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The development of autonomous systems requires a rigorous process that can guarantee a
system’s reliability in critical applications. At its core, an autonomous system bases its behavior
on a well-defined decision making system. In this paper, we present a methodological basis for
the design, formalization and formal verification of Decision Making systems for autonomous
agents. The approach is generally applicable to operational objectives that can be functionally
decomposed and subsequently represented as Hierarchical Finite State Machines. As a case
study, we present the application of this method to implement a Decision Making model in
Simulink. Furthermore, we present how we use NASA’s FRET tool to write requirements
in structured natural language and generate formal specifications that can be automatically
digested by NASA’s CoCoSim tool. Finally, we present how, by leveraging CoCoSim, we
perform formal verification against the Simulink model and present analysis results.

I. Introduction
In recent years, the demand for and investment in autonomous systems has been growing rapidly across various

domains, including space exploration, aerospace operations, and autonomous vehicles in urban settings. The imminent
deployment of such systems, coupled with the critical nature of their decision making capabilities, necessitates the
development of trustworthy and certifiable systems. Trusted autonomy refers to the ability of autonomous systems
to make decisions reliably and in a manner that can be understood, validated, and trusted by human operators or
stakeholders. This concept is of paramount importance, considering that these vehicles are utilized in environments
where the well-being of human lives, valuable assets, and critical missions is at stake. To address this challenge, this
paper proposes a design methodology for decision making systems that promotes trusted autonomy through a predictable,
formalizable, and verifiable implementation. By pursuing rigorous yet simple design methodologies that prioritize trust
and verification, the path to successful deployment of autonomous systems in diverse and complex environments can be
paved.

In this paper a design methodology is proposed for Decision Making systems in Section II. The proposed methodology
begins with procedures for the systematic functional decomposition of the system overall goal until it is represented
by a set of smaller and interconnected simpler sub-goals with clearly defined primitives (goals, tasks, procedures,
measurements, resources, and constraints). A Hierarchical Finite State Machine (H-FSM) implementation for Decision
Making (DM) is constructed as a result of the functional decomposition. Requirement types are then derived that
give complete coverage to the intended DM behavior and implementation. Section III of the paper formalizes the
DM requirement types using the FRET tool. Section IV presents the CoCoSim tool for the verification of a DM
implementation. A workflow overview of the FRET-CoCoSim toolchain is shown in Figure 1. Section V presents a
case study to illustrate the proposed design procedure, requirement elicitation and formalization, and verification of the
implemented DM system.
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Fig. 1 The requirement specification and verification toolchain

II. Decision Making Design Procedure

A. System Functional Decomposition and Functional Finite State Machine Construction
Hybrid-State Systems (HSS) serve as an ideal framework for the representation of Autonomous Systems that

include a combination of continuous-time (system models/components, applications, control systems) and discrete-time
behaviors (decision making) [1]. A HSS is composed of several layers as seen in Figure 2. The High-level layer dictates
the mode of operation (e.g. Drive, Science Tasks, Wait, etc) or the phase of a mission an autonomous vehicle is in,
whereas the low-level layers contain the low-level software components (health monitor, controllers, communication
applications, etc.) along with actual system or modeled system dynamics. An interface is used to connect the high-level
layers to the low level ones. The purpose of such an interface is twofold: 1) provide the high-level module with the
necessary information required for decision making (events that trigger state transitions), and 2) provide low-level
control modules with the phase-specific set-points and controller parameters (velocity set-points, controller mode,
communication actions, etc.).

Fig. 2 Decision Making Hybrid-State System Structure

The proposed Decision Making (DM) scheme is represented by the high-level layer of the system and is made up of
a Hierarchical Finite State Machine (H-FSM). A H-FSM is made up of a collection of meta-states, which are states that
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are made up of states. The states that a meta-state is made up of are referred to as sub-states, these sub-states form
internal state machines that define the sequence of actions to be executed in a meta-state. Note that sub-states may also
have internal states (no hard limit on depth).

