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Lessons Learned
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Lesson 1:   Forget that you think you know.

Lesson 2:   See it for yourself.

Lesson 3:   Understand limits.
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Lesson 1: Forget that you think you know.



Economical 3rd-Order Methods
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Common interest: Economical 3rd-order methods with a single flux per face/edge, not requiring 
2nd derivatives at all, towards automated CFD with fully adaptive tetrahedral grids.

Exploring Space-Time Hyperbolic NS Improving Unstructured-Grid Methods

T
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2nd/3rd-Order Edge-Based (EB) Discrtetizations
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Edge-Based Schemes : A single flux per edge

2nd-order EB

3rd-order EB

1
Vj ∑

k∈{kj}

ϕjk(uL, uR) |njk | = s(xj)

uL = uj +
1
2

gj ⋅ Δrjk , uR = uk −
1
2

gk ⋅ Δrjk , Δrjk = xk − xj
j

k

3rd-order accurate (Katz&Sankaran2011, Diskin&Thomas2012) with 
- Linear solution/flux reconstruction with quadratic LSQ gradients.

- Accuracy-preserving source quadrature Nishikawa&Liu JCP2017.

for arbitrary triangular/tetrahedral grids.

-> 2nd derivatives not needed.

-> perfect for adaptive grids.

uL
uR

https://www.researchgate.net/publication/316722881_Accuracy-Preserving_Source_Term_Quadrature_for_Third-Order_Edge-Based_Discretization
https://www.researchgate.net/publication/220206983_Mesh_Quality_Effects_on_the_Accuracy_of_CFD_Solutions_on_Unstructured_Meshes
https://arc.aiaa.org/doi/10.2514/6.2012-609


Explicit and Implicit Gradient Methods
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gLinear LSQ
j

gQuadratic LSQ
j

Explicit:

~14 in 3D

>100 in 3D

- Superior gradient accuracy.

- Flow solver is more stable with a huge gradient stencil.

- Per-relaxation cost can be lower than LSQ gradients with hundred of neighbors

Advantages of Implicit Gradients 

Mjjgj + ∑
k∈{kj}

Mjkgk = GG

Implicit:

                          Galerkin:  Löhner(1994)
Variational Reconstruction:  Wang et. al., JCP2017
                      Implicit GG:  Nishikawa, JCP2019
           Implicit EB gradient:  Nishikawa, AIAA2020Large stencil: a solver gets more robust but less accurate.

Haider&Croisille&Courbet NM2009

https://www.amazon.com/Frontiers-Computational-Fluid-Dynamics-1994/dp/0471953342
https://www.sciencedirect.com/science/article/pii/S0021999117301249
https://www.researchgate.net/publication/325786209_From_hyperbolic_diffusion_scheme_to_gradient_method_Implicit_Green-Gauss_gradients_for_unstructured_grids
https://www.researchgate.net/publication/342017143_Implicit_Edge-Based_Gradients_for_Simplex_Grids
https://link.springer.com/article/10.1007/s00211-009-0242-6


Linear/Quadratic IEBG (AIAA2020)
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1
V ∫V

∇u dV =
1
V ∫V

g dV

j

k

1
Vj ∑

k∈{kj}

uL + uR

2
njk =

1
Vj ∑

k∈{kj}
{c gj + (2 − c)gk} Vjk

uL = κ
uj + uk

2
+ (1 − κ)[uj + gj ⋅ (xk − xj)]

uR = κ
uj + uk

2
+ (1 − κ)[uk − gk ⋅ (xk − xj)]

with

Linear IEBG:  Two free parameters:   and .  κ c

1
V ∮∂V

u dn =
1
V ∫V

g dV

Quadratic IEBG:  Remains compact and 3x3 blocks (not 9x9 with 2nd derivatives like others), 

                               but no free parameters:   and .κ = 0 c = 13/5
Not very robust… I couldn’t adjust anything…

g′￼k

g′￼k = gk−∇gLLSQ
j (xk − xj)

Nishikawa&Liu JCP2017
Accuracy-preserving source quadrature

https://www.researchgate.net/publication/316722881_Accuracy-Preserving_Source_Term_Quadrature_for_Third-Order_Edge-Based_Discretization


Numerical results show O(h^2) for other values of c

Emmett Padway (NASA) observed 2nd-order gradient accuracy for different values of c (2022).

Later, the author observed the same with his code (2023).

c = 10

c = 5

c = 13/5

Something is wrong.

Not a bug in a code.
Not a problem in the algorithm.

The problem is that I thought I knew…



Simple if I knew nothing about source quadrature
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IEBG system

AhGh = b Gh − Gexact = A−1
h TE

Forget the source formula and derive:

Gradient error
O(1)

meaning that QIEBG must have TE= .O(h2)

Gradient accuracy order matches TE order.

1
Vj ∑

k∈{kj}

uL + uR

2
njk −

1
Vj ∑

k∈{kj}
{c gj + (2 − c) g′￼k} Vjk = ∇u − g + O(h2)

So, we have 2nd-order gradient accuracy for any c. 
That’s good news:  I can try to adjust it for robustness.

It actually does for any  :c



So, what was wrong?
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Let me skip this to avoid confusion.
(Please read the paper or ask me.)

Better understanding by forgetting that I think I know.
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Lesson 2:   See it for yourself.



Computed by Automatic Differentiation (AIAA2020)
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1
Vj ∑

k∈{kj}

uL + uR

2
njk =

1
Vj ∑

k∈{kj}
{c gj + (2 − c)g′￼k} Vjk

Solve the linear system by a relaxation scheme: e.g., Gauss Seidel.

