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Uncertainty quantification (UQ) is a rapidly growing and evolving discipline, especially
within the aerospace community. Performing analysis with UQ can provide decision makers
with a wealth of information about a candidate design. However, the value of UQ is fully realized
when the information gained during UQ analysis is leveraged in a feedback loop of a design
optimization process, often referred to as design under uncertainty. Although design under
uncertainty can be a powerful risk mitigation technique, there are a number of roadblocks
that prevent its implementation. Two primary factors are computational costs and added
complexity of the analysis. High fidelity simulations having on the order of tens of uncertain
variables quickly become computationally infeasible. Also, implementing UQ into an existing
multidisciplinary design and optimization (MDO) process often requires extensive knowledge
of the UQ methods and careful treatment of the problem formulation. The objective of this
work is to address these two primary roadblocks and enable practitioners to efficiently perform
design under uncertainty with limited knowledge of the UQ discipline. Methods outlined in this
paper demonstrate MDO incorporating UQ into the design process, leveraging an analytical
derivative tool chain through the entire optimization. The proposed approach leverages machine
learning techniques to generate a differentiable confidence interval output from polynomial
chaos models. This technique, coupled with the incorporation of analytical derivatives through
the Polynomial Chaos Expansion (PCE) process, eliminates the need to estimate derivatives,
which are usually obtained from finite difference, complex step, or similar methods. Developing
a differentiable confidence interval allows mixed uncertainty problems (both epistemic and
aleatory) to be modeled. Without such modeling, these problems cannot accurately predict
objective functions containing statistical quantities such as mean and variance. The addition of
analytical derivatives to a UQ method based on polynomial chaos can decrease the computational
costs of performing design under uncertainty by orders of magnitude in comparison with
methods such as complex step. The method and codes developed are modular in nature and are
a drop-in solution for design under uncertainty within existing MDO problems. Low-fidelity
analytical multidisciplinary optimizations under uncertainty for a wing design in OpenMDAO
are detailed in this paper. These demonstration cases includes both objective functions and
constraints which are influenced by uncertain parameters. Results show an 87.7% reduction in
computational costs compared to current methods. Comparison of deterministic and uncertain
designs shows significant improvement for the quantity of interest when the optimizer is given
information about the uncertain space.
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Nomenclature

𝐴𝑅 Wing Aspect Ratio
𝐴𝑖 Undetermined PCE Coefficients
𝑎 Significance Level
𝑏 Span
𝐶 Camber
𝐶𝑙𝛼 Wing Section Lift Curve Slope
𝐶𝑙𝛼0 Wing Section 𝐶𝑙 at 𝑎 = 0
𝐶𝐿𝛼

Wing Lift Curve Slope
𝐶𝐿 Wing Lift Coefficient
𝐶𝐷0 Wing Zero Lift Drag Coefficient
𝐶𝐷𝑖

Wing Induced Drag Coefficient
𝐶𝐷𝑤

Wing Wave Drag Coefficient
𝐶𝐷 Wing Total Drag Coefficient
𝑐𝑟 Wing Root Chord
𝑑 PCE Deterministic Variables
𝐹 PCE Response
𝑓 Activation Function
𝑔 Gravity Constant
®𝑱 Design Variables
®𝑲 Constraint Functions
𝐿 Lift
𝑀 Mach Number
𝑁𝑡 Number of Terms Necessary for PCE Model
𝑁𝑧 Ultimate Load Factor
𝑛 Number of Uncertain Parameters in PCE Model
𝑛𝑎𝑛 Function Calls for Analytical Derivatives
𝑛𝑑𝑣 Function Optimization Design Variables
𝑛 𝑓 𝑑 Function Calls for Finite Difference
𝑛𝑝𝑐𝑒 Function Calls for PCE at Each Step
𝑃 Number of Terms in PCE Model

𝑃𝑚𝑖𝑛𝑥 Chord wise Location of Minimum Pressure
𝑝 Order of PCE Model
R𝑧 Residual of Implicit Output, 𝑧
𝑆𝑤 Wing Area
𝑆𝑐𝑠𝑤 Control Surface Area
𝑡/𝑐 Wing Thickness-to-Chord Ratio
®𝑼 Uncertainty Space
𝑉 Velocity
𝑊𝑑𝑔 Flight Design Gross Weight
𝑊𝑤𝑖𝑛𝑔 Wing Weight
𝑊𝑡𝑜𝑡𝑎𝑙 Total Vehicle Weight
𝑊 𝑓 𝑢𝑒𝑙 Fuel Weight
𝑊𝑏𝑎𝑠𝑒 Base Vehicle Weight
®𝑥 Vector of Resampled PCE Values
𝝃 PCE Random Variables
𝑧 PCE Confidence Interval Bound
%𝐿 Percentage of Laminar Flow
𝛼 Angle of Attack
𝛽 Mach Correction
𝜅𝛼 Korn Factor
𝜆 Wing Taper Ratio
Λ Wing Leading Edge Sweep Angle
𝜇 Mean
Ψ𝑖 PCE Basis Functions 𝑖𝑡ℎ Mode
𝜎 Standard Deviation
𝜎𝐶𝐷0

Drag Multiplication Factor
𝜎𝐶𝐿

Stall Loss of Lift Factor
𝜔 Activation Function Tuning Parameter

I. Introduction
MDO tools and methods have rapidly advanced the state-of-the-art over the last decade. Notably, the NASA-

developed software, OpenMDAO [1], has provided the community an open-source, modular code built on a modern code
architecture. A recently completed Technical Challenge (TC) in the Transformational Tools and Technologies (TTT)
Project established gradient-based MDO that leverages analytical derivatives as a foundational approach throughout
NASA’s Aeronautics Research Mission Directorate (ARMD). The motivation of the research contained in this paper is
to extend the gradient-based MDO with analytical derivatives to uncertainty quantification and design under uncertainty.
This work will address the two primary roadblocks to uncertainty quantification adoption (computational cost and
problem complexity) and enable practitioners to efficiently perform design under uncertainty with limited knowledge
of uncertainty quantification (UQ). Integrating UQ into aircraft preliminary design is of particular interest to NASA.
Assessing the impact of uncertainties early in the design process can help guide higher fidelity analysis and potentially
prevent sub-optimal vehicle performance. The example cases laid out in this paper demonstrate the methodology on
optimizations which tailor designs for optimal confidence-interval-based predicted performance estimates.