The choice of meta-states and the corresponding sub-states needs to be conducted in a systematic and comprehensive
manner that is informed by the system capabilities and the mission requirements. A functional hierarchy is used for
such a detailed decomposition of the system in order to arrange the decision making process into a hierarchical tree
which can be then translated into a H-FSM [2]. For systematic decomposition of the system, six primitives are defined
at each node of the decomposition [3]: Goals, Tasks, Procedures, Measurements, Constraints, and Resources. Goals
represent the end results that need to be obtained at a node. Tasks represent the elementary job descriptions at the
node. Procedures represent detailed methods of accomplishing tasks. Measurements represent data available to the
decision making module. Constraints represent task restrictions or exemptions. Resources represent task restrictions or
exemptions related to the use of procedures.

The top node in a functional hierarchy represents the main objective. The goal at that top node is first defined.
Accessible measurements, available resources, and constraints imposed on the vehicle are then globally identified. A set
of tasks are then identified that lead to the satisfaction of the goal at the top node. These tasks defined on the top node
are then used to decompose the mission into a set of phases, which form the nodes on the next level of the functional
hierarchy. For each of those phases, the same set of primitives are defined leading to the further decomposition of the
mission into sub-phases. This decomposition is carried out until the lowest level of the decomposition is reached, with
very elementary tasks defined at that level. Procedures that are required for the completion of the tasks under the defined
measurements, resources, and constraints are then identified. A general form of a functional hierarchy can be seen in
Figure 3. The process of converting the functional hierarchy to a decision making system containing the H-FSM can be
seen in Figure 4. Nodes with children are transformed into meta-states containing sub-states. The transitions within
these sub-states are determined by the derived procedures. The lowest level nodes of the functional hierarchy form the
lowest-level states of the H-FSM where the procedures of each such node can be sufficiently represented by a parameter
list (otherwise further decomposition is needed). In order to keep the H-FSM readable and configurable, events are
defined as functions of logical flags. Such flags are statused by the lower-level system measurements and represent
the basis set of conditions on which events are defined. Also note that each meta-state has a sub-state it defaults to as
defined by the procedures for the corresponding node.

Fig. 3 Generic Functional Decomposition

B. H-FSM Definitions and Notations
Below we list the keywords, their meanings and the notation that we use throughout the paper.
• Meta-state: A state that contains an internal state machine with at least one sub-state.
• Sub-state: A state that is within another meta-state.
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Fig. 4 Decision Making System Construction from Functional Decomposition

• State level: The layer of the H-FSM that the state belongs to. The Top most level is 1 and represents the state
machine as a whole.

• Flag: A variable used to map system measurements to Boolean expressions.
• Event: A Boolean variable that is a logical combination of Flags.
For an arbitrary H-FSM that contains 𝐿 levels, the following notations are used:
• S is an integer tuple representing an arbitrary state such that S = [𝑠1, 𝑠2, 𝑠3, . . . 𝑠𝐿]. 𝑠𝑖 is a positive integer value

that represents the 𝑠𝑡ℎ
𝑖

state on the 𝑖𝑡ℎ level of the H-FSM. Note that for a state on the 𝑗 𝑡ℎ level such that 𝑗 < 𝐿,
𝑠 𝑗+1, ..., 𝑠𝐿 = 0.

• E is an integer tuple representing the 𝑒𝑡ℎ event within a state S such that E = [S, 𝑒]. Let 𝑓𝑆 be a mapping from S
to a state enumeration value 𝑒𝑛𝑢𝑚𝑆𝑡𝑎𝑡𝑒, and 𝑓𝐸 be a mapping from the event tuple to an Event enumeration value
𝑒𝑛𝑢𝑚𝐸𝑣𝑒𝑛𝑡 .

• 𝑓𝑖 is a Boolean value that represents the 𝑖𝑡ℎ flag state of the system.
• 𝑚𝑖 is a real number representing the 𝑖𝑡ℎ system measurement available to the H-FSM.

C. Hierarchical Finite State Machine Requirement Elicitation in Natural Language
The systematic and thorough decomposition procedure with which the H-FSM was constructed especially proves

practical when eliciting requirements on the designed system. Namely, there are four main mechanisms that represent
the underlying operation of the H-FSM at any given state: H-FSM state-to-state transitions (Events), meta-state default
state entryand Interface parameter list generation. By eliciting these four types of requirements for the entire Decision
Making system structure, requirement coverage is provided for all system procedures, goals, and tasks under available
measurements, resources, and constraints.
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In particular, we elicit the following four requirement types:
1) DM Default State Entry: Each meta-state shall default to a single sub-state upon entry.
2) DM State-to-State Transitions: A state shall transition to a neighboring state if the event triggering the transition

is activated and no parent events have been activated.
3) DM Event Statusing: An event shall be set to true if the system is in the relevant originating state and the event

flag logic holds true over the last T consecutive time-steps.
4) DM Parameter List Generation: States that are not meta-states shall have parameter lists associated to them.

