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Abstract 34 

Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during 35 

the light reactions of photosynthesis. The past two decades have witnessed an explosion in 36 

availability of SIF data at increasingly higher spatial and temporal resolutions, sparking 37 

applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and 38 

socioeconomics). These applications must deal with complexities caused by tremendous 39 

variations in scale and the impacts of interacting and superimposing plant physiology and three-40 

dimensional vegetation structure on the emission and scattering of SIF. At present, these 41 

complexities have not been overcome. To advance future research, the two companion reviews 42 

aim to 1) develop an analytical framework for inferring terrestrial vegetation structures and 43 

function that are tied to SIF emission, 2) synthesize progress and identify challenges in SIF 44 

research via the lens of multi-sector applications, and 3) map out actionable solutions to tackle 45 

these challenges and offer our vision for research priorities over the next 5-10 years based on the 46 

proposed analytical framework. This paper is the first of the two companion reviews, and theory-47 

oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. 48 

Guided by this framework, we offer theoretical perspectives on three overarching questions: 1) 49 

The forward (mechanism) question - How are the dynamics of SIF affected by terrestrial 50 

ecosystem structure and function? 2) The inference question: What aspects of terrestrial 51 

ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and 52 

how? 3) The innovation question: What innovations are needed to realize the full potential of 53 

SIF remote sensing for real-world applications under climate change? The analytical framework 54 

elucidates that process complexity must be appreciated in inferring ecosystem structure and 55 

functions from the observed SIF emission; this framework can serve as a diagnosis and inference 56 

tool for versatile applications across diverse spatial and temporal scales. 57 

1. Introduction 58 

Land plants harvest light energy for photosynthesis with three types of pigments: 59 

chlorophyll a, chlorophyll b, and carotenoids. The light energy harvested by a free pigment is 60 

lost, partly radiatively as fluorescence and partly non-radiatively as heat; as a result, the 61 

wavelength of emitted fluorescence is longer than that of the photons originally absorbed, a 62 

phenomenon known as Stokes shift. Fluorescence is only emitted from the first excited state (S1) 63 

as an electron boosted to a higher energy is immediately relaxed to the S1 state by giving off 64 

some heat in a process known as internal conversion (Porcar-Castell et al., 2014). In addition to 65 

emitting fluorescence, the S1 state can also relax to the ground state (S0) via internal conversion, 66 

in which case heat is released, or transition to a long-lasting excited triplet state of chlorophyll 67 

via intersystem crossing. Chlorophyll a and b extracts in ether can emit up to 30% and 15%, 68 

respectively, of the absorbed energy as fluorescence (Barber et al., 1989; Latimer et al., 1956). 69 

Carotenoids also fluoresce but their quantum yield is several orders of magnitude lower than 70 

those of chlorophyll a and b, and can effectively be considered as non-fluorescent (Hashimoto et 71 

https://paperpile.com/c/tiuJeT/f72l+r9MA
https://paperpile.com/c/tiuJeT/yIrc
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al., 2018). In vivo, the fluorescing characteristics of chlorophyll a and b change drastically. 72 

Within the light-harvesting complexes, the excitation energy transfer from chlorophyll b to a is 73 

ultrafast (Bittner et al., 1994), leaving little chance for chlorophyll b to fluoresce; as a result, all 74 

chlorophyll fluorescence emission from plants can be considered as originating from chlorophyll 75 

a (denoted as ChlaF emission hereafter). More importantly, photochemical and non-76 

photochemical processes controlled by plant physiology compete with ChlaF emission, internal 77 

conversion, and intersystem crossing for the excitation energy at the S1 state, which can lead to 78 

an order of magnitude decrease in the quantum yield of ChlaF emission, depending on 79 

environmental conditions. Details about the physical mechanisms of ChlaF emission can be 80 

found in Papageorgiou & Govindjee (2004) and Porcar-Castell et al. (2014).  81 

ChlaF emission has no known physiological or ecological use to plants. It is not directly 82 

regulated by plants either. The energy lost in ChlaF emission is minuscule and has little impact 83 

on the energy budget of plants. However, owing to the principle of energy conservation, the 84 

dynamics of ChlaF emission are always coupled to the dynamics of photochemical and non-85 

photochemical processes that compete for the excitation energy of the S1 state (Gu et al., 2019; 86 

Porcar-Castell et al., 2014). Because plants actively regulate photochemical and non-87 

photochemical processes, the dynamics of ChlaF emission spontaneously reflect, but are not 88 

directly controlled by, these regulations. Furthermore, because these processes have different 89 

time constants, it is possible to differentiate their dynamics from the unique temporal patterns of 90 

ChlaF emission, as shown in the Kautsky effect (Kautsky & Hirsch, 1931; Stirbet & Govindjee, 91 

2011) and Pulse-Amplitude Modulated fluorometry (PAM) (Baker, 2008). 92 

ChlaF emission can be excited by either artificial light, which leads to active 93 

fluorescence, or sunlight, which leads to passive, Sun- or Solar-Induced chlorophyll 94 

Fluorescence (SIF). Both active and passive ChlaF emission have a long history of applications 95 

in plant science (Papageorgiou & Govindjee, 2004), ecosystem science (Mohammed et al., 96 

2019), and marine biology (Suggett et al., 2010). Because ChlaF emission is a spontaneous, 97 

unregulated byproduct of the light harvesting process, physiologically interpreting its dynamics 98 

is in general not straightforward, even with active ChlaF emission at the leaf scale, where the 99 

wavelength and intensity of the excitation light can be carefully manipulated.  100 

