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In this paper, we report progress in the development of economically high-order flux-
solution-reconstruction (FSR) schemes, which are second-order accurate on general un-
structured grids but achieve high-order accuracy when a grid is regular. Two variants of the
FSR schemes are discussed: chain-rule-flux-solution reconstruction (CFSR) and quadratic-
form-flux-solution reconstruction (QFSR), where the former is based on the chain rule
and the latter on the flux reconstruction expressed as a function of solution variables.
These schemes are tested for flows with shock waves with a limiter incorporated in the flux
and solution reconstructions. Improved results, compared with second-order methods, are
demonstrated for inviscid and viscous flows with both smooth grids and adaptive grids.

1. Introduction

A widely used way of acheiving second-order spatial accuracy in finite volume (FV) discretization for
computational fluid dynamics (CFD) codes are the Monotonic Upstream-centered Scheme for Conservation
Laws (MUSCL) schemes1 for structured grids or their unstructured counterparts called U-MUSCL schemes.
A series of papers2–6 have contained clarifications on the details of U-MUSCL-type unstructured-grid schemes
and identified efficient flux-solution reconstruction (FSR) schemes that can achieve high-order accuracy on
a regular quadrilateral/hexahedral grid away from a boundary. The FSR schemes are based on point-
valued solutions and a point-valued approximation to a target system of equations, which can be either at
a cell center or at a node in an unstructured grid. These schemes are efficient because they achieve high-
order accuracy with only a single flux evaluation per face. This study follows the work of Nishikawa5 and
stores solutions at nodes and applies the edge-based flux quadrature formula to construct a point-valued
approximation to the Euler and Navier-Stokes equations in a conservative manner. As demonstrated,5 high-
order accuracy is achieved on a regular grid by high-order solution and flux reconstruction techniques based
on the U-MUSCL formula originally proposed by Burg7 and later extended by Yang and Harris.8 A unique
feature of the FSR schemes is the flux reconstruction method used, which is critical to achieving high-order
accuracy for nonlinear equations but has long been ignored in the U-MUSCL-type schemes. Another is the set
of techniques to avoid computing and storing flux derivatives (which can be expensive in three dimensions):
utilizing the chain rule in a solution-based quadratic flux reconstruction. Accuracy up to fifth-order has been
demonstrated for simple smooth inviscid problems on regular grids.5

In this paper, we demonstrate the 3rd- and 4th-order FSR schemes in one- and two-dimensions, as well
as in three dimensions in the FUN3D code developed at NASA Langley.9 We look at truncation and
discretization errors on regular triangular/tetrahedral and quadrilateral/hexahedral grids followed by an
evaluation of these schemes on perturbed or irregular variants of these grids to better demonstrate the error
properties of these respective schemes. We also show the behavior of these schemes on realistic geometries,
showing improvements on irregular or adapted grids.
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Figure 1. A stencil for the edge-based FSR schemes, njk = nℓ
jk + nr

jk.

2. FSR Schemes

Consider a general system of hyperbolic equations:

∂u

∂t
+ divF = s, (2.1)

where u is a vector of conservative variables, F is the flux tensor, and s is a forcing term. The FSR schemes
are defined as a flux-balance discretization of Equation (2.1) based on the edge-based flux quadrature applied
to a dual control volume around a node j in an unstructured grid (see Figure 1):

duj

dt
+

1

Vj

∑
k∈{kj}

Φjk|njk| = sj , (2.2)

with the following numerical flux

Φjk =
1

2
[fL + fR]−

1

2
D̂n [u(wR)− u(wL)] , (2.3)

where Vj is the dual volume around the node j, f = F · n̂jk is the flux projected along the directed-area

vector, which is the sum of all dual faces shared by the edge, njk = n̂jk|njk|, D̂n = |∂f/∂u| is the dissipation
matrix evaluated with the Roe averages of either the nodal values wj and wk for robustness and smoothness
of the residual,10,11 or the reconstructed values wL and wR. The solution reconstruction1 is performed with
the primitive variables w = (ρ,v, p) as

wL = κ
wi +wk

2
+ (1− κ)

[
wj + ∂̂jwj

]
+ κ3 ∂̃3j w, (2.4)

wR = κ
wk +wj

2
+ (1− κ)