III. Specification and Formalization of System Requirements
In this Section, we will take the high-level natural language description of the four requirement types provided in the

previous Subsection and specify them using the NASA Ames’ FRET tool. FRET [4, 5] is an open-source tool [6] for
writing, understanding, formalizing, and analyzing requirements.

In practice, requirements are typically written in natural language, which is ambiguous and, consequently, not
amenable to formal analysis. Since formal, mathematical notations are unintuitive, requirements in FRET are entered
in a restricted natural language named FRETish [7] with rigorous semantics. For each FRETish requirement, FRET
generates formulae in a variety of formalisms including metric Linear Temporal Logic (LTL) and Lustre [8] code.

A. The FRETish language
A FRETish requirement is composed using up to six distinct fields (the * symbol designates mandatory fields): 1)

scope specifies the time intervals where the requirement is enforced, 2) condition is a Boolean expression that
either a) Upon keyword: triggers the response to occur at the time the expression’s value becomes true, or is true at the
beginning of the scope interval, or b) Whenever keyword: triggers the response to occur every time the expression’s
value is true 3) component* is the system component that the requirement is levied upon, 4) shall* is used to
express that the component’s behavior must conform to the requirement, 5) timing specifies when the response shall
happen, subject to the constraints defined in scope and condition and 6) response* is the Boolean expression
that the component’s behavior must satisfy.

B. Specification of DM requirement types in FRETish
Below we work on each of the four requirement types and specify them as FRETish templates. We denote template

placeholders with angle brackets, i.e., <PLACEHOLDER>.
We start with the DM Default State Entry requirement type. Here we want to express that upon entering a

meta-state, the FSM shall begin execution at a default sub-state. For this, we use a variable, namely FSM_State_<𝑙> to
indicate the state that the FSM is currently at. FSM_State_<𝑙> may be used to indicate either a meta-state or a sub-state
depending on the value of 𝑙. In particular, 𝑙 ∈ {1..𝐿} denotes the level from which the state was extracted. We write this
requirement template in FRETish as follows:

DM Default State Entry:
Upon FSM_State_<𝑙>=<integer_representing_Meta_State> <DM> shall immediately satisfy FSM_State_<𝑙+
1>=<integer_representing_Default_Sub_State>

In this template, we use five out of the six FRETish fields. In particular, we use the condition field to check
when the <DM> component enters a specific meta-state (Upon FSM_State_<𝑙>=<integer_representing_Meta_State>),
which is indicated by an integer. When the component enters the meta-state, then at the same timestep (immediately)
the component shall default to a specific sub-state (FSM_State_<𝑙 + 1>=<integer_representing_Default_Sub_State>)
(also indicated by an integer).

Next, we continue with the specification DM State to State Transitions requirement type. We create a dedicated
requirement template in FRETish as follows:

DM State to State Transitions:
Upon FSM_State_<𝑙>=<integer_representing_current_State> & <Event_from_current_state_to_new_State>
<DM> shall at the next timepoint satisfy FSM_State_<𝑙>=<integer_representing_new_State>
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We require that when <DM> enters a particular state (Upon FSM_State_<𝑙>=<integer_representing_current_State>)
and a certain event is activated (<Event_from_current_state_to_new_State>), then <DM> shall transition to a new state
(FSM_State_<𝑙>=<integer_representing_new_State>) at the same time step (immediately).

Next, we specify FRETish templates for the DM Event Statusing requirement type:

DM Event Statusing:
<DM> shall always satisfy E_<Event> <=> persisted(T-1,<Flags_Logical_Expression_Relevant_to_Event>)

Notice the use of the persisted function in the response field of DM Event Statusing. The semantics of persisted
is as follows: persisted(n,p) becomes true at the time the Boolean expression p has held in the previous n time steps
and also holds at the current time step, for a total of n+1 time steps, meaning a duration of n time units. Additionally
notice that both of these templates use the equivalence operator <=>.