The rest of the paper is organized as follows: Section II covers the uncertainty modeling methodology using
polynomial chaos and the assessment of analytical gradients through each step of the process. Section III applies the
methodology to a wing optimization case study. The wing itself is composed of aerodynamics, weights, and range
subsystems which are covered in Sections III.A, III.B, and III.C, respectively. The optimization problem formulation for
the case study and the results are detailed in Sections III.E and III.F. Finally, conclusions are presented in Section IV.
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II. Methodology
This section is divided into two subsections: the first section focuses on the underlying uncertainty modeling

methodology, and the second section introduces the approach to obtain analytical derivatives for the confidence interval
generated from a polynomial chaos model.

A. Uncertainty Quantification Methodology
Generally speaking, UQ encompasses the study of the impact of uncertainties in input parameters and modeling

simplifications on the outputs or responses of a process or simulation. UQ can vary in scope by including only a
single model or multiple models of varying fidelity levels as well as experimental data. The overarching objective of
UQ is to create a more robust design or evaluation process by identifying sensitivities and mitigating the potential
impact of uncertainties through informed, targeted resource investments. Two main types of uncertainty are present
in most simulations: model input uncertainty and model form uncertainty. An important facet of UQ is the proper
characterization and treatment of the simulation input uncertainties [2, 3].

1. Second-Order Probability
To propagate uncertainty through the model, the second-order probability approach outlined by Eldred and Swiler

[4] for the treatment of mixed aleatory and epistemic uncertainties was employed. A flowchart of the method is shown
in Fig. 1.

Fig. 1 Second-order probability architecture.

For each set of epistemic uncertainties, a cumulative distribution function (CDF) can be generated from the set
of associated aleatory uncertainties as seen in Fig. 2. The probability box (P-Box) plot shows the family of CDFs
generated from the second-order probability approach. To determine a 95% uncertainty interval on the response of
interest, the lowest response value is extracted from a CDF at the 2.5% probability level and the highest response value is
extracted from a CDF at the 97.5% probability level for a significance level of 𝑎=0.05. The use of the P-Box uncertainty
approach is conservative, but it is statistically justifiable for the given inputs to the simulations. Note that the choice of
significance level is somewhat subjective and can alter the findings.
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Fig. 2 Example P-Box.

2. Point-Collocation Non-intrusive Polynomial Chaos
A second method utilized in this research was non-intrusive polynomial chaos with point-collocation. Compared to

traditional sampling methods such as Monte Carlo, the polynomial chaos method has been demonstrated as a viable
and economical means of uncertainty quantification for CFD-based applications [5]. Polynomial chaos is a surrogate
modeling technique based on a spectral representation of uncertainty. An important aspect of spectral representation
of uncertainty is that a response value or random function, 𝐹, can be decomposed into separable deterministic and
stochastic components, as shown in Eq. (1).

𝐹 (𝒅, 𝝃) ≈
𝑃∑︁
𝑖=0

𝐴𝑖 (𝒅)Ψ𝑖 (𝝃) (1)

Here, 𝐴𝑖 is the deterministic component and Ψ𝑖 is the random variable basis functions corresponding to the 𝑖𝑡ℎ

mode. The basis functions, Ψ𝑖 , of each random variable are determined using the Askey key [6] and are dependent
on the distribution of each random variable. The response, 𝐹, is a function of independent, random variables, 𝝃, and
deterministic variables, 𝒅. This series is in theory an infinite series but is truncated in practice. To form a complete
basis or for a total order expansion, 𝑁𝑡 terms are required, which can be computed from Eq. (2) for a polynomial chaos
expansion (PCE) of order 𝑝 and a number of random dimensions or variables, 𝑛.

𝑁𝑡 = 𝑃 + 1 =
(𝑛 + 𝑝)!
𝑛!𝑝!

(2)

Further details on polynomial chaos theory are given by Refs. [5, 7–9]. To compute the expansion coefficients, 𝐴𝑖 , a
point-collocation method is utilized [5]. The response, 𝐹, is sampled at locations throughout the random variable space,
and the expansion coefficients are computed with an over-determined, least squares approach. At least 𝑁𝑡 samples are
needed for this procedure; Hosder et al. recommend an oversampling ratio of two (i.e., 2 · 𝑁𝑡 samples). In some models
where not all terms are significant, it is possible to build the PCE model with fewer than 𝑁𝑡 samples. A process such as
backward elimination [10] could be utilized to build such a model.

3. Uncertainty Quantification with Polynomial Chaos Expansion (UQPCE)
All of the uncertainty modeling and analysis contained in this research was performed with one of NASA’s in-house

uncertainty codes, Uncertainty Quantification with Polynomial Chaos Expansion, UQPCE [11]. UQPCE is an open
source, Python-based research code for use in parametric, non-deterministic computational analysis and design. UQPCE
utilizes a non-intrusive polynomial chaos expansion surrogate modeling technique, as outlined above in Section II.A.2,
to efficiently estimate uncertainties for computational analyses. The software enables the user to perform an automated
uncertainty analysis for any given computational code without requiring modification to the source. UQPCE estimates
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sensitivities, confidence intervals, and other model statistics which can be useful in the conceptual design and analysis of
flight vehicles. This software was originally developed with funding from the Commercial Supersonic Technology (CST)
Project to study the potential impacts of uncertainties on the prediction of ground noise generated from commercial
supersonic aircraft concepts [12–15]. The code development is currently supported by the TTT project and has been
leveraged in uncertainty analysis for electrified aircraft propulsion studies [16].