The past two decades have witnessed a rapid growth in SIF research, spurred by advances 101 

in SIF observing capabilities from various platforms. Applications of remotely sensed SIF range 102 

from ecological sciences (e.g., Magney et al., 2019; Sun et al., 2017; Porcar-Castell, et al., 2021), 103 

to agricultural (e.g., Guan et al., 2016; Guanter et al., 2014), hydrological (Gentine et al., 2019; 104 

Zhan et al., 2022), climate feedback (e.g., Mueller et al., 2016), and even socioeconomic studies 105 

(Browne et al., 2021) (Fig. 1). However, such applications face tremendous complexities arising 106 

not only from the variations in scale (in both time and space) but also from interacting and 107 

superimposing plant physiology and three-dimensional (3D) leaf and canopy structure (in both 108 

vertical and horizontal dimensions). Intermingling physiology and structure affect ChlaF 109 

emission and the subsequent scattering/reabsorption at both leaf and canopy scales (Chang et al., 110 

https://paperpile.com/c/tiuJeT/yIrc
https://paperpile.com/c/tiuJeT/UFJi
https://paperpile.com/c/tiuJeT/acS5
https://paperpile.com/c/tiuJeT/20EF
https://paperpile.com/c/tiuJeT/20EF+NyDo
https://paperpile.com/c/tiuJeT/20EF+NyDo
https://paperpile.com/c/tiuJeT/uckJ+0ZOn
https://paperpile.com/c/tiuJeT/uckJ+0ZOn
https://paperpile.com/c/tiuJeT/uB0Q
https://paperpile.com/c/tiuJeT/acS5
https://paperpile.com/c/tiuJeT/kEC4
https://paperpile.com/c/tiuJeT/kEC4
https://paperpile.com/c/tiuJeT/ZTpo
https://paperpile.com/c/tiuJeT/ZTpo
https://paperpile.com/c/tiuJeT/ZTpo
https://paperpile.com/c/tiuJeT/Jzfv+e7OG+M5AG+6exF
https://paperpile.com/c/tiuJeT/Jzfv+e7OG+M5AG+6exF
https://paperpile.com/c/tiuJeT/Jzfv+e7OG+M5AG+6exF
https://paperpile.com/c/tiuJeT/Jzfv+e7OG+M5AG+6exF
https://paperpile.com/c/tiuJeT/IRn7+8YD6
https://paperpile.com/c/tiuJeT/tmeS+a6gW
https://paperpile.com/c/tiuJeT/tmeS+a6gW
https://paperpile.com/c/tiuJeT/zxfv
https://paperpile.com/c/tiuJeT/Wfjm
https://paperpile.com/c/tiuJeT/9gxw+ClLp+gU2P+jOLQ
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2021; Magney et al., 2020; Porcar-Castell et al., 2021; Zhao et al., 2016; van Wittenberghe et al., 111 

2015), as well as the anisotropy of at-sensor SIF (depending on sun-canopy-sensor geometry, 112 

Joiner et al., 2020). At present, these complexities have not been overcome. Consequently, the 113 

“six blind men and the elephant” analogy, which was used to characterize the current 114 

understanding of terrestrial carbon cycling by Fisher et al. (2014) is also appropriate for SIF 115 

research. Previous studies may have touched different aspects of the “elephant”, resulting in 116 

mixed conclusions, for example, the linear vs nonlinear relationships between SIF and gross 117 

primary production (GPP) (e.g., Damm et al., 2015; Li, Xiao et al., 2018; Pierrat et al., 2022), the 118 

sign/strength of the relationship between quantum yields of different energy dissipation 119 

pathways (e.g., Martini et al., 2022; Miao et al., 2018), and the practical added-value of SIF in 120 

inferring the functioning of natural and agricultural systems (e.g., Cai et al., 2019; Peng et al., 121 

2020; Sloat et al., 2021; Smith et al., 2018; Wang et al., 2019). 122 

As SIF research progresses, more aspects of the “elephant” should be touched and 123 

understood. There is a critical need to connect these different aspects, and perhaps more 124 

importantly, to know what key aspects have not been touched yet, before we can predict what the 125 

whole “elephant” looks like. To advance, we must harness advances/innovations in theory and 126 

data (Fig. 1), in order to shift from correlational analyses to causal quantification and reasoning. 127 

Towards this end, we offer our perspectives on critical research priorities moving forward, from 128 

the theoretical and observational aspects in two companion reviews (i.e., this paper, and Sun et 129 

al., 2023b, respectively). Addressing these priorities will ultimately help improve predictive 130 

understanding and management of natural and agricultural ecosystems to enhance the services 131 

they offer to society (details in the companion review, Sun et al., 2023b). 132 

https://paperpile.com/c/tiuJeT/9gxw+ClLp+gU2P+jOLQ
https://paperpile.com/c/tiuJeT/9gxw+ClLp+gU2P+jOLQ
https://paperpile.com/c/tiuJeT/9gxw+ClLp+gU2P+jOLQ
https://paperpile.com/c/tiuJeT/9gxw+ClLp+gU2P+jOLQ
https://paperpile.com/c/tiuJeT/ML5i
https://paperpile.com/c/tiuJeT/x3fJ+FYPj+xIcq
https://paperpile.com/c/tiuJeT/x3fJ+FYPj+xIcq
https://paperpile.com/c/tiuJeT/x3fJ+FYPj+xIcq
https://paperpile.com/c/tiuJeT/x3fJ+FYPj+xIcq
https://paperpile.com/c/tiuJeT/2dW1+ANHl+e7OG
https://paperpile.com/c/tiuJeT/R0rY+5JHE+lNvd+1xRM+o1iY
https://paperpile.com/c/tiuJeT/R0rY+5JHE+lNvd+1xRM+o1iY
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 133 

