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Lessons Learned

Lesson |: Forget that you think you know.

Lesson 2: See it for yourself

Lesson 3: Understand limits.



Lesson |12 rorget that you think you know.
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Economical 3rd-Order Methods AL %

Improving Unstructured-Grid Methods
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Common interest: Economical 3rd-order methods with a single flux per face/edge, not requiring
2nd derivatives at all, towards automated CFD with fully adaptive tetrahedral grids.
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2nd/3rd-Order Edge-Based (EB) Discrtetizations .0 %

Edge-Based Schemes : A single flux per edge

1
2nd-order EB _
' 7] Z ¢jk(uLa i) | njk‘ — S(Xj)
keik}
y | 1

3rd-order accurate (Katz&Sankaran201 1, Diskin&Thomas2012) With

3rd-order EB - Linear solution/flux reconstruction with quadratic LSQ gradients.

- Accuracy-preserving source quadrature Nishikawa&Liu JCP2017.

-> )nd derivatives not nheeded.

for arbitrary triangular/tetrahedral grids.
-> perfect for adaptive grids.


https://www.researchgate.net/publication/316722881_Accuracy-Preserving_Source_Term_Quadrature_for_Third-Order_Edge-Based_Discretization
https://www.researchgate.net/publication/220206983_Mesh_Quality_Effects_on_the_Accuracy_of_CFD_Solutions_on_Unstructured_Meshes
https://arc.aiaa.org/doi/10.2514/6.2012-609

Explicit and Implicit Gradient Methods e o

Explicit: Implicit:

Linear LSO
5) ~141in 3D Mg+ Y M & = GG
- \/ ® kelk)

Quadratic LSQ \

g Galerkin: Lohner(1994)
J \ / Variational Reconstruction: Wang et.al., JCP2017
>100 In 3D Implicit GG: Nishikawa, |CP2019
Large stencil: a solver gets more robust but less accurate. Implicit EB gradient: Nishikawa, AIAA2020

Haider&Croisille&Courbet NM2009
Advantages of Implicit Gradients

- Flow solver is more stable with a huge gradient stencil.
- Superior gradient accuracy.

- Per-relaxation cost can be lower than LSQ gradients with hundred of neighbors


https://www.amazon.com/Frontiers-Computational-Fluid-Dynamics-1994/dp/0471953342
https://www.sciencedirect.com/science/article/pii/S0021999117301249
https://www.researchgate.net/publication/325786209_From_hyperbolic_diffusion_scheme_to_gradient_method_Implicit_Green-Gauss_gradients_for_unstructured_grids
https://www.researchgate.net/publication/342017143_Implicit_Edge-Based_Gradients_for_Simplex_Grids
https://link.springer.com/article/10.1007/s00211-009-0242-6

Linear/Quadratic IEBG (AIAA2020)

l J' VudV = l J gdV Accuracy-preserving source quadrature
Vily Vily Nishikawa&Liu |CP2017

1 1 | U, + u 1 /
% avudn=VngdV — — Z - ankz— Z {ng+(2—6)gk} Vik

k T 1 it
g =8 Ve “(x; — X))
with U + Uy
U, = K 5 + -y + g - (X —X)]
] Ui + Uy
Up = K 5 - (1 — K)[Mk — 8k (Xk o Xj)]

Linear IEBG: Two free parameters: k and c.

Quadratic IEBG: Remains compact and 3x3 blocks (not 9x9 with 2nd derivatives like others),

but no free parameters: xk = 0 and ¢ = 13/5.

Not very robust... | couldn’t adjust anything...
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https://www.researchgate.net/publication/316722881_Accuracy-Preserving_Source_Term_Quadrature_for_Third-Order_Edge-Based_Discretization

Numerical results show O(h”2) for other values of ¢ ..

Emmett Padway (NASA) observed 2nd-order gradient accuracy for different values of ¢ (2022).

Logy¢(Ly error norm for 0,u)
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Later, the author observed the same with his code (2023).

Something is wrong.

Not a bug in a code.
Not a problem in the algorithm.

The problem is that | thought | knew...



Forget the source formula and derive:

IEBG system Gradient error S o)

Gradient accuracy order matches TE order.

exact

meaning that QIEBG must have TE=O(h?). It actually does for any ¢ :

1 u; +u 1
= Y Sy Y feg+@-org V= Vu—g+ 00
) kelk;} ) kelk;}

S0, we have 2nd-order gradient accuracy for any c.
That's good news: | can try to adjust it for robustness.

9



So, what was wrong? .NS.T.*:L'S.?;

Let me skip this to avoid confusion.

(Please read the paper or ask me.)

Better understanding by forgetting that | think | know.
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Lesson 2: See it for yourself.