B. Analytical Derivatives for PCE-Generated Confidence Intervals
To employ a PCE approach in a gradient-based design under uncertainty MDO problem, a PCE model must be

assembled at each point within the design space (i.e., each step the optimizer takes). However, each PCE model only
gives estimates for statistical parameters (e.g., mean, variance, confidence intervals, sensitivities, etc.) at that step. As
noted in Ref. [8], the PCE models at each step are only valid for those particular values of design variables and must
be recalculated when the design variables are changed. To estimate derivatives at each step with a method such as
finite difference, multiple PCE models are necessary. The computational cost of these models scales with the order
of the PCE expansion, number of uncertain parameters, and the number of design variables. For any moderately
expensive underlying analysis, this process quickly becomes computationally intractable for cases with more than
tens of design or uncertain parameters. Furthermore, when mixed uncertainty problems are being considered, a
confidence-interval-informed objective function is required, which also adds non-negligible computational costs. Finite
difference or complex step approximations of derivatives are often not computationally efficient options for incorporating
uncertainty as constraints or objectives in an optimization. For these reasons, the authors propose an approach to
generate analytical derivatives from PCE models. When paired with an MDO problem that has an entire analytical
derivative tool chain, this approach can decrease computational costs by orders of magnitude.

Obtaining analytical derivatives of points on a confidence interval through a traditional process would involve
differentiation through a binning procedure. In this work, instead of attempting to model the binning, an implicit
function theorem and a smooth counting function are applied to generate an approximation that is sufficiently accurate
when the number of data points involved is sufficiently large. First, some guess, 𝑧𝑔𝑢𝑒𝑠𝑠 , is assumed for the value of the
upper bound of the confidence interval, 𝑧. In this paper, an activation function based on the hyperbolic tangent is used.

𝑓 (®𝑥, 𝑧, 𝜔) = 1 −
(1 + tanh( ®𝑥−𝑧

𝜔
))

2
(3)

Equation (3) is effectively a continuous counting function that provides an approximate count of the number of
elements in ®𝑥 that are less than or equal to 𝑧. The parameter 𝜔 determines how abrupt the transition from 0 to 1 is
in the vicinity near 𝑧. As 𝜔 approaches zero, the response more accurately models a step function, whereas larger
values provide a smoother derivative. Figure 3 shows the PDF, CDF and associated activation function for a normal
distribution. The vertical dashed lines in the figure represent the chosen significance level for the confidence interval
and the corresponding location on the PDF, CDF, and activation function.

For a selected significance level 𝑎 equal to 0.05, 95% of the data fall within the confidence interval, with 2.5%
falling above the upper end of the interval. The residual equation that governs the value of the 95% confidence interval,
𝑧, is thus:

R𝑧 (®𝑥, 𝑧, 𝜔) =
𝑛∑︁
𝑖=1

𝑓𝑖 (®𝑥, 𝑧, 𝜔) − 0.975𝑛 (4)

The partial derivatives for the residual with respect to both ®𝑥 and 𝑧 are needed. Although these derivatives can be
approximated using finite difference or complex step, it is not uncommon for ®𝑥 to have a length on the order of millions;
approximating the derivatives quickly becomes expensive. The analytical derivatives below are provided to OpenMDAO
to avoid unnecessary computational expense.

𝜕R𝑧 (®𝑥, 𝑧, 𝜔)
𝜕𝑥

=
−1

2𝜔 cosh2 ( ®𝑥−𝑧
𝜔

)
(5)
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Fig. 3 Example PDF, CDF, and activation function of a normal distribution.

𝜕R𝑧 (®𝑥, 𝑧, 𝜔)
𝜕𝑧

=

𝑚∑︁
𝑖=1

1
2𝜔 cosh2 ( ®𝑥−𝑧

𝜔
)

(6)

Note that although the above implementation of analytical derivatives was used for the analysis in this case study,
OpenMDAO now has the activation function implemented natively using the software package JAX[17] to calculate
the derivatives. Equation 4 is differentiable with respect to 𝑧 and can be efficiently solved using a Newton solver. To
utilize 𝑧 as an objective or constraint in gradient-based optimization, its total derivative with respect to the data ®𝑥 needs
to be computed. The software package OpenMDAO [1] is used to eliminate the residual using a Newton solver and
then efficiently compute derivatives of 𝑧 with respect to the data ®𝑥 by applying the implicit function theorem to Eq. (4).
Since R𝑧 is a scalar value, this derivative can be evaluated with a single linear solve in reverse mode as opposed to 𝑛

linear solves in forward mode. The hyperbolic tangent activation function can be susceptible to issues due to vanishing
gradients when elements of ®𝑥 are far from 𝑧, but the authors’ experience using the mean and variance estimation output
from the PCE model to inform the value of 𝑧𝑔𝑢𝑒𝑠𝑠 has lessened this concern. It is possible that more a priori information
about the uncertainty space may be required if the location of the 95% confidence interval is significantly far away from
the variance-informed value of 𝑧𝑔𝑢𝑒𝑠𝑠 shown in Eq. (7).