Fig. 1. Harnessing theory and data to enable applications across sectors and scales. Definition of 134 

acronyms: GxExM, interactions of Genetics, Environment, and Management; ESMs, Earth 135 

System Models; IAV, interannual variability; UAV, Unmanned Aerial Vehicles; ETR, electron 136 

transport rate; GPP, Gross Primary Production. Other symbols are defined in Table S1. 137 

Icon/images in this diagram come from https://www.flaticon.com/.  138 

The objectives of the two companion reviews are to: 1) develop an analytical framework 139 

for inferring terrestrial vegetation structure and functions from remotely-sensed SIF 140 

observations, 2) synthesize progress and identify challenges in SIF research through the lens of 141 

multi-sector applications, and 3) map out actionable solutions to tackle these challenges and offer 142 

our vision for research priorities over the next 5-10 years based on the developed analytical 143 

framework. There have been multiple recent reviews of SIF science and applications. For 144 

example, Mohammed et al. (2019) provided a historical view of the progress in SIF research 145 

since the first discovery of ChlaF emission. The reviews of Pacheco-Labrador et al. (2019), 146 

Aasen et al. (2019), and Cendrero-Mateo et al. (2019) concentrated on instrumental 147 

characteristics, measurement protocols, and retrieval methods for proximal sensing of SIF. The 148 

reviews of Porcar-Castell et al. (2014) and Porcar-Castell et al. (2021) provide an introduction of 149 

mechanisms that connect SIF to photosynthesis across scales, and present a brief overview of 150 

present challenges and unfolding opportunities. They were intended as a first primer on SIF for 151 

less advanced audiences and purposefully more qualitative. Compared to these previous reviews, 152 

the major contribution of these two companion reviews is to offer a quantitative framework (i.e., 153 

https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://www.flaticon.com/
https://paperpile.com/c/tiuJeT/kEC4
https://paperpile.com/c/tiuJeT/lnfq
https://paperpile.com/c/tiuJeT/J3oU
https://paperpile.com/c/tiuJeT/uo4g
https://paperpile.com/c/tiuJeT/20EF
https://paperpile.com/c/tiuJeT/9gxw
https://paperpile.com/c/tiuJeT/9gxw
https://paperpile.com/c/tiuJeT/9gxw
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the theoretical perspective) and a data perspective that can 1) facilitate process interpretation, 2) 154 

reconcile contradictory findings reported in literature, and 3) map out concrete future steps (by 155 

guiding observational and applicational innovations) to overcome the most pressing challenges 156 

towards realizing the full potential of SIF in the broad context of global change biology 157 

applications (beyond photosynthesis). Nevertheless, the presence of these reviews not only sets 158 

the basis for the present two reviews but also considerably reduces the scope and topics that need 159 

to be covered. Throughout the two companion reviews, we emphasize that theory and 160 

observations should go hand-in-hand to enable meaningful applications. Both reviews are 161 

organized around three overarching questions: 162 

1. The forward (mechanism) question: How are the dynamics of SIF affected by 163 

terrestrial ecosystem structure and function? 164 

2. The inference question: What aspects of terrestrial ecosystem structure, function, and 165 

service can be reliably inferred from remotely sensed SIF and how? 166 

3. The innovation question: What innovations are needed to realize the full potential of 167 

SIF remote sensing for real-world applications under climate change? 168 

The forward question concerns mechanisms (i.e., ecosystem structure and functions) that control 169 

the emission, reabsorption, and scattering of SIF. It lays the foundation for the next two 170 

overarching questions. The inference question presents the retrieval of ecosystem structural and 171 

functional information from remotely-sensed SIF as an inversion problem, and discusses how 172 

such inferred knowledge can inform diverse applications in ecological, agricultural, 173 

hydrological, and socioeconomic sectors across scales in time and space. Through the 174 

presentation of this inversion problem, we identify knowledge gaps and challenges. Collectively, 175 

the answers to the forward and inference questions naturally lead to the innovation question, 176 

where we propose strategies, solutions, and priorities to fill the knowledge gaps and to overcome 177 

present challenges towards maximizing the capability of remotely-sensed SIF to monitor/predict 178 

ecosystem structure, function, and service under climate change.  179 

 The present paper is the first of the two companion reviews, and theory-oriented. In this 180 

paper, we introduce a theoretically rigorous yet practically applicable analytical framework for 181 

SIF research. This analytical framework is built upon the rapidly advancing understanding of 182 

diverse physiological/structural processes affecting ChlaF emission and its subsequent 183 

scattering/reabsorption within a canopy. Necessary assumptions/simplifications made in this 184 

conceptualization are explicitly stated for future studies to refine. Such an analytical framework 185 

is arguably the most critical research priority moving forward, as it enables explicitly elucidating 186 

the “causal” relationships/connections among different aspects of the “elephant”, and making the 187 

knowledge gaps/challenges identified for SIF research tractable and quantifiable. Note that the 188 

present review focuses on mechanistic understanding and is rather theoretical and quantitative, 189 

readers who are just starting SIF research are advised to first read earlier reviews, particularly 190 