[
wk + ∂̂kwk

]
+ κ3 ∂̃3kw, (2.5)

where

∂̃3jw =
1

2

{
∂̂jwk − ∂̂jwj

}
− ∂̂2j wj , ∂̃3kw =

1

2

{
∂̂kwj − ∂̂kwk

}
− ∂̂2kwk, (2.6)
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∂̂j = (xm − xj) · ∇, ∂̂k = (xm − xk) · ∇, (2.7)

xm denotes the position vector of the edge midpoint, and xj and xk denote the nodal position vectors of j
and its neighbor k, respectively (see Figure 1). As discussed previously,5 the U-MUSCL of Burg corresponds
to fL = f(wL) and fR = f(wR) with κ = 1/2 and κ3 = 0, and the U-MUSCL scheme of Yang and Harris
with κ = 1/3 and κ3 = −2/3; these schemes cannot be higher than second-order accurate for nonlinear
equations, in principle.4,5

Flux reconstruction is required to achieve third- and higher-order accuracy. We consider two efficient
techniques: chain-rule-flux-solution reconstruction (CFSR) and quadratic-form-flux-solution reconstruction
(QFSR) as proposed previously.5 In CFSR, we perform the flux reconstruction by the chain rule:

fL = θ
fk + fj

2
+ (1−θ)

[
fk + ∂̂jfj

]
+ θ3 ∂̃3j fj , (2.8)

fR = θ
fk + fj

2
+ (1−θ)

[
fk + ∂̂kfk

]
+ θ3 ∂̃3kfk, (2.9)

where θ and θ3 are parameters, and

∂̃3j f =
1

2

{
∂̂jfk − ∂̂jfj

}
− ∂̂2j fj , ∂̃3kf =

1

2

{
∂̂kfj − ∂̂kfk

}
− ∂̂2kfk, (2.10)

∂̂jfj =

(
∂f

∂w

)
j

∂̂jwj , ∂̂kfk =

(
∂f

∂w

)
k

∂̂kwk, (2.11)

∂̂2j fj = ∂̂j

(
∂f

∂w

)
j

+

(
∂f

∂w

)
j

∂̂2j wj , ∂̂2kfk = ∂̂k

(
∂f

∂w

)
k

+

(
∂f

∂w

)
k

∂̂2kwk. (2.12)

The CFSR scheme is third-order accurate with,5 (κ, κ3, θ, θ3) = (arbitrary, 0, 1/3, 0), and fourth-order ac-
curate with (κ, κ3, θ, θ3) = (arbitrary, κ − 1, 1/3, 0) or (κ, κ3, θ, θ3) = (arbitrary, κ − 1, 1/3,−8/15), which
are referred to as CFSR3, CFSR4, and CFSR5, respectively. In these schemes, the choice of κ is arbitrary;
it can be used to control the level of dissipation. Note that κ = 1 no longer means zero dissipation when
κ3 ̸= 0.

On the other hand, in QFSR, we perform the flux reconstruction in terms of the solution:

fL = fj +

(
∂f

∂w

)
j

∆wL +
θ2
2

[(
∂2f

∂w2

)
j

∆wL

]
∆wL, (2.13)

fR = fk +

(
∂f

∂w

)
k

∆wR +
θ2
2

[(
∂2f

∂w2

)
k

∆wR

]
∆wR, (2.14)

where θ2 is a parameter and

∆wL = wL −wj , ∆wR = wR −wk. (2.15)

The QFSR scheme achieves, on a regular grid, third-order accuracy with (κ, κ3, θ2) = (1/3, 0, 2/3) and
fourth-order accuracy with (κ, κ3, θ2) = (1/3,−2/3, 2/3). To achieve fifth-order accuracy, the solution re-
construction needs to be performed with the parameter vector and extra terms need to be introduced in the
flux reconstruction; this scheme is called QFSR5(Z).5

3. Third-Order Truncation Error from Dissipation on Regular Triangular
Grids

In this section, we show that a third-order truncation error term arising from the dissipation term
cannot be completely eliminated on regular triangular grids. Since the averaged flux part of the numerical
flux generates only even-order error terms, we focus on the dissipative part of the residual for a scalar
conservation law with a variable u,

1

Vj

∑
k∈{kj}

ϕdjk|njk|, (3.1)
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Figure 2. Regular triangular grid.

with

ϕdjk = −1

2
D (uR − uL) , (3.2)

where D is taken as a global constant for simplicity and the gradients and the Hessian used in the recon-
struction are assumed to be computed by the unweighted least squares (LSQ) method. Expanding this on
a regular triangular grid as shown in Figure 2, we find