𝑧𝑔𝑢𝑒𝑠𝑠 = 𝜇 + 2𝜎 (7)

When epistemic uncertainties are present in a system, the bound on uncertainty is determined by finding the
confidence interval from the outer lower and upper curves as shown in Fig. 2. Two steps are followed to find this bound
on uncertainty while preserving the analytical derivatives throughout the calculation. First, the confidence interval of
each individual curve is calculated following the above hyperbolic tangent method; this preserves the differentiability of
the solved confidence interval values for all curves. Second, the minimum or maximum of these individual confidence
intervals is calculated using OpenMDAO’s implementation of the Kreisselmeier-Steinhauser (KS) function. This results
in a differentiable bound on the uncertainty for a system that includes both aleatory and epistemic uncertainties. This
technique coupled with the incorporation of analytical derivatives through an MDO process eliminates the need to
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estimate derivatives, which are usually derived from finite difference, complex step, or similar methods. Developing
a differentiable confidence interval allows mixed uncertainty problems to be modeled where previous methods were
unable to represent objective functions containing statistical quantities such as mean and variance.

The cost per iteration of running a gradient-based optimization incorporating uncertainty with PCE and finite
difference to estimate gradients, 𝑛 𝑓 𝑑 , is given by Eq. (8).

𝑛 𝑓 𝑑 = 𝑛𝑝𝑐𝑒 (𝑛𝑑𝑣 + 1) (8)

where 𝑛𝑝𝑐𝑒 is the number of terms necessary to build the PCE model and 𝑛𝑑𝑣 is the number of design variables in
the optimization (note that 𝑛𝑝𝑐𝑒 is equivalent to 𝑁𝑡 in Eq. (2), and in practice, 2𝑁𝑡 or 2𝑛𝑝𝑐𝑒 are generally used.)
Conversely, the cost per iteration of running a gradient-based optimization incorporating uncertainty with PCE and
analytical gradients to obtain gradients, 𝑛𝑎𝑛, is given by Eq. (9).

𝑛𝑎𝑛 = 𝑛𝑝𝑐𝑒 (9)

From Eqs. (8) and (9), the cost savings of design under uncertainty for gradient-based optimization leveraging analytical
gradients through PCE scales with the product of the number of terms necessary to build the PCE model and the
number of design variables, 𝑛𝑝𝑐𝑒𝑛𝑑𝑣 . The addition of analytical derivatives to a polynomial-chaos-based UQ method
can decrease the computational costs of performing design under uncertainty by orders of magnitude in comparison
with methods such as finite difference or complex step.

III. Case Study
This case study is an academic exercise of the methodology on a multidisciplinary optimization under uncertainty. A

wing design case was chosen as a relevant application for aerospace multidisciplinary design. This case study is not an
attempt to capture all relevant physics and design considerations for an aircraft wing. Rather, this work will demonstrate
the tools and methods developed on a problem of interest for conceptual design, leveraging “textbook methods” for
minimal computational costs and ease of visualization of the design space. Two separate optimizations are detailed in
this paper, one for maximum lift-to-drag ratio (𝐿/𝐷), and a second for maximum range. The design parameters and
uncertain parameters differ for each. All design parameters and uncertain parameters are listed in this Section (refer to
Section III.E for details). The design variables for the optimizations are given in Table 1, and the uncertain parameters
are given in Tables 2 and 3. The following sections will discuss the various disciplines and analysis incorporated in this
case study.

Table 1 Design variables

Input Range Optimization
𝑡/𝑐 [0.1, 0.15] Both

𝑃𝑚𝑖𝑛𝑥 [0.3, 0.5] Both
𝐶 [0.01, 0.043] Both
𝛼 [-8, 14](deg) 𝐿/𝐷 Only
𝜆 [0.1, 1] Both
Λ [0, 40] (deg) Both
𝑏 [20, 50] (m) Both
𝑐𝑟 [5, 7 ](m) Both
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Table 2 Uncertain parameters (epistemic)

Input Interval Optimization
%𝐿 [0, 25%] Both
𝜎𝐶𝐷0

[4, 6] Both
𝜅𝛼 [0.85, 0.95] Both
𝑆𝑐𝑠𝑤 [0.05, 0.2] Range Only

Table 3 Uncertain parameters (aleatory)

Input Distribution Mean Std. Dev.
𝜎𝐶𝐿

Gaussian 2𝑥10−5 3𝑥10−6 Both
𝑀 Gaussian 0.72 0.02 Both
𝑐𝑡 Gaussian 0.45 0.045 (1/hr) Range Only

A. Aerodynamics
Aerodynamic calculations for lift and drag are implemented from analytic, low fidelity methods. Only lift and

drag are considered in this case study. First, 72 NACA 6-series airfoils of varying thickness and camber were run
through a 2-D panel code[18] to estimate their sectional lift curve slope and lift at 𝛼 = 0 values. Then, a regression
model was assembled from the data to fit characteristics from the NACA 6-series (location of minimum pressure, 𝑃𝑚𝑖𝑛𝑥 ,
thickness-to-chord ratio, 𝑡/𝑐, and camber, 𝐶) to the sectional lift values. This process allowed the optimizer to have
continuous design variables that influenced the sectional lift properties.

𝐶𝑙𝛼 = 𝑓 (𝑃𝑚𝑖𝑛𝑥 , 𝑡/𝑐, 𝐶) (10)

𝐶𝑙𝛼0
= 𝑓 (𝑃𝑚𝑖𝑛𝑥 , 𝑡/𝑐, 𝐶) (11)

A knockdown factor of 0.5 was applied to 𝐶𝑙𝛼0
to take into account 3-D wing effects. The factor of 0.5 was chosen to

match aerodynamic performance data for 737 class vehicles.