Finally, we specify the last requirement template, namely DM Parameter List Generation. This template describes
that states, which do not belong to meta-states, shall be associated with a list of parameters with specific valuation upon
entry in a state.

DM Parameter List Generation:
Whenever FSM_State_<𝐿>=<integer_representing_bottom_State> <DM> shall immediately sat-
isfy <param_list_entry1_name>=<Entry1Value> & <param_list_entry2_name>=<Entry2Value> &
<param_list_entryN_name>=<EntryNValue>

The immediately timing requires that the response is satisfied at the same time point whenever the condition
(FSM_State_<𝐿>=<integer_representing_bottom_State>) is true. FSM_State_<𝐿> represents the state at the bottom
level of the FSM.

IV. Verification of Formalized Requirements
The design presented in Section II can be implemented in a straightforward manner using model-based development

tools. More importantly, resulting models from this development process are amenable to automated formal analysis.
The main objective at this step is to provide a formal proof of the correctness of the model, considering instantiations of
the formal requirement types defined in Section III.B. Our workflow depends on MATLAB Simulink/Stateflow for the
implementation of models, while our in-house solution, namely CoCoSim [9], enables scalable formal compositional
verification of such models.

CoCoSim (Contract-based Compositional verification of Simulink models) is an open-source plugin for MATLAB
Simulink/Stateflow, that allows users to formally verify requirements expressed in the form of Assume-Guarantee
contracts [10, 11]. To tackle scalability issues, verification can be achieved using compositional reasoning over contracts
defined for the system as a whole, as well as its subsystems. Complexity induced by verbose subsystems can be
abstracted away, by replacing the model with its corresponding contract in the proof. Besides compositional verification,
CoCoSim provides means to translate Simulink/Stateflow models into equivalent implementations in Lustre and C, and
limited support for test-case generation.

A particularly important CoCoSim feature for the purposes of this work, provides the ability for users to import existing
formalized requirements, with CoCoSim automatically attaching them to relevant Simulink models as synchronous
observers [12]. Input requirements are expressed in CoCoSpec, a Lustre specification format that adheres to the
Assume-Guarantee paradigm [13]. Previous work by Mavridou et al. [14, 15] implemented and applied this feature to
industrial-level problems, while establishing a stronger connection between FRET and CoCoSim. As a result, FRET
users can export FRETish requirements into CoCoSpec, which can be subsequently attached to a Simulink model using
CoCoSim’s translation scheme to Simulink code. As an example, the State to State Transition requirement type from
Section III.B is automatically translated by FRET into the following guarantee in CoCoSpec:

1 -- DM State to State Transition:
2 guarantee H((((FSM_State_<l> = <integer_representing_current_State>) and
3 <Event_from_current_state_to_new_State>) and
4 ((YtoPre( not ((FSM_State_<l> = <integer_representing_current_State>) and
5 <Event_from_current_state_to_new_State>))) or FTP)) =>
6 (FSM_State_<l> = <integer_representing_new_State>));
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The CoCoSpec guarantee is a direct result of the translation of the original FRETish requirement in Past Time Metric
Linear Temporal Logic (pmLTL). The pmLTL formula is expressed in Lustre, with the node (function) calls H and YtoPre
corresponding to the application of predefined Lustre nodes for the pmLTL operators ’Historically’ and ’Yesterday’.
FTP is an internal boolean variable that is only true in the first time point of a given execution.

Given the formal model and the imported FRETish requirements for the Decision Making system, CoCoSim can be
invoked to formally verify the model against the requirements. During this process, CoCoSim translates the combination
of the model and the contract into equivalent code in Lustre, enabling thus the usage of state-of-the art model checkers
such as Kind 2 [16]. The result of a complete verification task is either a proof that the model conforms to the given
requirements or, otherwise, an indication of how (a subset of) the requirements are violated using actual execution
traces as counterexamples.

V. Case Study: Dynamic Zonal Relay Stage of the Troupe System
This section will present the DM design process followed for the NASA Troupe project case study. A functional

decomposition is performed on the Dynamic Zonal Relay (DZR) stage of the Troupe system, followed by H-FSM
construction and implementation in Simulink. Requirements are formalized for DM in FRET and verified using
CoCoSIM.