Porcar-Castell et al. (2014), Mohammed et al. (2019), and Porcar-Castell et al. (2021).  191 

https://paperpile.com/c/tiuJeT/20EF
https://paperpile.com/c/tiuJeT/kEC4
https://paperpile.com/c/tiuJeT/9gxw
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2. The forward question: How are the dynamics of SIF affected by terrestrial ecosystem 192 

structure and function? 193 

The forward question concerns understanding and modeling the absorption of PAR 194 

(Photosynthetically Active Radiation, i.e., the excitation photons), subsequent ChlaF emission, 195 

and its scattering and reabsorption along the path to the sensor in a complex structure of leaf and 196 

canopy. Photosynthesis is typically separated into the light and carbon reactions. Issues related to 197 

the ChlaF emission can be more clearly discussed if we further separate the light reactions into 198 

the photophysical and photochemical reactions (Kamen 1963). The photophysical reactions 199 

cover the light harvesting and partitioning between photosystems, excitation energy transfer and 200 

trapping, and partitioning of excitation energy into different dissipation pathways. The 201 

photochemical reactions include the water splitting by the oxygen evolving complex, the electron 202 

transport from PSII to the cytochrome b6f complex (Cyt) to PSI to the eventual acceptor NADP+ 203 

with plastoquinone, plastocyanin, and ferredoxin as electron carriers, and the associated proton 204 

transport from stroma to lumen and ATP synthesis. The carbon reactions refer to the downstream 205 

processes in photosynthesis, i.e., the Calvin-Benson cycle, and are typically modeled by 206 

biochemical models, such as the Farquhar-von Caemmerer-Berry (FvCB) model (Farquhar et al., 207 

1980). The ChlaF emission occurs during the light reactions, more specifically during the 208 

photophysical reactions. The value of SIF as a photophysical variable lies in its potential for 209 

providing information related to photochemical and biochemical variables. 210 

2.1 Theoretical basis  211 

Theoretically, the total irradiance of ChlaF emission at wavelength  (nm, ranging from 212 

640 to 850nm) by a homogeneous canopy with total leaf area index (LAI, m2 leaf area m-2 213 

ground area), denoted as  (µmol photons m-2 ground area s-1 nm-1), without considering 214 

any scattering and reabsorption by the canopy, can be described as:  215 

216 
 (1) 217 

Here  denotes the ChlaF emission of an infinitely thin leaf layer with a thickness of  at the 218 

canopy depth  and emission wavelength , and is contributed by two components - ChlaF 219 

emission from photosystem II and I (denoted as PSII and PSI hereafter). The need to include 220 

both PSII and PSI contributions is discussed in detail in SI-1. At the leaf level, the  component 221 

arising from PSII can be represented as the product of the broadband fluorescence quantum yield 222 

of PSII ( , unitless), the total concentration ( , mol m-2 leaf area) of light-harvesting 223 

photosynthetic pigments (i.e., chlorophyll a and b, and carotenoids) associated with PSII (i.e., 224 

, where  is the fraction of associated with PSII ), the fluorescence spectral shape function 225 

 (unitless), the overall effective absorption cross section of photosynthetic pigment ( , m2 226 

mol-1, which may vary with leaf and canopy structure), and the excitation irradiance  (µmol 227 

photons m-2 leaf area s-1 nm-1), which is in turn integrated over the spectra of excitation 228 

irradiance wavelength  (nm) from  (the minimum wavelength of excitation irradiance) up 229 

https://paperpile.com/c/tiuJeT/LjLh
https://paperpile.com/c/tiuJeT/LjLh
https://paperpile.com/c/tiuJeT/LjLh
https://paperpile.com/c/tiuJeT/LjLh
https://paperpile.com/c/tiuJeT/62lx
https://paperpile.com/c/tiuJeT/62lx
https://www.codecogs.com/eqnedit.php?latex=F_%7Be%7D#0
https://www.codecogs.com/eqnedit.php?latex=F_%7Be%7D#0
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
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to . The excitation photons at  greater than  cannot contribute to  at , as they do not 230 

have sufficient energy for ChlaF emission at shorter wavelengths (phonon emission due to 231 

elementary excitation is ignored as it is non-significant to ChlaF emission). Note that  includes 232 

all sources - incoming solar photons (i.e., the first-order interaction), scattered solar photons, and 233 

emitted fluorescence photons, although contribution from the latter two sources to  is 234 

considerably smaller (Yang & van der Tol, 2018). The  component arising from PSI can be 235 

similarly modeled, except that the relative contribution of pigments associated with PSI to the 236 

overall effective absorption cross section is denoted as  (assuming there are no free 237 

energetically disconnected light harvesting complexes). The product of  and  gives the more 238 

commonly used absorption coefficient  at the leaf level (unitless, ~0.85 of PAR). Here  239 

and  are broadband quantities assumed to be independent of  and .  and  depend on 240 

the electronic properties of the chlorophyll a forms involved in the ChlaF emissions of PSII and 241 

PSI respectively, and their interactions with macromolecular complexes; they lead to unity once 242 

integrated over the full range of , and for simplicity, are assumed to vary only with .  243 

The leaf-level , once summed up with contributions from PSII and PSI, can be 244 

integrated over the full canopy, from the canopy top (i.e., canopy depth ) to the bottom (245 

), to obtain the true canopy-level total ChlaF emission  (i.e., prior to reabsorption 246 

or scattering within a canopy). Here the leaf to canopy integration is a highly 247 

conceptualized notation, and can take different forms with varying complexity in actual 248 

implementations, i.e., 1D homogeneous (Van der Tol et al., 2009), or 3D heterogeneous canopies 249 