𝐶𝐿𝛼0
= 0.5𝐶𝑙𝛼0

(12)

The wing lift curve slope,𝐶𝐿𝛼
, from Ref. [19] is given in Eq. (13) below. This formula takes into account compressibility,

sweep, and finite span effects.

𝐶𝐿𝛼
=

2𝜋𝐴𝑅

2 +
√︃

4 + 𝐴𝑅2𝛽2

𝜂2 (1 + tan 2 (Λ)/𝛽2)
(13)

where 𝛽 and 𝜂 are given by:

𝛽 =
√︁

1 − 𝑀2 (14)

𝜂 =
𝐶𝑙 𝛼

2𝜋/𝛽 (15)

The lift coefficient then becomes:

𝐶𝐿 = 𝐶𝐿𝛼0
+ 𝐶𝐿𝛼

𝛼 − 𝜎𝐶𝐿
𝛼4 (16)
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The last term of Eq. (16) contains an uncertain parameter, 𝜎𝐶𝐿
, that models the stall loss of lift at higher angles of

attack. To calculate the skin friction drag or zero lift drag, flat plate equations [20] were utilized:

𝐶 𝑓𝐿 =
1.328
√
𝑅𝑒𝐿

(17)

𝐶 𝑓𝑇 =
0.455

log(𝑅𝑒𝐿)2.58 (1 + 0.144𝑀2)0.65 (18)

The zero lift drag coefficient is then estimated by:

𝐶𝐷0 = 2(𝐶 𝑓𝐿%𝐿 + (1 − %𝐿)𝐶 𝑓𝑇 )𝜎𝐶𝐷0
(19)

where the uncertain parameter, %𝐿 , denotes the percentage of expected laminar flow over the wing. The factor of two
represents drag on both "sides" of the flat plate (upper and lower wing surface). 𝜎𝐶𝐷0

is an uncertain parameter that
multiplies the zero lift drag of the wing to estimate a value for the theoretical full vehicle. The range of 𝜎𝐶𝐷0

, [4, 6],
translates to the wing accounting for roughly 17% to 25% of the overall theoretical full vehicle zero lift drag. Equations
to determine the wing efficiency, which is an input into the induced drag calculation, are based on historical data, and
regression models are given by Pamadi [21] in Eqs. (20), (21), and (22). These equations take into account wing aspect
ratio, leading edge sweep, taper ratio, and section lift coefficient.

𝜅 =
𝐴𝑅𝜆

cosΛ
(20)

𝑟 = 0.0004𝜅3 − 0.008𝜅2 + 0.05𝜅 + 0.86 (21)

𝑒 =
1.1𝐶𝐿𝛼

𝑟𝐶𝐿𝛼
+ (1 − 𝑟)𝜋𝐴𝑅 (22)

The induced drag, 𝐶𝐷𝑖
, is then calculated by:

𝐶𝐷𝑖
=

𝐶2
𝐿

𝜋𝑒𝐴𝑅
(23)

The wave drag, 𝐶𝐷𝑤
, is given by:

𝐶𝐷𝑤
= 20(𝑀 − 𝑀𝑐𝑟 )4 (24)

where the critical Mach number, 𝑀𝑐𝑟 , is:

𝑀𝑐𝑟 = 𝑀𝐷𝐷 − 0.1
80

1/3
(25)

and the drag divergence Mach number, 𝑀𝐷𝐷 , is given by:

𝑀𝐷𝐷 =
𝜅𝛼

cosΛ − 𝑡/𝑐
cosΛ2 − 𝐶𝐿

10 cosΛ3

(26)

The Korn factor, 𝜅𝛼, [22] was included as an uncertain parameter (see Table 3). The total drag is given by the summation
of the zero lift drag, induced drag, and wave drag.

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝑖
+ 𝐶𝐷𝑤

(27)
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B. Weights
Wing weight formulations were used in the optimization both as a constraint and as part of an objective function in

two separate optimizations. An empirical method based on historical data and regression estimations given by Raymer
[19] (imperial units) was employed. This equation takes into account all the wing planform characteristics and estimates
an empty wing mass based on historical data.

𝑊𝑤𝑖𝑛𝑔 = 0.0051(𝑊𝑑𝑔𝑁𝑧)0.557𝑆0.649
𝑤 𝐴𝑅0.5𝑡/𝑐−0.4 (1 + 𝜆)0.1 cos(Λ)−1𝑆0.1

𝑐𝑠𝑤𝑔 (28)
A control surface area, 𝑆𝑐𝑠𝑤 , of 10% was estimated for 𝐿/𝐷 optimization (see Section III.E) and treated as an uncertain
parameter for the range optimization. The weight for the remaining vehicle, 𝑊𝑏𝑎𝑠𝑒, (empty operating weight plus
passengers and cargo minus fuel and wing weight) was set as a constant of 63,000 kg. This value was chosen to align
the data in the demonstration case to roughly to a 737-8 class vehicle.

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑤𝑖𝑛𝑔 +𝑊 𝑓 𝑢𝑒𝑙 +𝑊𝑏𝑎𝑠𝑒 (29)

C. Range
Vehicle range was only calculated in the optimization problem maximizing range. The Breguet range equation [23]

for a cruise climb was implemented.

𝑅 =
𝑉

𝑐𝑡

𝐿

𝐷
ln

𝑊0
𝑊1

(30)

Thrust specific fuel consumption (TSFC), 𝑐𝑡 , was treated as an uncertain parameter (see Table 3). A fuel mass of 17,500
kg (𝑊0 −𝑊1) was set as a constant and the start of cruise altitude was set at 35,000 ft.