DzrSnrTransition_3

SNR_Setup_32

sendConfirmation_322
entry:
	fsm_state=322;

DZRCloseout_31

TransferData_311
entry:
	fsm_state=311;

[EJ(1)	==	1]

DZR_1

DriveToZone_11
Transmit_112
entry:
	fsm_state=112;

Drive_111
entry:
	fsm_state=111;

[EC(2)	==	1]

[EC(1)	==	1]

CharacterizeZone_12

Transmit_123
entry:
	fsm_state=123;

Drive_121
entry:
	fsm_state=121;

Acquire_122
entry:
	fsm_state=122;

[ED(3)	==	1]
[ED(2)	==	1]

[ED(1)	==	1]

Relay

ApproachRelayLoc_131
entry:
	fsm_state=131;

TransferData_132
entry:
	fsm_state=132;

Idle_133
entry:
	fsm_state=133;

[EE(1)	==	1]

[EE(2)	==	1]

[EE(3)	==	1]

1

[EE(1)	==	1]
2

[EB(2)	==	1]

[EB(1)	==	1]

[EA(3)	==	1]

[EA(1)	==	1]

Fig. 5 The DZR meta-state in the H-FSM subsystem.

A. Case Study Description
Troupe is a NASA Ames Research Center Project that aims to develop a system of 4-10 rovers capable of coordination

for the autonomous mapping of their environment. The autonomy, coordination, and collaboration algorithm for the
rovers is based on the Dynamic Zonal Relay (DZR) and Sneaker-Net Relay (SNR) algorithms developed at NASA’s Jet
Propulsion Lab (JPL) [17].

The DZR+SNR algorithm is made up of two distinct stages.
In the first stage, DZR, each rover is assigned to a zone along an area of interest and is tasked with performing

science (e.g. mapping) while maintaining communication within that zone. In the second stage, SNR, rovers coordinate
in a line formation to traverse to zones beyond the communication distance with the base station and perform science
tasks. Within SNR, rovers are required to coordinate to relay data back to the base-station.
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Area Exploration

Goal: Perform area exploration and science in area of interest.
Tasks: Map initial zone using DZR algorithm & extend operations using SNR algorithm. 
Procedures: Initiate DZR algorithm. Once initial zone is mapped, transition to SNR 
algorithm.

DZR_1

Goal: Complete initial zone mapping using Dynamic Zone Relay.
Tasks: Drive to zone from starting location. Characterize zone (mapping). Act as a relay rover 
once zone characterization complete.
Procedures: Initiate DZR in DriveToZone. Once rover is at zone, transition to CharacterizeZone. 
When zone is mapped and data transmitted to follower, transition to Relay. 

SNR_2

…

Goal: Traverse to initially-assigned zone while 
relaying data to follower when required to do 
so.
Tasks: Drive to zone from starting location. 
Listen to other rovers and transmit data back 
to lander when received. 
Procedures: Start driving to zone. If data 
received from leader, transmit data to 
follower. If data transmitted to follower, 
transition back to drive. 

CharacterizeZone_12

Goal: Map initially-assigned zone segment by segment while 
relaying acquired data to follower. Also relay data to follower when 
required to do so. 
Tasks: Drive to unmapped segments. Acquire data in unmapped 
segments. Transmit newly acquired data or relayed data to 
followers.
Procedures: Drive to unmapped segment of zone. Once at 
unmapped segment, acquire data in segment until mapping is 
complete. Transmit acquired data or relayed data to follower. Once 
segment data is transmitted, drive to next unmapped segment.

DriveToZone_11

Goal: Go to relay location and maintain line 
of communication between leader and 
follower. 
Tasks: Drive to relay location. Transmit data 
to follower when available. Idle until new 
data received.
Procedures: Drive to Relay location. If data 
received while driving to relay location and 
follower in range transfer data. Idle once in 
relay location until new data received. 

Relay_13

Goal: Traverse to initially-
assigned zone.
Tasks: Drive to zone from 
starting location. 
Procedures: Issue parameter 
list (controller type, 
controller SP, etc.) relevant 
to Drive_111 State. 

