Aerospace Information Systems, Vol. 18, No. 11, 2021, pp.
838–851. https://doi.org/10.2514/1.I010911.

22

https://doi.org/10.1109/AERO.2008.4526557
https://doi.org/10.1109/AERO.2008.4526557
https://doi.org/10.1109/ICTAI.2016.0112
https://doi.org/10.1109/ICTAI.2016.0112
https://doi.org/10.1016/j.procs.2017.10.010
https://www.theedgecompany.net/bcms-ventur-bird-drone-detection-system/
https://www.theedgecompany.net/bcms-ventur-bird-drone-detection-system/
https://doi.org/10.2514/6.2023-2195
https://doi.org/10.2514/6.2023-0896
https://doi.org/10.2514/6.2023-0895
https://doi.org/10.2514/6.2023-2194
https://doi.org/10.2514/1.I010911

	Introduction
	Ground-Based Vision Tracker
	MATLAB
	OpenCV: C++

	Distributed Cameras and Radar: Azimuth and Elevation Angles
	Flight Tests
	Preliminary Test with One Camera
	Distributed Sensing Test with Four Cameras

	Results
	Preliminary Test with One Camera
	Distributed Sensing Test with Four Cameras
	GBVT Image Processing Pipeline
	Detector Precision and Recall

	Conclusion