(Zhao et al., 2016), or separated sunlit and shaded canopies (e.g., He et al., 2017). 250 

In practice, however,  cannot be measured directly. Instead, the canopy-leaving SIF 251 

irradiance that travels towards the sensor direction is only a portion of  that escapes from the 252 

canopy (after reabsorption and scattering). At the nadir view,  and  (µmol photons 253 

m-2 ground area s-1 nm-1), denoting the upward and downward canopy-leaving SIF irradiance at  254 

within a hemispherical 180o field of view (FOV) at the top and the bottom of a canopy 255 

respectively, can be given as: 256 

 257 

(2) 258 

https://paperpile.com/c/tiuJeT/0BCu
https://paperpile.com/c/tiuJeT/Gs2C
https://paperpile.com/c/tiuJeT/gU2P
https://paperpile.com/c/tiuJeT/BC3H
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 consists of a dominant component directly from vegetation (i.e.,  escaped from the canopy 259 

in the upward direction) and a minor component due to reflection of  by soil with a reflectance 260 

of  at . The major differences of  and  from  are the introduction of the upward and 261 

downward escape probabilities, denoted by  and  (unitless), respectively, both of which vary 262 

with  and . Any SIF photon emitted by an infinitely thin layer at canopy depth  can be 263 

either absorbed 1) by this thin layer, 2) by the part of the canopy above this thin layer, 3) by the 264 

part of the canopy below this thin layer, or escape to the 4) very top or 5) very bottom of the 265 

canopy. The upward canopy escape probability  is the probability of a SIF photon emitted at a 266 

canopy depth  escaping to the very top of the canopy whereas the downward canopy escape 267 

probability  is the probability of this SIF photon escaping to the very bottom of the canopy. 268 

These two probabilities change in reverse directions with ; for example, as  increases,  269 

decreases while  increases. Note they are not the same as the probabilities of a SIF photon 270 

escaping from the interior to the surface of the same leaf at . , , and the self-absorption 271 

probability by the whole canopy  sum to unity. As the SIF signal is usually acquired from 272 

instruments above the canopy, we further remove the explicit appearance of  in Eq 2a, by 273 

inserting Eq 2b and obtain: 274 

    (2c) 275 

Eq 2 is also a conceptualized framework and includes necessary simplifications. For example, it 276 

omits multiple scattering of SIF within the canopy and by soil (as  and  only represent the 277 

first-interaction), as well as the backward scattering of SIF from the sky; it also assumes that all 278 

photons (in the PAR region) are equally efficient in exciting chlorophylls regardless of 279 

wavelength (i.e.,  and  are broadband quantities). For more technical treatments of 280 

excitation and radiative transfer of SIF, readers are referred to Pedrós et al. (2010) and Vilfan et 281 

al. (2016) for leaf-level radiative transfer model (RTM), and Van der Tol et al. (2009), Verhoef 282 

(1984), van der Tol et al. (2019) for canopy-level 1D RTM, as well as references synthesized in 283 

Table 1. Towards achieving objectives of this review, Eq 2c is sufficiently detailed and serves as 284 

the base equation for describing SIF dynamics at the canopy scale (and beyond) throughout the 285 

rest of the paper. Note the commonly used terminology “SIF remotely sensed above the canopy” 286 

corresponds to  (if the sensor has an approximately hemispherical 180o  FOV) or directional 287 

(if the sensor has a narrow FOV; here the sun-canopy-sensor geometry is denoted as  in 288 

the upward direction, e.g., for spaceborne instruments). The complete formulation of  is 289 

provided in SI-2. For simplicity, the following equations and derivations, are all based on  290 

unless otherwise specified, but  and  are mutually convertible (3.1); plant structural and 291 

functional variations as well as environmental forcings that impact  (2.2 and 2.3) also apply to 292 

. 293 

https://paperpile.com/c/tiuJeT/lgdb
https://paperpile.com/c/tiuJeT/dlf0
https://paperpile.com/c/tiuJeT/dlf0
https://paperpile.com/c/tiuJeT/Gs2C
https://paperpile.com/c/tiuJeT/VnD5
https://paperpile.com/c/tiuJeT/VnD5
https://paperpile.com/c/tiuJeT/PJsJ
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit


 

10 

We further expand  and  in Eq 2c as functions of non-photochemical quenching 294 

(NPQ) and redox states of PSII and PSI (full derivation in SI-3):  295 

 296 

 297 

(3) 298 

Here  and  (unitless) denote the fraction of open PSII and PSI reaction centers 299 

(characterizing their redox states respectively) under the lake model of photosynthetic unit 300 

connectivity, respectively.  is the oxidized fraction of PSI electron donor P700+, an efficient 301 

non-photochemical quencher whose intrinsic thermal dissipation capacity is denoted as  302 

(unitless).  and  (unitless) are the maximal photochemical quantum yields for 303 

PSII and PSI, respectively, and assumed to be conserved across non-stressed plants (Björkman & 304 

Demmig, 1987; G. N. Johnson et al., 1993).  (unitless) is the ratio of  (the rate constant of 305 

the constitutive or unregulated heat dissipation) to  (the rate constant of the ChlaF emission). 306 

A complete list of variable definitions and units is provided in Table S1. 307 

Eq 3 maps the complex dynamics of the emission and radiative transfer of SIF into a 308 

quantitative framework to infer ecosystem structure and functions (Fig. 2). Here ,309 