1

Vj

∑
k∈{kj}

ϕdjk|njk| = h3
(κ3 + 1− κ)D

12

(√
2 +

√
5
)
(∂xxxxu+ ∂yyyyu)

+ h3
D

12

[(
10(1− κ)

3
+ 4κ3

)√
2 +

2

3
(1− κ)

√
5

]
(∂xxxyu+ ∂xyyyu)

+ h3
D

12

[(
14(1− κ)

3
+ 6κ3

)√
2 +

4

3
(1− κ)

√
5

]
∂xxyyu. (3.3)

It is clear that the choice κ3 = κ−1, which eliminates a third-order error on a regular quadrilateral/hexahedral
grid, cannot eliminate all the third-order error terms. But it eliminates the the first term and thus it can be
a more accurate third-order scheme with κ3 = κ− 1 than that with κ3 = 0.

4. Limiting

So far, the FSR schemes have been demonstrated only for smooth flows.5 These schemes need to be
equipped with a nonoscillatory mechanism to be successfully applied to flows with shock waves. In this
paper, we apply a limiter function ψj ∈ [0, 1] to the solution reconstruction: e.g., for wL,

wL = wj + ψj

[
∇w · (xfc − xj) + κ

{
wk −wj

2
−∇wj · (xfc − xj)

}
+ κ3 ∂̃3j w

]
. (4.1)

where for the one- and two-dimensional problems in this paper we use the Venkatakrishnan limiter,12 for
the simulations in FUN3D, we use the R5 Nishikawa Limiter.13 For the CFSR and QFSR schemes, the
same limiter will be applied to the flux reconstruction. For high-order schemes, the Venkatakrishnan limiter
is not suitable because it does not preserve third- and higher-order accuracy in smooth region and the
Nishikawa limiter must be used (which preserves up to fifth-order accuracy), but numerical results show that
the high-order schemes still produce improved results with the Venkatakrishnan limiter.
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5. Numerical Results

In this paper, we present a one-dimensional shock wave calculation, a two-dimensional inviscid vor-
tex problem and three-dimensional results on a variety of tetrahedral, hexahedral, and mixed prismatic-
hexahedral grids simulated with the FUN3D code. In accuracy verification studies, we include another
family of high-order schemes: U-MUSCL-SSQ3 and U-MUSCL-SSQ4. U-MUSCL-SSQ3 is a special third-
order scheme derived in previous work,14 which evaluates the left and right fluxes with the reconstructed
solutions at κ = 1/2 with a special accuracy-preserving source quadrature formula. U-MUSCL-SSQ4 includes
the extra term on the solution reconstruction with κ3 = κ− 1 = −1/2.

5.1. Accuracy verification

In this section, we present accuracy verification results obtained for the Euler equations by the method
of manufactured solutions on various types of grids. In all cases, the residual equations are solved by an
implicit defect-correction solver with the exact Jacobian of the first-order residual (i.e., no LSQ gradients)
relaxed by the Gauss-Seidel scheme. The Rusanov flux is employed here for robustness in the nonlinear
solver and allows the solver to converge even with decreased dissipation from setting κ = 3/4. The iteration
is taken to be converged when the residual is reduced by eight orders of magnitude in the L1 norm. To focus
on accuracy of the interior scheme, we specify the exact solution at boundary nodes, their neighbors, and
the neighbors of the neighbors. The source term and its gradient are computed numerically and stored at
each node and are used as part of the method of manufactured solutions to force the schemes to converge to
the exact solution with grid refinement. For sections 5.1.1, 5.1.2, 5.1.3, and 5.1.4 an exact solution

ρ = 1.0 + 0.3 exp (π(0.3x+ 0.3y)) , u = 0.15 + 0.3 exp (π(0.3x+ 0.3y)) , (5.1)

v = 0.02 + 0.3 exp (π(0.3x+ 0.3y)) , p = 1.0 + 0.3 exp (π(0.3x+ 0.3y)) , (5.2)

is specified, whereas for section 5.1.5, the initial condition of the canonical inviscid vortex transport problem
is itself an exact solution and needs no forcing term. The discretization error will be shown for the nondi-
mensionalized pressure (results are similar for the other variables) and will be measured by the difference
between the computed pressure and the pressure defned by the exact solution. Note that for the error con-
vergence plots shown in the following section, heff is the effective cell size, and is computed by the cube
root of the quantity of the domain volume divided by the number of nodes.