D. Iterative Force Balance
During the range optimization process, each iteration produces a wing design with a corresponding weight. In the

demonstration optimizing range, angle of attack is not a design variable, but a solver variable (see III.E for more details).
To get an accurate prediction of range, the vehicle must be trimmed so that 𝐿 = 𝑊 . The example problem utilizes a
Newton solver coupled with an OpenMDAO balance component to solve for the 𝛼 value that produces the necessary lift
to balance weight. The solved 𝛼 values are then passed along to the drag calculation and propagated through the rest of
the problem.

E. Optimization Problem Formulations
To demonstrate the design under uncertainty methodology, two optimizations were performed. An example extended

Design Structure Matrix (XDSM) of an optimization incorporating the calculations in the above sections is shown in Fig.
5 below. In this work, we adopt the convention of the † superscript for input or outputs containing uncertain parameters
and the purple color for blocks where uncertainty analysis is performed. Subscripts 𝐶𝐼 indicate a confidence interval
value estimated from a UQPCE analysis.

1. Simplified Optimization Problem: 𝐿/𝐷
The first optimization problem focused on maximizing 𝐿/𝐷, utilizing only aerodynamics and weights subsystems

(Sections III.A and III.B). In this optimization, the lower 95% confidence interval for the 𝐿/𝐷 is maximized subject
to a maximum wing weight constraint. The arbitrary wing weight constraint was enforced to prevent the wing from
sizing unrealistically heavy. This simple example enables comparisons back to a deterministic optimization for the same
response. For the deterministic optimizations, the uncertain parameters were fixed at their mean in the case of aleatory
uncertainties or central value in the case of epistemic uncertainties. Note that the uncertain parameters 𝑐𝑡 and 𝑆𝑐𝑠𝑤 in
Tables 2 and 3 were not included in this simplified case. The formulation of this optimization problem is given by:

Maximize 𝐿/𝐷
Subject to Weight Constraint : 𝑊𝑤𝑖𝑛𝑔 < 6000 𝑘𝑔

An XDSM of this simplified optimization is given in Fig. 4.
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Fig. 4 XDSM of simplified optimization.

2. Extended Optimization Problem: Range
The second optimization incorporated all the disciplines and targeted maximizing the lower 95% confidence interval

of range. A constraint was imposed on minimum lift generation during cruise to ensure sufficient lift generation to
balance weight. This constraint was imposed to ensure solver convergence outlined in Section III.D. The formulation of
this optimization problem is given by:

Maximize 𝑅𝑎𝑛𝑔𝑒

Subject to Lift Constraint : 𝐿𝑚𝑎𝑥 > 𝑊𝑡𝑜𝑡𝑎𝑙

For each optimization, the user provides design variables, ranges, and initial guesses, ( ®𝑱∗), and constraints, ( ®𝑲).
Then the initial wing planform is calculated. Next, the optimizer feeds the wing planform into the weights analysis
block which produces a weight estimate that is returned to the optimizer. Then, the wing design is passed to the
aerodynamics analysis along with the uncertainty space. The first, simplified example case returns the 𝐿/𝐷 parameter
to the optimizer and iterates until convergence. The second, expanded example case contains a UQPCE block which
wraps a Newton solver and the aerodynamics block in a subproblem where 𝛼 is iterated to balance 𝐿 and 𝑊𝑡𝑜𝑡𝑎𝑙 . Note
that the output from the subproblem is a vector of lift values, which in turn produces a vector of solved 𝛼 values. The
minimum lift constraint value, 𝐿𝑚𝑎𝑥 , is also calculated in the aerodynamics block and passed back to the optimizer. The
solved 𝛼 vector is used to calculate drag, which along with lift, is passed to the range calculation block. PCE models
are assembled from the UQPCE block from the vectors of lift and drag. Similar to the aerodynamics block, another
UQPCE block wraps the range calculation in a subproblem and produces a vector of range values which are used to
generate the PCE model for the range response. Finally, the lower 95% confidence interval for range is fed back to
the optimizer as the objective function. The optimizer iterates on the design variables until convergence is achieved.
For this formulation of the problem, it is not explicitly necessary to solve for 𝛼 in this manner. However, the forward
propagation of uncertainty becomes easier to model with this approach.
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Fig. 5 XDSM of full optimization.

F. Results
This section details the results from both optimizations in this case study. The simplified example optimizing 𝐿/𝐷

will be discussed first. Then the second, more complex example, which focused on optimizing range, will be detailed.

1. Simplified Optimization Problem: 𝐿/𝐷
The simplified example was chosen as a demonstration case for easy comparison between a deterministic optimization

and an optimization under uncertainty. The resultant design variable outputs for these optimizations are given in Table
4. Note that the constraint of maximum wing weight was active for both the deterministic and uncertain cases. This is
expected as the optimizer would prefer to drive the wing larger (bigger span) to reduce induced drag thereby increasing
𝐿/𝐷.

Table 4 Comparison of design variable output from uncertain and deterministic optimizations

Variable 𝐿/𝐷𝐶𝐼 (Uncertain) 𝐿/𝐷 (Deterministic)
𝑡/𝑐 0.1 0.115

𝑃𝑚𝑖𝑛𝑥 0.317 0.3
𝐶 0.043 0.043
𝛼 3.888 (deg) 3.349 (deg)
𝜆 0.238 0.223
Λ 37.15 (deg) 26.86 (deg)
𝑐𝑟 5 (m) 5 (m)
𝑏 30.33 (m) 34.84 (m)
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A visual comparison of the optimal wing designs is shown in Fig. 6. The most visible difference is the sweep angle
between the two wings. The uncertain optimization (red) added more sweep to counter the impact of increased wave
drag at the higher end of the Mach number uncertain range (see Eq. (24) through Eq. (26). To balance the increased
weight from a higher leading edge sweep angle (see Eq. (28)), the span was decreased.