, , ,   and  can be treated as parameter constants (i.e., invariants in time and 310 

possibly across species, detailed discussion in SI-4). The remaining quantities are dynamic 311 

variables (i.e., changing over time and across species) and are affected by a myriad of interactive 312 

processes encompassing leaf and canopy structure and functions, all of which are driven by 313 

ambient environmental forcings (Fig. 2). Although Eq 3 and Fig. 2 show the complexity and 314 

challenges of interpreting remotely-sensed SIF, they reveal why SIF is useful and how to conduct 315 

ecologically meaningful applications of SIF across scales in time and space.  316 

https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://paperpile.com/c/tiuJeT/wqIx+pfQM
https://paperpile.com/c/tiuJeT/wqIx+pfQM
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
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 317 

Fig. 2. Diagram mapping key leaf/canopy structure/functions to the full SIF equation (Eq 3). For 318 

visualization clarity, only direct effects, which act via first-order processes, are displayed (as 319 

linkages between processes and mathematical terms). Boxes marked with * or # highlight 320 

processes that can potentially be inferred from hyperspectral or Lidar measurements, 321 

respectively. 322 

2.2 How do leaf and canopy functions influence SIF? 323 

Fig. 2 reveals that , , , , and  are the direct linkages between plant functions and 324 

SIF (the right column), and known to be closely regulated by physiology in response to ambient 325 

environmental conditions. Note when italicized,  denotes the variable in equations; when 326 

non-italicized, NPQ denotes the regulated heat dissipation processes, following Porcar-Castell et 327 

al. (2014). NPQ consists of multiple complex mechanisms (e.g., energy-dependent and energy-328 

https://paperpile.com/c/tiuJeT/20EF
https://paperpile.com/c/tiuJeT/20EF
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independent/sustained NPQ) that operate at different time scales, ranging from seconds to weeks 329 

or even longer durations (Ruban, 2016; Verhoeven, 2014). The energy-dependent NPQ is 330 

controlled by changes in lumen acidity, which in turn is determined by protons from water 331 

splitting by the oxygen evolving complex and translocation from stroma to lumen as a result of 332 

photosynthetic electron transport. The energy-independent/sustained NPQ is caused by 333 

photoinhibition or photodamage of PSII and/or composition changes in photosynthetic and non-334 

photosynthetic pigment contents for photoprotection (Malnoë, 2018). These mechanisms play 335 

key roles in protecting the photosynthetic machinery by dissipating excess energy into harmless 336 

heat when the carbon reactions cannot consume all the energy supplied by the light reactions. 337 

The consequence of NPQ is to reduce (quench) ChlaF emission. Note throughout the paper, 338 

 refers to only PSII unless otherwise specified as in the example of NPQ7 (detailed 339 

discussion in SI-3).  340 

 and  indicate the redox status of PSII and PSI acceptors, respectively.  indicates 341 

the redox state of the donor of PSI, and is relevant because the oxidized donor of PSI is an 342 

efficient quencher. These variables affect and also are affected by the electron transport rates 343 

(ETR) via these two photosystems (Han, Chang, et al., 2022; Laisk et al., 2014). Changes in 344 

, , and  are considered instantaneous (i.e., faster than the energy-dependent NPQ). However, 345 

photoinhibition may also affect , leading to long-term (weekly to seasonal) changes (Porcar-346 

Castell, 2011). 347 

 is controlled by PSII/PSI stoichiometry and varies with state transition (which may 348 

vary across plant species), which refers to the adjustment of PSII and PSI relative absorption 349 

cross sections in response to excitation imbalance between PSII and PSI (Stirbet et al., 2020). 350 

Photosystem excitation imbalance can occur when environmental conditions such as light 351 

intensity, temperature, and CO2 concentration vary, causing a need to adjust the relative 352 

proportion of cyclic to linear electron transport and the ratio of ATP to NADPH to satisfy 353 

different stromal metabolisms and deliver electrons to alternative sinks (Kramer & Evans, 2011). 354 

Linear electron transport results in the production of NADPH and accumulation of protons in the 355 

lumen and therefore ATP synthesis. In contrast, cyclic electron transport contributes to proton 356 

accumulation in the lumen and ATP synthesis but not NADPH. Thus adjusting the ratio of cyclic 357 

to linear electron transport results in a different ratio of ATP to NADPH. The photosystem 358 

excitation imbalance can also occur when the two photosystems encounter different levels of 359 

photodamage or photoinhibition (Caffarri et al., 2014). Note that the excitation balance between 360 

PSII and PSI is related to, but different from, the energy supply and demand balance between the 361 

light and carbon reactions. The former is concerned about the coordination between PSII and PSI 362 

for the production of NADPH and ATP, while the latter is concerned about whether the 363 

production of NADPH and ATP is at rates that meet their demand by metabolic processes. Both 364 

balances can affect ChlaF emission. A detailed discussion on these issues is beyond the scope of 365 

this review but can be found in the literature of plant physiology (e.g., Kramer & Evans, 2011).  366 

Here it suffices to state that any environmental factors that affect photosynthesis and 367 

photorespiration are expected to affect , , , , and  and therefore SIF dynamics as 368 