5.1.1. Regular quadrilaterals

We first consider a series of regular quadrilateral grids with 1024, 2304, 4096, 6400, 9216, 12544, and 16384
nodes. Figure 3(a) shows the coarsest grid and the exact solution contours. The error convergence results are
shown in Figure 3(b). As expected, CFSR4 and QFSR4 achieve fourth-order accuracy, and are significantly
more accurate than their third-order versions, CFSR3 and QFSR3. Also as expected, U-MUSCL-SSQ3 and
U-MUSCL-SSQ4 are second-order accurate and there is no advantage in U-MUSCL-SSQ4. U-MUSCL-YH
is second-order accurate but more accurate than U-MUSCL with κ = 0 and κ = 1/2, as expected.

5.1.2. Regular equilateral triangles

Next, we consider regular equilateral triangular grids with 1024, 2304, 4096, 6400, 12544, and 16384
nodes. The coarsest grid is shown in Figure 4(a). Error convergence results are shown in Figure 4(b). Here,
U-MUSCL-SSQ3 is third-order accurate as expected. U-MUSCL-SSQ4, CFSR4, QFSR4 are third-order
accurate because of the dissipation term as discussed in Section 3. However, these schemes are significantly
more accurate than their third-order versions. To demonstrate that these schemes are fourth-order without
dissipation, we tested them with the dissipation term multiplied by 0.1. Results are indicated by (0.1D).
As can be seen, the errors are further reduced and the convergence rates are very close to fourth-order,
especially for QFSR4(0.1D) and U-MUSCL-SSQ4(0.1D).

5.1.3. Regular right-isosceles triangles

Next, we consider regular right-isosceles triangular grids with 1024, 2304, 4096, 6400, 12544, and 16384
nodes. The coarsest grid is shown in Figure 5(a). Error convergence results are shown in Figure 5(b). As
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(b) Error convergence for the pressure.

Figure 3. Error convergence results for the Euler equations on regular quadrilateral grids.
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(b) Error convergence for the pressure.

Figure 4. Error convergence results for the Euler equations on equilateral triangular grids.
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expected, the results are very similar to those for the equilateral triangular grids in the previous section.
U-MUSCL-SSQ3 is third-order accurate, and U-MUSCL-SSQ4, CFSR4, QFSR4 are third-order accurate
and significantly more accurate than their third-order counterparts.

x

y

0 1
0

1

pressure: 0.815395 0.892369 0.969343 1.04632 1.12329

(a) The coarsest grid and the exact solution of nondimension-
alized pressure.
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(b) Error convergence for the pressure.

Figure 5. Error convergence results for the Euler equations on right triangular grids.

5.1.4. Irregular triangles

Next, we consider irregular triangular grids with 1024, 2304, 4096, 6400, 12544, and 16384 nodes. The
coarsest grid is shown in Figure 6(a). Error convergence results are shown in Figure 6(b). In this case, no
schemes achieve third-order accuracy. U-MUSCL-SSQ3 gives the lowest errors for all grids, which is consistent
with results reported previously.5,14 Also, for irregular grids, fourth-order versions are not necessarily more
accurate than third-order versions. For example, U-MUSCL-SSQ3 is more accurate than U-MUSCL-SSQ4.

5.1.5. Fourth-order accuracy on regular triangular grids

Finally, to demonstrate fourth-order accuracy of CFSR4, QFSR4, and U-MUSCL-SSQ4 with zero dis-
sipation on regular triangular grids, we consider an inviscid vortex transport problem shown in previous
works.5 The initial solution at t = 0 is shown in Figure 7(a). For the purpose of accuracy verification, it
suffices to perform the calculation for a short time; we compute the solution at the final time tf = 1.0 with
the three-stage SSP Runge-Kutta scheme15 (which is stable with zero dissipation) for the total of 1000 time
steps with a constant time step ∆t = 0.001, which is small enough for errors to be dominated by the spatial
discretization. To verify the spatial order of accuracy, we perform the computation over a series of n×n
regular triangular grids, where n = 64, 80, 96, 112, 128.

The initial pressure contours are shown on a coarse 16×16 grid in Figure 7(a). Error convergence results
are shown in Figure 7(b). Zero dissipation versions are indicated by (0). As can be seen, CFSR4, QFSR4,
and U-MUSCL-SSQ4 are fourth-order accurate with zero dissipation.