Fig. 6 Comparison of optimal planform designs (deterministic in blue, uncertain in red).

The confidence intervals and mean values from the resultant optimizations are given in Table 5.

Table 5 Comparison of results from uncertain and deterministic optimizations.

Variable 𝐿/𝐷𝐶𝐼 (Uncertain) 𝐿/𝐷 (Deterministic)
Mean 15.73 18.073

Confidence Interval [12.71, 18.74] [8.031 , 21.03]

The optimal design for the deterministic case produces a higher mean (or central value due to the presence of epistemic
uncertainty) 𝐿/𝐷 value than the uncertain case, 18.07 versus 15.73. However, at the optimal point for the deterministic
solution, the lower confidence interval for 𝐿/𝐷 is significantly lower than the corresponding value on the uncertain
graph, 8.031 versus 12.71. Interpreting these results, the uncertain optimization has taken into account the uncertainty
within the design space and tailored the wing planform design to mitigate against the probability of an extremely low
𝐿/𝐷 response. In this case, if this wing were designed without considering uncertainty, there would be a probability of
encountering significantly lower 𝐿/𝐷 values, even though the mean value outperforms that of the uncertain design.
This demonstrates a common outcome when performing design under uncertainty - trading a less desirable mean value
of the quantity of interest for more desirable “worst-case” value of the quantity of interest.

2. Extended Optimization Problem: Range
The resultant design variable outputs for deterministic and uncertain optimizations are given in Table 6. Note that

the constraint of minimum lift was not active for either the deterministic or uncertain cases. Table 6 indicates the major
difference between the two designs is the leading edge sweep angle. Similar to the first, simplified case, the uncertain
design resulted in a wing with more sweep. Note that the wing weight is a fallout calculation from the planform and is
non-deterministic for the uncertain case given the uncertain parameters in the analysis (See Tables 2 and 3).

Although this demonstration case is not a direct comparison between uncertain and deterministic optimization due
to the abstraction of the uncertainty space, a small benefit was realized. The uncertain optimization was able to produce
roughly a 10.2% increase in the lower confidence interval estimate for range while producing a marginally smaller
predicted mean value (1.2%). As shown in Table 6 the uncertain optimization produced a wing with a significantly
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Table 6 Design and output parameters from optimization with uncertainty

Variable 𝑟𝑎𝑛𝑔𝑒𝐶𝐼 Uncertain 𝑟𝑎𝑛𝑔𝑒 (Deterministic)
𝑡/𝑐 0.1 0.118

𝑃𝑚𝑖𝑛𝑥 0.312 0.3
𝐶 0.043 0.043
𝜆 0.196 0.185
Λ 30.59 (deg) 24.32 (deg)
𝑐𝑟 5 (m) 5 (m)
𝑏 45.62 (m) 46.00 (m)

𝑊𝑤𝑒𝑖𝑔ℎ𝑡 9291.4 (mean, kg) 8338.0(kg)

Table 7 Comparison of results from uncertain and deterministic optimizations

Variable 𝑟𝑎𝑛𝑔𝑒𝐶𝐼 (Uncertain) 𝑟𝑎𝑛𝑔𝑒 (Deterministic)
Mean 3679.6 (nmi) 3723.1 (nmi)

Confidence Interval [2581.2, 5414.1] (nmi) [2342.4, 5653.9] (nmi)

larger mass, 9291.4 kg vs 8338 kg. The optimizer chose to trade wing weight for better aerodynamic performance to
increase the lower confidence interval for range.

Referring back to the Eqs. (8) and (9) in Section II, the cost savings to run this case can be estimated. This
particular case required 53 iterations to converge, resulting in a theoretical total function call for finite-difference-based
optimization of 30,952. With analytical derivatives for the same problem, the function call count becomes 3,816, a
potential reduction of 87.7%.

IV. Conclusion
A framework for performing design under uncertainty leveraging polynomial chaos methods has been integrated

into OpenMDAO. A demonstration case was presented showcasing the methodology. The developed code is extensible
to any MDO analysis that can be formulated into an OpenMDAO-based analysis or design. Analytical gradients through
polynomial chaos models enable orders of magnitude computational savings over finite difference or complex step in
gradient-based optimization for design under uncertainty. The cost of optimization incorporating uncertainty has been
decoupled from the number of design parameters in the problem. Constraints and objective functions can be formulated
as either deterministic, uncertain, or combinations of both. The underlying polynomial chaos surrogate model is exposed
to the user to enable an objective function of any statistical quantity desired. Future work will be focused on open source
release of the code developed for this research, extensions of multifidelity analysis, demonstration cases with higher
fidelity physics tools, and integration with the model-based systems analysis and engineering architectures.

V. Acknowledgements
The authors would like to thank Dr. Nicholas Borer and Dr. Nat Blaesser for their support in formulating the

demonstration problem, as well as Mr. Brandon Litherland for his assistance generating airfoil models and graphics for
this paper. This research was made possible by support from the Transformational Tools and Technologies Project
(TTT) within the Transformative Aeronautics Concepts Program (TACP). Previous support for UQPCE development
was funded by the Commercial Supersonic Technology Project (CST).

14



References
[1] Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open-source framework for

multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075–1104. https://doi.org/10.1007/s00158-019-02211-z.

[2] Walker, E. L., Hemsch, M. J., and West IV, T. K., “Integrated Uncertainty Quantification for Risk and Resource Management:
Building Confidence in Design (Invited),” 53𝑟𝑑 AIAA Aerospace Science Meeting, AIAA 2015-0501, Kissimmee, Florida,
2015. https://doi.org/10.2514/6.2015-0501.

[3] Oberkampf, W. L., and Roy, C. J., Verification and Validation in Scientific Computing, Cambridge University Press, New York,
NY, 2010.

