
1. Introduction
The NASA Clouds and the Earth's Radiant Energy System (CERES) Project monitor the top-of-the-

atmosphere (TOA) radiation budget through a series lower orbit satellites. It provides a suite of data such 
as EBAF, SSF1Deg, SYN1Deg and FluxByCldTyp et al. for more than 20 years 
(https://ceres.larc.nasa.gov/ data/). These data are essential for climate studies and modeling constrains. 

                                       
                                                  Fig. 1 The CERES FluxByCldTyp (FBCT) Data

 contains radiative fluxes and cloud properties by 42 cloud types (6 cloud optical depth bins and 7 
cloud effective pressure bins). The accuracy and consistency of the data are critical for climate studies. In 
this paper, we use deep neural network (DNN) to improve the FBCT Ed4 TOA radiative fluxes.

2. Data and Methodology
a. Data: 

Input: The CERES Single Scanner Footprint (SSF) Edition 4A footprint data. Aqua Satellite 
January 2019.  
As in Fig. 2, each footprint has up to three sub-footprint areas: low cloud, high cloud and clear. 
Footprint size is about 20-km nadir. Each footprint contains following parameters:
 - Time, position, viewing geometry
 - Surface maps, scene types
 - Meteorological data
 - Radiances (MODIS narrowband radiances and CERES broadband radiances) and broadband fluxes 
 - Cloud properties: cloud fraction, TempEff, TempTop, PressEff, PressTop, Liquid water path, Ice 
water path, Cloud Radius, Emissivity, Optical Depth, etc.  

Fig. 2 Schematic of the CERES footprint.

b. Methodology: 
 Aim:  To obtain a corresponding flux for each of the three sub-footprint areas: clear,    
cloudLow and cloudHigh using DNN.

1) Fig.3 presents the FBCT product flowchart and provides an overview of the inputs and algorithms 
needed for FBCT processing. This paper will focus on the procedures within the red frame. The rest 
stay the same. 

2) DNN will be used to convert MODIS NB radiances to fluxes with or without angular distribution 
models (ADMs). DNN models are trained on Single scene SSF footprints (case b and c in Fig. 2). 
The trained DNN model will be applied to SSFs with mixed scenes (case d and e in Fig. 2)

3) DNN model as in Fig 3. Besides the input and output layers, it has 5 hidden layers with different 
nodes from 100 in the first layer to 10 in the 5th hidden layer. The model’s hyper-parameters: epoch 
number is 300, minibatch size is 128, initial learning rate is 0.01 and decreasing with drop rate 0.5, 
epoch drop rate is 50. The data is split into three groups: 80% training data, 18% development data 
and 2% test data. Table 1 shows the input parameters for the DNN Model. Both SW and LW use the 
same clear sky and cloudy sky models. Clear sky has total of 13 parameters including skin

Fig. 5 January 2019 Aqua derived SW and LW fluxes vs CERES observed SSF fluxes biases and 
Standard deviations dependency on parameters. ( Green Ed4; Blue DNN+ADM; Red DNNOnly), and 
frequency (%x10, black). 

Fig. 6 Derived SW fluxes minus observed fluxes based on mixed scene footprints (unit W/m2). 

Fig. 7 same as Fig. 6 but for LW. 

Fig. 6 and Fig. 7 show the biases of SW and LW fluxes between derived fluxes and CERES observed 
fluxes. Both DNN+ADM and DNNOnly show improvement for SW and LW over Ed4. DNNOnly SW 
significantly reduces biases over Hudson bay and Weddell Sea regions. LW fluxes show very small 
differences between the two new methods. Again, ADM is not required to generate accurate FBCT 
fluxes. Table 2 shows biases and RMSs (root mean square) for the whole globe corresponding to Fig.5 
and Fig. 6. The smaller biases for old Ed4 are the results of cancellation between negative and positive 
biases. 

 

Table 2. Global mean SW and LW biases and RMSs for Old Ed4, DNN+ADM and DNN cases.

4. Summary and future work 
Two methods based on DNN are developed to improve fluxes in FBCT product. They both show 

improvement over Ed4. The two methods give about the same results and ADM is not required in future 
FBCT code. Further improvement may come from using different MODIS NB channels. 
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temperature plus other 12 parameters that are also used by cloudy sky model. Surface are classified into 
7 types: ocean, forest, savannah, grass, dark desert, bright desert, snow/ice. Including other variables 
like cloud optical depth does not improve performance. 

Fig. 3 The CERES FBCT flowchart. The FBCT cloud effective pressure by optical depth cloud-types are 
shown in the center left and are defined in the same manner as the ISCCP D1 product. 

Fig. 4 DNN network diagram with 5 hidden layers and number of nodes for each hidden layer. 

Table 1. Input parameters for DNN clear sky and cloudy sky models. 

3. Results
As mentioned in section 2b.2, two methods are developed. The first one uses DNN to convert MODIS 

NB radiances to BB radiance and then convert it to BB flux using ADM (DNN+ADM). The second one 
converts MODIS BB radiances to BB flux directly without ADM (DNNOnly). The trained DNN 
parameters are applied to SSFs with mixed scenes (Fig. 2) to generate BB flux for each scene (sub-
footprint). The fluxes from each sub-footprint are summed to form the total footprint flux. It will be 
compared against the CERES observed footprint level fluxes provided in the SSF Ed4 dataset. 

Fig. 5 shows the biases and standard deviations between derived and observed SW and LW fluxes 
plotted as a function of cloud fraction, cloud effective pressure, cloud effective temperature, cloud 
optical depth, TPW, SZA, VZA, and surface type. The biases and standard deviations and their 
variations along the underlying parameters show how well each algorithm does. The smaller values 
mean improved results. Both DNN+AMD and DNNOnly show overall improvement over Ed4. The 
most significant improvement is against the cloud optical depth for both methods. The two DNN 
methods give similar results. This indicates future FBCT edition can bypass ADM which significantly 
reduces the code complexity. 
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Input Parameters Total 
Clear 
Sky

5 NB radiances: 0.47µm, 0.65µm, 
0.86µm,11µm, 12µm, solar zenith angle (SZA), 
viewing zenith angle (VZA), relative azimuth 
angle (RAA), surface type, total precipitable 
water (TPW), latitude, longitude

Skin 
Temperature 13

Cloudy 
Sky 12
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a) SW Bias b) SW Stdev c) LW Bias d) LW Stdev

a) DNN+ADM b) DNNOnly c) Old Ed4 SW 

a) DNN+ADM b) DNNOnly c) Old Ed4 LW 

Ed4 DNN+ADM DNN
SW Bias 0.42 0.85 0.60
SW RMS 3.99 3.21 3.15
LW Bias 0.70 1.14 0.97
LW RMS 3.03 2.45 2.33
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