5.2. Shu-Osher Problem

We consider the Shu-Osher problem16 with a uniform grid with 400 nodes. Results are shown in Figure
8 for a conventional second-order scheme (Fromm’s scheme, κ = 0, κ3 = 0), the U-MUSCL scheme of Yang
and Harris (κ=1/3, κ3=-2/3), and the QFSR4 scheme, where the Venkatakrishnan limiter is applied to
all. The solid curve is a reference solution obtained with the QFSR4 scheme on a 1,600-node grid. As can

7 of 17

American Institute of Aeronautics and Astronautics



x

y

0 1
0

1

pressure: 0.815395 0.892369 0.969343 1.04632 1.12329

(a) The coarsest grid and the exact solution of nondimension-
alized pressure.

-2.4 -2.2 -2 -1.8 -1.6

-6.5

-6

-5.5

-5

-4.5

(b) Error convergence for the pressure.

Figure 6. Error convergence results for the Euler equations on irregular triangular grids.
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Figure 7. Error convergence study for the unsteady Euler equations in two dimensions.
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be seen, Fromm’s scheme is the most dissipative, U-MUSCL-YH shows improved resolution, and QFSR4
achieves even higher resolution. These results indicate the importance of genuine high-order accuracy as
U-MUSCL-YH is in fact restricted to second-order accuracy for nonlinear partial differential equations.3,17
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(a) U-MUSCL(κ=0, κ3=0): Fromm.
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(b) U-MUSCL(κ=1/3, κ3=-2/3).8
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(c) QFSR4.

Figure 8. Results for the Shu-Osher problem.

5.3. Inviscid Vortex Transport

We consider an inviscid vortex transport problem where the parameter K in the inviscid vortex solution
is taken to be 6.0 to avoid linearization of the problem.4 The initial solution is shown in Figure 9(a). The
vortex travels to the right at M∞ = 0.5 from x = 0 to x = 10. The grid is a regular quadrilateral grid with
65x129 nodes.

The final solutions are compared in Figure 9(b). As can be seen, the U-MUSCL scheme dissipates
the solution by nearly the same amount for both (κ=0, κ3=0) and (κ=1/3, κ3=-2/3), which are both
second-order accurate, in theory. On the other hand, the QFSR4 scheme is a fourth-order scheme and gives
much better resolution. Again, it indicates the importance of high-order accuracy for nonlinear governing
equations. Finally, the fifth-order QFSR5(Z) scheme produces an even more accurate solution.
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(a) Initial solution of nondimensionaled pressure. (b) Comparison of section plot at y = 0.

Figure 9. Results for the inviscid vortex transport problem.
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5.4. FUN3D results

5.4.1. Truncation Error Verification

In this section, we present results from the FSR implementations inside FUN3D. Figure 10 contains
results obtained for the Euler equations by the method of manufactured solutions on regular tetrahedral and
hexahedral grids using the FSR schemes in FUN3D. The truncation error is analyzed at nodes with purely
interior schemes (nodes 3 edges from the boundary) to verify proper implementation of the residual and
source term, as we don’t have access to a high order boundary closure. In the figure, the expected behavior
is observed on the hexahedral grid, and on the tetrahedral grid error convergence is faster than expected.
While it has been proven that these schemes cannot be 3rd-order (or higher) accurate in space on tetrahedral
grids, this could be due to the comparatively small dissipative error that is left as the CFSR and QFSR
schemes eliminate the larger source of 3rd-order error.

(a) TE convergence on hexahedral mesh. (b) TE convergence on tetrahedral mesh.