Drive_111

Goal: Transmit Data to 
follower.
Tasks: Send data to follower. 
Procedures: Issue parameter 
list (controller type, 
controller SP, etc.) relevant 
to Transmit_112 State. 

Transmit_112

Goal: Drive to unmapped 
segment in zone. 
Tasks: Arrive at unmapped 
segment. 
Procedures: Issue parameter 
list (controller type, 
controller SP, etc.) relevant 
to Drive_121 State. 

Drive_121

Goal: Perform science in 
unmapped segment. 
Tasks: Map unmapped 
segment. 
Procedures: Issue parameter 
list relevant to Acquire_122
State. 

Acquire_122

Goal: Transmit data to 
follower. 
Tasks: Send data to follower. 
Procedures: Issue parameter 
list (controller type, controller 
SP, etc.) relevant to 
Transmit_122 State. 

Transmit_123

Goal: Drive to Relay location 
within zone. 
Tasks: Arrive at Relay 
Location SP. 
Procedures: Issue parameter 
list relevant to 
ApproachRelayLoc_131
 State. 

ApproachRelayLoc_131

Goal: Transmit data to 
follower. 
Tasks: Send data to follower. 
Procedures: Issue parameter 
list relevant to 
TransferData_132
State. 

TransferData_132

Goal: Remain idle in place. 
Tasks: Idle and listen to 
potential comm requests. 
Procedures: Issue parameter 
list relevant to Idle_133 State. 

Idle_133

Unspecified for all nodes for brevity:
Measurements: Set of flags from software bus 
necessary for event detections specified in procedures. 
Resources & Constraints: Restrictions or exemptions 
relevant to procedures.

Fig. 6 DZR Functional Hierarchy resulting from system decomposition.

Following the described System Functional Decomposition process described in Section II, the algorithms specified
in [17] are decomposed into a functional hierarchy. DZR_1 is first decomposed to be made up of three distinct phases:
DriveToZone_11, Characterize Zone_12, and Relay_13. A rover is first tasked with driving to a zone it is assigned
to, then characterize the zone, and relay the data back to the follower rover. Within DriveToZone_11, a given rover is
tasked with driving to its designated zone (Drive_111) while listening to data from other rovers and transmitting back to
followers (Transmit_112) if data is being relayed to the lander. Once in the designated zone, the rover transitions to
CharacterizeZone_12 where the goal of the rover is to drive (Drive_121) in the exploration pattern within the zone,
acquire data (Acquire_122) on a segment-by-segment basis, and regularly transmit (Transmit_123) data when segments
are mapped or when data is being received from a leader rover. On completion of zone mapping, the rover then
transitions to the Relay_13 phase where it is tasked with traversing to a relay location (ApproacRelateLoc_131) within
its zone, transfer data (TransferData_132) back to the lander, and remain idle (Idle_133) until SNR phase of the mission
is initiated. While remaining idle the rover will transmit (Transmit_112) data towards the lander when it is received.
The Functional Hierarchy structure can be seen in Figure 6. The H-FSM based DM app design can be seen in Figure 7,
whereas the Simulink implementation is in Figure 5. The DZR implementation highlighted in Figure 7 results in the
generation of 35 requirements. 5 of which are ’DM Default State Entry’ requirements, 11 ’DM State to State Transitions’
requirements, 11 ’DM Event Statusing’ requirements, and 8 ’DM Parameter List Generation’ requirements.

For the purposes of this case study, we will focus on the DZR H-FSM implementation. We present the formalized
FRET requirements, as well as verification results using CoCoSim.
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DZR_1

DriveToZone_11 CharacterizeZone_12

Relay_13

Transmit_
122Drive_111

Transmit_
123

Drive_121

Acquire_
122

Approach
RelayLoc_

131

TransferD
ata_132

Idle_133

EC_1

EC_2

EE_1

EE_2

EE_3 EE_4

ED_1

ED_2

ED_3

EB_1

EB_2

EA_1

Default

Default

Default

Default

Default

Events
EA_1: Flag for DZR completion. 
EB_1: Flag logic for arrival at designated zone.
EB_2: Flag logic for completion of zone characterization.
EC_1: Flag logic for receipt of data to be transmitted to follower.
EC_2: Flag logic for completion of data transmission to follower.
ED_1: Flag logic for arrival at unmapped segment. 
ED_2: Flag logic for completion of segment mapping. 
ED_3: Flag logic for completion of mapped segment data 
transmission. 
EE_1: Flag logic for receipt of data to be transmitted to follower.
EE_2: Flag logic for completion of data transmission to follower.
EE_3: Flag logic for arrival to relay location.
EE_4: Flag logic for receipt of data to be transmitted to follower.