Eq. 3 and Fig. 2 show. For example, the ratio of  to  is directly related to carbon 369 

reactions (Eqs S12, S15, S19, mathematical derivation in SI-5). This indicates that any 370 

environmental factor that affects carboxylation, oxygenation, stomatal conductance, mesophyll 371 

https://paperpile.com/c/tiuJeT/jZlp+NwVZ
https://paperpile.com/c/tiuJeT/ycRd
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://paperpile.com/c/tiuJeT/ZKTm+dmhy
https://paperpile.com/c/tiuJeT/ZKTm+dmhy
https://paperpile.com/c/tiuJeT/ZKTm+dmhy
https://paperpile.com/c/tiuJeT/jHU7
https://paperpile.com/c/tiuJeT/jHU7
https://paperpile.com/c/tiuJeT/9Y6O
https://paperpile.com/c/tiuJeT/qjbl
https://paperpile.com/c/tiuJeT/XM6E
https://paperpile.com/c/tiuJeT/qjbl
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
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conductance, and leaf energy balance has a potential to affect  and , and thus  (Han, 372 

Gu, et al., 2022).  373 

While the above description shows that a wide range of plant functional factors can affect 374 

 at the leaf level, all is not lost in complexities. Photochemical and non-photochemical 375 

quenching have a compensating effect on ChlaF emission and may facilitate the interpretation of 376 

SIF dynamics (but may complicate the interpretation of SIF-GPP relationships, detailed 377 

discussion Sun et al., 2023b). Under steady state in natural conditions,  and  tend to 378 

vary in opposite directions because more reduced PSII acceptors tend to be associated with 379 

higher proton gradients across the thylakoid membrane and therefore higher . This means 380 

that  is more stable than either  or  alone (Gu et al., 2019). Similarly,  and  381 

should also tend to change in opposite directions (i.e., more open PSI reaction centers mean less 382 

oxidized PSI donors), which may have implications for quantifying ChlaF emissions from PSI 383 

(detailed discussion in SI-1). 384 

The aforementioned leaf-level plant functions can vary considerably across the canopy, 385 

driven by gradients in micro-environmental conditions (e.g., light, temperature, etc) within a 386 

canopy and canopy structure (i.e., heterogeneity of foliar traits such as vertical distributions of 387 

nutrients, pigments, morphology, age, etc., details in 2.3) within a canopy. For example, it is well 388 

known that foliar nutrient contents and morphological characteristics (e.g., specific leaf area) 389 

vary systematically across the depth of the canopy. These vertical gradients in foliar traits are 390 

long-term adaptations to the background gradients in environmental conditions such as light 391 

intensity, spectral composition, and temperature that exist inside the canopy (Coble et al., 2017). 392 

The vertical gradients in the light intensity and its spectral composition can impact relative 393 

contributions of PSII and PSI to ChlaF emission. Plant canopies not only attenuate light intensity 394 

but also alter light spectrum because leaves absorb strongly in blue and red wavelengths but 395 

scatter strongly in the green and far-red regions. As a result, the within-canopy light environment 396 

is depleted in blue and red photons but enriched in green and far-red lights as compared to that in 397 

open environments (Hertel et al., 2011). PSI is more sensitive to far-red light than PSII is. 398 

Therefore as the canopy gets deeper, the light environment increasingly favors PSI (Anderson et 399 

al., 2008), which may lead to increasing contribution of PSI to . Collectively, canopy structure 400 

and spatial gradients in environmental conditions together determine the vertical variations in 401 

leaf photosynthetic rates, , , , ,  and hence .  402 

A particularly interesting but often overlooked issue is how sunflecks affect ChlaF 403 

emission. Sunflecks are bursts of light intensity inside canopies where the light environment is 404 

normally shaded. These bursts are caused by canopy gaps and swinging upper canopies by winds 405 

and can affect canopy photosynthesis significantly (Way & Pearcy, 2012). Because sunflecks are 406 

short-lived and NPQ is not instantaneous (Kromdijk et al., 2016), NPQ might not be able to rise 407 

fast enough to quench fluorescence when a sunfleck hits a leaf. As a result, sunflecks may 408 

contribute disproportionately to  via a short term (a few seconds) increase (i.e. the Kautsky 409 

effect), an issue particularly important for plant breeding towards enhancing crop productivity 410 

(Kromdijk et al., 2016).  411 

https://paperpile.com/c/tiuJeT/5rJE
https://paperpile.com/c/tiuJeT/5rJE
https://paperpile.com/c/tiuJeT/5rJE
https://paperpile.com/c/tiuJeT/5rJE
https://paperpile.com/c/tiuJeT/NyDo
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://paperpile.com/c/tiuJeT/daz6
https://paperpile.com/c/tiuJeT/PpkO
https://paperpile.com/c/tiuJeT/yNHT
https://paperpile.com/c/tiuJeT/yNHT
https://paperpile.com/c/tiuJeT/OaFN
https://paperpile.com/c/tiuJeT/cDio
https://paperpile.com/c/tiuJeT/cDio
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2.3 How do leaf and canopy structure influence SIF? 412 

The internal structure and morphology of a leaf is as complex as that of a plant canopy. 413 

Although leaves typically consist of three main tissues (epidermis, mesophyll, and vascular), 414 

how these tissues are internally arranged and by what amount are determined by plant 415 

phylogenesis, locations in the canopy, foliar age before full development, and environmental 416 

conditions, with consequences on the scattering and absorption of both excitation light and 417 

emitted SIF (the left column in Fig. 2).  418 

At the sub-daily time scale, the variation in  amount is likely minor (Wickliff & 419 

Aronoff, 1962), and  dominated by changes in leaf carotenoid composition, which is involved 420 

not only in light harvesting and excitation to chlorophylls but also in the xanthophyll cycle that 421 

protects plants against photodamage under high light (Adams & Demmig-Adams, 1992). 422 