Figure 10. Truncation error convergence on 83, 163, 323, 643, and 1283 meshes

5.4.2. Hemisphere-Cylinder in Zero Angle-of-Attack Flow

The CFSR and QFSR schemes lose their order of accuracy properties on irregular grids but maintain lower
dissipation through a smaller jump term in the dissipation term. In order to investigate this and the impact
on integrated quantities, we consider a steady hemisphere-cylinder test case, as developed in the Turbulence
Modeling Resource (TMR) and its associated papers.18,19 This case is a RANS simulation with freestream
Mach number 0.6 and zero angle-of-attack. The freestream unit Reynolds number per foot is 4.2× 106, the
radius of the hemisphere is 0.5, and the hemisphere-cylinder geometry has length 10. Further details of the
flow condition and the geometry can be found from the work concering the grid generation codes,20 and
relevant reference and solution data are available at the NASA TMR website.18 The focus here is on the
values of the lift and drag coefficients on the finest regular mixed-element grids with prisms and hexahedra
and with 71,368,353 nodes (a coarsened version with an arrow depicting the direction of flow is in Figure
11). Table 1 shows the values of the coefficients of lift and drag on the finest grid in the TMR sequence
along with the wall time normalized by the cost of the U-MUSCL scheme. Note that the exact solution
should have zero lift, so error is measured by the magnitude of the coefficient of lift. The QFSR4/CFSR4
schemes outperform their respective third-order accurate counrterparts which in turn outperform the default
U-MUSCL scheme in FUN3D. This shows the improvement from using the low-dissipation formulations.

Having shown good behavior on a regular grid (with minimal additional cost), demonstrated by the order
of magnitude lower drag for the QFSR4/CFSR4 schemes as compared to the default U-MUSCL one, we move
to a demonstration of the low-dissipation schemes on irregular grids, these ones created through use of the
refine software developed at NASA Langley.21,22 These cases were run using pyrefine,23 a python wrapper
for the refine software, using the pyrefine controller to control the refinement, in this case doubling the
complexity every 10 iterations. The full history of the adaptation for all schemes is in Figure 12, and shows
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Figure 11. Coarsened (147k nodes) version of fine mesh

Table 1. Comparison of engineering coefficients on hemisphere-cylinder in zero angle-of-attack flow.

Time cL cD

U-MUSCL(κ = 1/2) 1.0 0.3612491204E-05 0.6330284789E-03

CFSR3 1.0425 0.3027483497E-05 0.6323746253E-03

CFSR4 1.0584 -0.3342316273E-06 0.7317624670E-03

QFSR3 1.15 0.8276169361E-05 0.5571458268E-03

QFSR4 1.095 0.4820069248E-07 0.7081040356E-03

that the U-MUSCL (denoted by 2ndOrder) and QFSR3/CFSR3 schemes are much more oscillatory in the
integrated quantities from grid to grid as opposed to the QFSR4/CFSR4 schemes which are more consistent
with mesh refinement, indicating that measures of interpolation error are more consistent grid to grid. Figure
12(b) just shows the FSR4 schemes and we can see that they appear to converge to their final quantity of
cD at approximately a third of the complexity required by the U-MUSCL scheme. Additionally CFSR4
is remarkably consistent from grid to grid indicating that in addition to the benefit it provides in having
tunable dissipation, it also allows for more consistent refinement – due to more consistent interpolation error–
allowing for high-fidelity simulations at lower cost.

5.4.3. Supersonic Bump

This supersonic bump is run atM = 2.0 for the Euler governing equations, with the goal being to evaluate
the utility and behavior of these schemes for highly nonlinear shocked flows. The computational domain for
this case was bounded within (x, y, z) ∈ (0, 2) × (0, 1) × (−0.5, 0.5), and Figure 13 contains contour plots
of the Mach number in the domain. The unstructured and perturbed triangular mesh consists of 45,000
nodes (on each 2D plane). The upper and lower boundaries are inviscid walls with farfield and symmetry
boundary conditions being used in the x and y directions, respectively. This computational setup mimics
that of previous work,13,24 and further details on the geometry and limiter (Nishikawa’s 5th order limiter)
can be found in those papers.

Figure 13 appears to show that the QFSR4 scheme is slightly more oscillatory than the CFSR4 scheme,
so it is helpful to look at a plot of the Mach number on the center line of the domain to see variations in
the Mach number due to shocks and flow conditions. Figure 14 shows a comparison of centerline density
between the FSR schemes and the FUN3D default U-MUSCL scheme. Figure 14(b) shows that the first
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(a) Adaptation history of U-MUSCL (b) CFSR4 and QFSR4 Schemes

Figure 12. Adaptation Cycle history.

(a) 2nd Order (b) CFSR4 (c) QFSR4

Figure 13. XZ plane of contours of Mach Number.
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shock is better captured for the FSR4 schemes, with both CFSR schemes outperforming QFSR4 in capturing
the highest peak value of Mach number, but with QFSR3 performing almost identically to the default U-
MUSCL scheme. 14(c) shows the downside to the QFSR4 scheme in that it has much stronger oscillations,
and CFSR4 is in fact the least oscillatory scheme. This seems to show that CFSR4 should be the desired
scheme for transonic and supersonic flows due to its ability to more accurately capture the highest peak and
suffering from less oscillatory behavior.
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Figure 14. Density as a function of x.