Computed by Automatic Differentiation (AIAA2020) .A”

1 U + up 1 ,
= Y Aty = ¥ feg+@-og | Vg
J kelk) J kelk)

In 2020, | computed ij and Mjk
by automatic differentiation

Mg + ) Mg =GG
kelk)

Solve the linear system by a relaxation scheme: e.g., Gauss Seidel.
—1 —1
gt =-M; Z Mg, | +M; 66
ke{k)

This relaxation fails for some sets of parameters k and ¢. Why? | didn’t know...
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Then, in 2023

To gain some insight on how IEBG fails when it fails,
| decided to derive the block matrix M;; and see what it looks like.

Linear IEBG:

K— 1 C
M; 2, M ®Ar k)+2_VjZijI

J ke(k}

= V.1+ —V 1
2V; 2V
for arbitrary triangular/tetrahedral grids:
- fct+k—1
R 2
, . » 2 -
Not a matrix but a scalar! Very easy to invert: M_' = T I  (similarly for QIEBG).
C K —

Oh, it fails whenc+x—1 =0
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True also at boundary nodes

This remains true while an edge is collapsed:

c+x—1
= (<51

Achieved great simbplification by seeing it for myself.
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Lesson 3: Understand limits.

What values are allowed for x and ¢ ? | didn’t know well...

-> Look at accuracy and stability.

|5



Accuracy: Good to find special values %_

On a regular tetrahedral grid: Linear IEBG = Quadratic IEBG

8 13 — 9k y A
Res; = — (¢ = ——— ) (0u+ 9+ 0. = 0y = 0,0+ 0., ) (Vi) I + O(h).

Z

SZAN 13-9
Jﬂ . / / =" ~ | <- 4th-order accurate.
' In this work, we set k = 0 and ¢ = =
- / « but a larger value ¢ = 5 was needed for robustness.

Is it supposed to work?
Regular tetrahedral grid
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Stability: Good to understand limits wsmureor %‘%ﬁ%

Performed a Fourier stability analysis for the Gauss-Seidel scheme.

spectral radius o 02 04 06 08 1

So, we see
- Explicit at (c,x) = (2,1). Zero spectral radius!

- Linear IEBG is 2nd-order accurate at (2,0) but unstable.

- 4th-order IEBG is stable: 5¢ 4+ 9x = 13

o

D
- Quadratic IEBG (k = 0) is stable for ¢ > 2.

So, we can safely set ¢ = 3.

kappa

wiIE NI LN N 111|1111|1111|1111|1111|1111|1111|1111 AbettergUide On hOWtO Choose Parameters.
05 1 15 2 25 3 35 4 45 5 55 6

C
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Results
Mach 0.3 smooth bump

(Accuracy verification and supersonic/hypersonic problems in the paper.)

|18
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Mach 0.3 Subsonic Flow over a smooth bump

Solve Euler by 2nd/3rd-order EB methods:

(1) G"!' = G" 4+ AG: Update gradients by one Gauss-Seidel relaxation.
(2) U™t = U" 4+ AU : Update solutions by one iteration of implicit Euler solver.

Grid |
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Subsonic Flow: kx=0and c=5

(1) Residual norm vs iteration
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Fewer iterations and faster time-to-solution
IEBG methods are not expensive.
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(2) Entropy error convergence
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2nd- and 3rd-order convergence
Lower 3rd-order error by QIEBG.



Supersonic/Hypersonic Flow: xk =0 and ¢ = 5
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/

%Mk’/

Mach 2.5 flow over

a triangular bump.

Mach 5.0 flow over

a circular cylinder.

More robust with QIEBG.
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Energy equation residual norm

Energy equation residual norm
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Conclusions



AEROSPACE

Conclusions and Future Work NenTONAL %

Lesson |: Forget that you think you know. L.esson 2: See it for yourself. ~ Lesson 3: Understand limits.

2nd-order accurate gradient for any ¢ Simplified: = 4th-order with
Res(c) = Vu — g + O(h?) c4ik—1 ¢ = (13 =9k)/5
Robust with ¢ = 5. M;; = ( n ) 1 & Stable with
'1'1':052?29;515345%556 C > 2 (QIEBGK=O)

Results: |[EBG demonstrated for subsonic/supersonic/hypersonic flows.
Lower 3rd-order errors and more robust iterative convergence than with quadratic LSQ.

Future work: Applications to space-time viscous problems and cell-centered nodal-
gradient finite-volume methods.

““I neither know nor think that I know?” (in Plato, Apology 2 1d).

| had to realize and admit | didn’t know, or this work would have been far less complete.
Socrates :
470-399 B.C. 3rd-order EB scheme is now made more robust.
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“The really important thing is not to live,
but to live well.”

Socrates,
470-399 B.C.

The really important thing is not to develop CFD algorithms,
but to develop them well.

Always seek a better understanding, a further simplification,
and a better guide on how to choose parameters.
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