Parameter Lists
Each State on the lowest level is mapped to a 
parameter list that statuses apps interfacing with 
Decision Making. 

Fig. 7 DZR Functional Hierarchy resulting from system decomposition.
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B. FRET requirements for DM
Using the templates in Section III.B, we derived 196 FRET requirements for the DM app. Note that these

requirements are across all phases of operation and not only DZR. In the following, We provide example requirements,
as well as a description of the intended behavior that each captures. Note that we use labels to refer to different
(meta/sub-)states, instead of their corresponding integer value.

The requirement below captures the initial sub-state of the Relay phase in the DZR meta-state:

DM Default State Entry (DZR, relay phase):
Upon FSM_State_2 = DZR_Relay DM shall immediately satisfy FSM_State_3 =
DZR_Relay_ApproachRelayLoc

During the DZR algorithm, the rover is expected to transmit data from the designated zone, assuming that the
necessary information has been previously acquired and that input event vector ED was observed to have its second
element set to true (ED_2). This is captured as a state transition requirement, as shown below:

DM State to State Transitions (DZR, transmit acquired data):
Upon ( FSM_State_3 = DZR_CharacterizeZone_Acquire & ED_2 ) DM shall at the next timepoint satisfy
FSM_State_3 = DZR_CharacterizeZone_Transmit

As previously mentioned, each event signal in the DM app has a predefined logic over the input flags. The
requirement below showcases this for the aforementioned input vector ED, and more specifically the truth value of the
second element of the vector, which is set to true if the segment the rover is in has been characterized (captured by flag
F_segmentCharacterizationComplete):

DM Event Statusing (ED event):
DM shall always satisfy ED_2 <=> persisted(3,F_segmentCharacterizationComplete)

The DM app outputs relevant information related to its current state for other apps to consume (e.g. health monitor,
rover dynamics, PID control systems). More specifically, each leaf-level state of the DM H-FSM determines the values
of a list of output parameters. In the example below, we show how the state DZR_CharacterizeZone_Acquire dictates
the values of parameters related to the mode of the underlying controller (controllerType), the activity the rover performs
and finally its velocity:

DM Parameter List Generation (DZR, data acquired):
Whenever FSM_State_3 = DZR_CharacterizeZone_Acquire DM shall immediately satisfy (controllerType =
1 & activity = 4 & velocity = 1.0)

C. Formal Verification with CoCoSim
Each one of the 196 FRET requirements were imported in the DM Simulink model using the requirements importing

feature in CoCoSim. The result of the importing process is the creation of CoCoSim contracts i.e., constructs that
contain a Simulink representation for each requirement. The contracts are automatically attached to the corresponding
Simulink subsystem. Figure 8 shows one such example of a CoCoSim contract attached to the H-FSM implementation
of the DM app. Consequently, the Simulink model is amenable to analysis via formal verification against the attached
contracts. More specifically, CoCoSim leverages the Kind 2 model checking tool to verify the implementation, and
provide diagnostic results.

Table 1 shows the verification results per FRET template. The total analysis time was 48 minutes, 23 seconds,
including the time taken for CoCoSim to translate the entire DM app to Lustre, the input format of Kind 2. As Table 1
shows, requirements of all but one template were proved to be valid. More specifically, requirements of the State to
State transition template were originally proved to not hold. The verification results showed that additional constraints
were missing from each requirement, that are necessary to ensure that the expected transition will indeed occur.
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Fig. 8 H-FSM Stateflow model with attached CoCoSim contract.

Table 1 Verification results for DM app.