[4] Eldred, M., and Swiler, L., “Efficient Algorithms for Mixed Aleatory-Epistemic Uncertainty Quantification with Application to
Radiation-Hardened Electronics; Part I: Algorithms and Benchmark Results,” Tech. Rep. SAND2009-5805, Sandia National
Laboratories, September 2009.

[5] Hosder, S., Walters, R. W., and Balch, M., “Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic
Computational Fluid Dynamics,” AIAA Journal, Vol. 48, No. 12, 2010, pp. 2721–2730. https://doi.org/10.2514/1.39389.

[6] Xiu, D., and Karniadakis, G. E., “The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM Journal
on Scientific Computing, Vol. 24, No. 2, 2002, pp. 619–644. https://doi.org/10.1137/S1064827501387826.

[7] Ghanem, R. G., and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, NY, 1991.

[8] Eldred, M. S., “Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty
Analysis and Design,” 50𝑡ℎ AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA
Paper 2009-2274, 2009. https://doi.org/10.2514/6.2009-2274.

[9] Sudret, B., “Global Sensitivity Analysis Using Polynomial Chaos Expansion,” Reliability Engineering and System Safety,
Vol. 93, No. 7, 2008, pp. 964–979. https://doi.org/10.1016/j.ress.2007.04.002.

[10] Montgomery, D. C., Design and Analysis of Experiments, 8th ed., Wiley, Hoboken, NJ, 2012.

[11] Phillips, B. D., and Schmidt, J. N., “UQPCE v0.3.0,” https://github.com/nasa/UQPCE, 2023.

[12] Phillips, B. D., and West IV, T. K., “Trim Flight Conditions for a Low-Boom Aircraft Under Uncertainty,” Journal of Aircraft,
Vol. 56, No. 1, 2019, pp. 53–67. https://doi.org/10.2514/1.C034932.

[13] Phillips, B. D., Heath, C., and Schmidt, J. N., “System-Level Impact of Propulsive Uncertainties for Low-Boom Aircraft
Concepts,” AIAA AVIATION 2020 Forum, AIAA 2020-2730, Virtual Event, 2020. https://doi.org/10.2514/6.2020-2730.

[14] Endo, M., and Phillips, B. D., “Uncertainty Quantification of CFD Model Assumptions Against Sonic Boom Noise Prediction
of a Commercial Supersonic Transport,” AIAA SCITECH 2022 Forum, AIAA 2022-0401, San Diego, California, 2022.
https://doi.org/10.2514/6.2022-0401.

[15] Phillips, B. D., and West IV, T. K., “Aeroelastic Uncertainty Quantification of a Low-Boom Aircraft Configuration,” 2018 AIAA
Aerospace Sciences Meeting, AIAA 2018-0333, Kissimmee, Florida, 2018. https://doi.org/10.2514/6.2018-0333.

[16] Kirk, J., Frederick, Z. J., Guynn, M. D., Blaesser, N. J., Phillips, B. D., Fisher, K., Schneider, S. J., and Frederic, P., “Continued
Exploration of the Electrified Aircraft Propulsion Design Space,” AIAA SCITECH 2023 Forum, AIAA 2023-1354, 2023.
https://doi.org/10.2514/6.2023-1354.

[17] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhan, Q., “JAX: composable transformations of Python+NumPy programs,” , ???? URL
http://github.com/google/jax.

[18] Drela, M., “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” Low Reynolds Number Aerodynamics,
Springer Berlin Heidelberg, 1989.

[19] Raymer, D. P., Aircraft Design: A Conceptual Approach, 3rd ed., American Institute of Aeronautics and Astronautics, Inc,
Reston, VA, 1999.

[20] Bertin, J. J., and Cummings, R. M., Aerodynamics for Engineers, 5th ed., American Institute of Aeronautics and Astronautics,
Inc, Reston, VA, 2009.

15

https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.2514/6.2015-0501
https://doi.org/10.2514/1.39389
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.2514/6.2009-2274
https://doi.org/10.1016/j.ress.2007.04.002
https://github.com/nasa/UQPCE
https://doi.org/10.2514/1.C034932
https://doi.org/10.2514/6.2020-2730
https://doi.org/10.2514/6.2022-0401
https://doi.org/10.2514/6.2018-0333
https://doi.org/10.2514/6.2023-1354
http://github.com/google/jax


[21] Pamadi, B. N., Performance, Stability, Dynamics and Control of Airplanes, 3rd ed., American Institute of Aeronautics and
Astronautics, Inc, Reston, VA, 2015.

[22] Gur, O., Mason, W. H., and Schetz, J. A., “Full-Configuration Drag Estimation,” Journal of Aircraft, Vol. 47, No. 4, 2010, pp.
1356–1367. https://doi.org/10.2514/1.47557.

[23] Nicolai, L. M., and Carichner, G. E., Fundamentals of Aircraft and Airship Design Volume 1 - Aircraft Design, American
Institute of Aeronautics and Astronautics, Inc, Reston, VA, 2010.

16

https://doi.org/10.2514/1.47557

	Introduction
	Methodology
	Uncertainty Quantification Methodology
	Second-Order Probability
	Point-Collocation Non-intrusive Polynomial Chaos
	Uncertainty Quantification with Polynomial Chaos Expansion (UQPCE)

	Analytical Derivatives for PCE-Generated Confidence Intervals

	Case Study
	Aerodynamics
	Weights
	Range
	Iterative Force Balance
	Optimization Problem Formulations
	Simplified Optimization Problem: L/D
	Extended Optimization Problem: Range

	Results
	Simplified Optimization Problem: L/D
	Extended Optimization Problem: Range


	Conclusion
	Acknowledgements