5.4.4. Cylinder in Unsteady Cross Flow

Finally, we look at FSR schemes on the semirealistic geometry of an infinite cylinder in cross flow. This
case hasM = .1, ReD = 3900 and freestream temperature Tref = 460.0R. The cylinder has diameter 1.0 and
a spanwise length of 2.0, with an outer boundary located at approximately a of distance 100 units from the
center of the cylinder. The domain is taken as periodic at the two XZ-planes with minimum and maximum
y-coordinates. The grid used for these simulations is a mixed grid with prismatic and hexahedral cells, as
shown in Figure 15. It has 3,934,800 nodes, 1,175,000 prisms, and 3,243,000 hexahedra. Simulations were
run with the Roe flux, the Green-Gauss viscous discretization, and the second-order backward-difference
time-steppping scheme with a nondimensionalized time step of 0.05 for 10,000 time steps, with 400 cores.
At each physical time step, we perform 20 nonlinear iterations at maximum. Snapshots of the flow are in
Figures 16 and 17. We can see the significant gains from moving from the second-order U-MUSCL schemes
to the CFSR4 and QFSR4 schemes in the increased capturing of the smaller flow structures near the leeside
of the cylinder. Here we see the gains on a benchmark unsteady case in capturing of physics that the higher
dissipation schemes cannot achieve.

6. Conclusions and Future Work

The FSR schemes have been implemented and validated in standalone codes to verify correctness and
implemented and benchmarked in the FUN3D code developed at NASA Langley. We have verified correctness
through the use of MMS, and showed better capturing of physics using these low-dissipation schemes as
opposed to the default U-MUSCL scheme with small additional computationl overhead. It seems that for
realistic cases there is a significant benefit to using the CFSR4/QFSR4 schemes over the CFSR3/QFSR3/U-
MUSCL schemes. Furthermore, while the QFSR4 scheme appears to be more accurate for smooth flows on
regular grids, the CFSR4 scheme should be prefered due to the lack of oscillatory behavior for supersonic
flow and the consistent interpolation error on adaptive meshes. Future work on this topic has begun as we
have begun porting these schemes over to the GPU implementation of FUN3D, and efforts to repurpose
these schemes for improved viscous schemes is the natural following step.
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Figure 15. XZ plane of mesh.
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(a) U-MUSCL (κ = 1/3) (b) U-MUSCL (κ = 1/2)

(c) CFSR4 (κ = 1/2) (d) QFSR4 (κ = 1/3)

Figure 16. Horizontal view of isocontours of q-criterion colored by vorticity.
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(a) U-MUSCL (κ = 1/3) (b) U-MUSCL (κ = 1/2)

(c) CFSR4 (κ = 1/2) (d) QFSR4 (κ = 1/3)

Figure 17. Isoparametric view of isocontours of q-criterion colored by vorticity.

16 of 17

American Institute of Aeronautics and Astronautics



22Park, M. A., Anisotropic Output-Based Adaptation with Tetrahedral Cut Cells for Compressible Flows, Ph.D. thesis,
Massachusetts Institute of Technology, Sept. 2008.

23Jacobson, K. E., “pyrefine,” https://nasa.github.io/pyrefine, Accessed: 2023-11-22.
24Ahmad, N. N., Park, M. A., Nishikawa, H., Wang, L., and Elmiligui, A. A., Evaluation of Limiter Functions for

Supersonic Applications.

17 of 17

American Institute of Aeronautics and Astronautics

https://nasa.github.io/pyrefine

	Introduction
	FSR Schemes
	Third-Order Truncation Error from Dissipation on Regular Triangular Grids
	Limiting
	Numerical Results
	Accuracy verification
	Regular quadrilaterals
	Regular equilateral triangles
	Regular right-isosceles triangles
	Irregular triangles
	Fourth-order accuracy on regular triangular grids

	Shu-Osher Problem
	Inviscid Vortex Transport
	FUN3D results
	Truncation Error Verification
	Hemisphere-Cylinder in Zero Angle-of-Attack Flow
	Supersonic Bump
	Cylinder in Unsteady Cross Flow


	Conclusions and Future Work
	Acknowledgments
	References