FRET DM Template No. of requirements Avg. Analysis Time (seconds) Verification Result
Default State Entry 17 6.55 Valid
State to State transition 95 12.87 Invalid
Event Statusing 45 22.01 Valid
Parameter List Generation 39 6.05 Valid

A crucial artifact towards understanding this issue was the set of counterexamples provided by Kind 2 for the invalid
requirements. Given an invalid requirement, a counterexample is an execution trace of the implementation, wherein the
requirement can be shown to be violated. As an example, consider the following requirement from Section V.B:

Upon ( FSM_State_3 = DZR_CharacterizeZone_Acquire & ED_2 ) DM shall at the next timepoint satisfy
FSM_State_3 = DZR_CharacterizeZone_Transmit

The aforementioned requirement captures an expected transition between states DZR_CharacterizeZone_Acquire
and DZR_CharacterizeZone_Transmit, under the premise that the second element of the input event vector ED (ED_2)
is set to true. The corresponding verification task showed that the requirement is invalid, and a counterexample was
generated. Table 2 shows the counterexample trace, consisting of four state transitions starting from the initial state of
the hierarchical finite state machine in the DM app (Manual_RoverIdle_Idle). At the third step of the execution, the state
machine is in state DZR_CharacterizeZone_Acquire and considering the requirement, the expected next state should
have been DZR_CharacterizeZone_Transmit, given that ED_2 is true. In the last step of the counterexample, input ED_2
is indeed true, but the state machine exercises an unexpected transition into state DZR_Relay_ApproachRelayLoc, which
initiates the ’Relay’ phase of the DZR algorithm. A review of the state machine quickly uncovered the reasons. First,
the requirement in its original form considers the value of the ED event vector in the previous execution step, whereas
the Stateflow model considers only current inputs for its state transitions. Second, in the meta-state that corresponds to

Table 2 Counterexample trace for invalid requirement in the H-FSM model.

Signal Step 0 Step 1 Step 2 Step 3 Step 4
EA_1 false false false false false
. . . . . . . . . . . . . . . . . .
EB_2 true false false false true
. . . . . . . . . . . . . . . . . .
ED_2 false true false true true
FSM_State Manual_RoverIdle_Idle DZR_DriveToZone_Drive DZR_Characterize_Zone_Drive DZR_Characterize_Zone_Acquire DZR_Relay_ApproachRelayLoc
Requirement true true true true false
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the DZR algorithm, the unexpected transition has a higher priority than the one defined in our example requirement.
As such, when EB_2 is true, the state machine prioritizes the transition to DZR_Relay_ApproachRelayLoc. Figure 5
shows the exact representation of the DZR meta-state, where transitions at higher state levels have higher priorities
when compared to states in lower levels.

Considering the above, each instantiated requirement of the State to State transition template needed to be refined
to address the two observations. More specifically, their preconditions needed to be strengthened with additional
constraints that prevent transitions with higher priority to be possible when verifying a given requirement. Additionally,
the requirement should consider the current inputs instead of the corresponding values in the previous execution step.
For our example, these adjustments meant that we had to refine the requirement into the following:

Upon ( FSM_State_3 = DZR_CharacterizeZone_Acquire ) DM shall at the next timepoint satisfy (ED_2 & ! EA_1 &
! EB_2 ) => FSM_State_3 = DZR_CharacterizeZone_Transmit

The updated requirements were subsequently proved to be valid by CoCoSim, following the same verification
workflow.

VI. Conclusion
We introduced a methodology for formally designing, specifying, and verifying a Decision Making application

intended for autonomous systems. Our demonstration showcased the functional decomposition of the system’s
overarching objectives through the utilization of a functional hierarchy. This resultant structure was then translated into a
Hierarchical Finite State Machine, with functionality comprehensively addressed by four types of requirements expressed
in natural language. The proposed approach and the ensuing requirements enabled us to employ the connection between
the FRET and CoCoSim tools to specify, formalize and verify properties of interest against the implementation. In
particular, we first elicited four requirement types in natural language and then specified these requirement types in the
FRETish language. To cover the complete DM app, we instantiated 196 requirements from these four templates and then
FRET automatically generated CoCoSpec specifications that cover all 196 requirements. The CoCoSpec specifications
were subsequently given as input to the CoCoSim tool, where model checking actions proved the requirements’ validity
against the Simulink model of the DM app. The outcome is a comprehensive end-to-end process that can be applied and
customized for the design of Decision Making systems, ensuring formal requirements and verifiable implementations.
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