In 2020, I computed  and  
by automatic differentiation

Mjj Mjk

Mjjgj + ∑
k∈{kj}

Mjkgk = GG

gn+1
j = − M−1

jj ∑
k∈{kj}

Mjkgn
k + M−1

jj GG

This relaxation fails for some sets of parameters  and .  Why? I didn’t know… κ c



Then, in 2023
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To gain some insight on how IEBG fails when it fails, 
I decided to derive the block matrix  and see what it looks like.Mjj

Mjj =
κ − 1
4Vj ∑

k∈{kj}

(njk ⊗ Δrjk) +
c

2Vj ∑
k∈{kj}

Vjk I

Linear IEBG:

= ( c + κ − 1
2 ) I

Not a matrix but a scalar!   Very easy to invert:       (similarly for QIEBG).M−1
jj = ( 2

c + κ − 1 ) I

Oh, it fails when  !c + κ − 1 = 0

1
2 ∑

k∈{kj}

(njk ⊗ Δrjk) = Vj I

for arbitrary triangular/tetrahedral grids:

=
κ − 1
2Vj

Vj I +
c

2Vj
Vj I



True also at boundary nodes
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Mjj = ( c + κ − 1
2 ) I

This remains true while an edge is collapsed:

bou
nda

ry boundary

j

Achieved great simplification by seeing it for myself.
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Lesson 3:   Understand limits.
What values are allowed for  and  ? I didn’t know well…κ c

-> Look at accuracy and stability.



Accuracy: Good to find special values
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On a regular tetrahedral grid: Linear IEBG = Quadratic IEBG

Resj =
5
36 (c −

13 − 9κ
5 ) (∂xx + ∂yy + ∂zz − ∂xy − ∂yz + ∂zx)(∇u ) h2 + O(h4) .

<- 4th-order accurate.c =
13 − 9κ

5

In this work, we set  and ,κ = 0 c =
13
5

but a larger value  was needed for robustness.c = 5

Regular tetrahedral grid
Is it supposed to work? 



Stability:  Good to understand limits
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Performed a Fourier stability analysis for the Gauss-Seidel scheme.

So, we see 
- Explicit at .  Zero spectral radius! (c, κ) = (2,1)

- Linear IEBG is 2nd-order accurate at (2,0) but unstable.

- 4th-order IEBG is stable:  5c + 9κ = 13

- Quadratic IEBG ( ) is stable for .κ = 0 c > 2
So, we can safely set .c = 5

c

ka
pp
a

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

convergence rate 0 0.2 0.4 0.6 0.8 1spectral radius

A better guide on how to choose parameters.

Unstable

Stable
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Results
Mach 0.3 smooth bump

(Accuracy verification and supersonic/hypersonic problems in the paper.)



Mach 0.3 Subsonic Flow over a smooth bump
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x
0

0.5
1

1.5
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x
0

0.5
1

1.5

y -0.4-0.200.20.4

z

0

0.2

0.4

0.6

0.8

1

p 0.688 0.694 0.7 0.706 0.712 0.718

Grid 1 Grid 2 Grid 3

Solve Euler by 2nd/3rd-order EB methods:

(2)  :  Update solutions by one iteration of implicit Euler solver. Un+1 = Un + ΔU
(1) :  Update gradients by one Gauss-Seidel relaxation.Gn+1 = Gn + ΔG



Subsonic Flow:  and κ = 0 c = 5
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-1.4 -1.2 -1 -0.8

-5

-4.5

-4

-3.5

-3

Linear Implicit
Linear Explicit
Quadratic Explicit

Quadratic Implicit

Fewer iterations and faster time-to-solution 2nd- and 3rd-order convergence
IEBG methods are not expensive. Lower 3rd-order error by QIEBG.

(1) Residual norm vs iteration (2) Entropy error convergence

Linear

Explicit

Linear

Implicit 2nd

2nd

Quadratic

ExplicitQuadratic


Implicit

3rd
3rd

Iteration

Similarly for Res vs CPU time



XY

Z

p 0.213689 0.658418 1.10315 1.54788 1.9926

Supersonic/Hypersonic Flow:  and κ = 0 c = 5
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Mach 2.5 flow over 
a triangular bump.

Mach 5.0 flow over 
a circular cylinder.

More robust with QIEBG.

Quadratic Implicit

Quadratic Implicit

Quadratic Explicit

Quadratic Explicit
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Conclusions



Conclusions and Future Work
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Lesson 1: Forget that you think you know. Lesson 2: See it for yourself. Lesson 3: Understand limits.

Future work:  Applications to space-time viscous problems and cell-centered nodal-
gradient finite-volume methods.

Results:  IEBG demonstrated for subsonic/supersonic/hypersonic flows.

c

ka
pp
a

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

convergence rate 0 0.2 0.4 0.6 0.8 1

Mjj = ( c + κ − 1
2 ) I

Lower 3rd-order errors and more robust iterative convergence than with quadratic LSQ.

2nd-order accurate gradient for any c
Res(c) = ∇u − g + O(h2)

Robust with c = 5.

4th-order with 
c = (13 − 9κ)/5
Stable with 

  (QIEBG )c > 2 κ=0

Simplified:

Socrates 
470-399 B.C.

“I neither know nor think that I know” (in Plato, Apology 21d).
I had to realize and admit I didn’t know, or this work would have been far less complete. 

3rd-order EB scheme is now made more robust.
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Socrates,
470-399 B.C.

“The really important thing is not to live, 
but to live well.”

The really important thing is not to develop CFD algorithms,
but to develop them well.

Always seek a better understanding,  a further simplification, 
and a better guide on how to choose parameters.