Although leaf chlorophyll content  is not expected to vary diurnally, chloroplast movement 423 

occurs at this time scale, leading to changes in excitation irradiance. At seasonal time scales, leaf 424 

chlorophyll a and b and carotenoid contents (bulk xanthophylls and zeaxanthin retention) can be 425 

highly dynamic in response to the environment or plant phenology, especially for non-evergreen 426 

species. For example, chlorophyll a and b are lower in young leaves, peaks in mature leaves, and 427 

then decreases again as leaves senesce. This leaf age-related pattern closely matches that of leaf 428 

nitrogen content and coordinates with photosynthetic capacity (Croft et al., 2017), ensuring that 429 

light harvesting and carboxylation are in balance throughout the lifetime of a leaf. Leaf 430 

chlorophyll content also varies markedly across species (e.g., evergreen vs non-evergreen), even 431 

at the same geographical/climatic regimes (Li, He, et al., 2018).  432 

The effective absorption cross sections of photosynthetic pigment  is influenced by 433 

multiple leaf/canopy structural factors. For example, photosynthetic pigments are not distributed 434 

uniformly on a plane that parallels the leaf surface, because pigments in chloroplast thylakoid 435 

membranes form concentrated interconnected complexes (i.e., pigment packaging, which refers 436 

to the spatial arrangement of pigment molecules, much like leaf clumping in a canopy) and 437 

chloroplasts themselves are not uniformly distributed laterally (i.e., chloroplast positioning), 438 

leading to the so-called sieve effect. The sieve effect reduces , which is in contrast to the detour 439 

effect, which increases photon absorption due to multiple scattering inside leaf tissues 440 

(Vogelmann, 1993). Furthermore, leaf anatomy can greatly affect the sieve and detour effects. 441 

For example, leaves of most species are dorsiventral with chloroplast-rich palisade parenchyma 442 

cells densely packed near the upper surface (the adaxial side) and the spongy mesophyll loosely 443 

placed near the lower surface (the abaxial side). The dorsiventral leaves tend to orient more or 444 

less randomly around horizontal directions. Leaves that orient more vertically tend to have more 445 

symmetrical tissue distributions (e.g., grasses, eucalyptus). Ustin & Jacquemoud (2020) provided 446 

an excellent discussion on leaf anatomy in the context of leaf-level radiative transfer. Moreover, 447 

 can vary vertically along the canopy due to changes in leaf inclination, pigment distribution, 448 

and leaf age.  449 

The escape probabilities  and  for a single leaf depend not only on leaf pigment 450 

content and composition, but also on leaf anatomy, incident light direction relative to the leaf 451 

surface, and fraction of diffuse light, and is best estimated by a leaf/canopy RTM that treats a 452 

https://paperpile.com/c/tiuJeT/rduY
https://paperpile.com/c/tiuJeT/rduY
https://paperpile.com/c/tiuJeT/qsWW
https://paperpile.com/c/tiuJeT/DPHw
https://paperpile.com/c/tiuJeT/1wV4
https://paperpile.com/c/tiuJeT/IxrL
https://paperpile.com/c/tiuJeT/kJQd
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leaf as a 1D or 3D structure. It is important to note that, although the morphological architecture 453 

of leaves tends to remain stable once the leaf is fully developed, the arrangement and disposition 454 

of photosynthetic elements within a canopy therein can be highly dynamic, even at sub-daily 455 

scale. Chloroplast positions in mesophyll cells are controlled by chloroplast actin filaments, 456 

which are extremely sensitive to the intensity of light. At low light, these filaments can guide 457 

chloroplasts to periclinal walls to maximize exposure to light while at high light they can 458 

relocate the chloroplasts to anticlinal walls to reduce light exposure to avoid photodamage 459 

(Wada, 2013). Similarly, the arrangement of thylakoids within the chloroplast, with dynamic 460 

grana stacking/unstacking will also influence  and , and also .  461 

Overall, the presence of these factors means the leaf internal light intensity and spectral 462 

composition is heterogeneous and dynamic. Also, leaves with the same chlorophyll content may 463 

have different , , and  if their anatomy and chlorophyll packaging patterns (both at the scale 464 

of chloroplasts and thylakoids) differ. 465 

The effects of canopy structure on SIF are twofold. On the one hand, the internal 466 

distribution of PAR over branches, needles, and leaves, which controls the excitation of ChlaF 467 

emission, is determined by the penetration and scattering of light in the stand. On the other hand, 468 

the probability that the ChlaF emission, which is produced in the stand and exits the canopy in 469 

the viewing direction, is also determined by the vegetation structure and incident light direction 470 

(Van der Tol et al., 2009). Thus, the optical properties of soil, wood, and leaves in both the 471 

excitation and the emission spectral ranges affect canopy-leaving SIF. Fortunately, there is no 472 

new physics involved in the theory of SIF radiative transfer. Our understanding regarding how 473 

canopy structure affects radiative transfer of incoming solar radiation (Ross, 1981) can be 474 

equally applied to radiative transfer of SIF, although the objectives of applying this theory differ 475 

greatly between them. For solar radiative transfer, the source comes down from the top and we 476 

are typically interested in how much solar radiation is absorbed and how much is reflected. For 477 

fluorescence radiative transfer, the source is every leaf inside the canopy and much weaker, and 478 

we are typically interested in how much ChlaF emission escapes to the top of the canopy (TOC) 479 

and what it can tell us about photochemical and biochemical processes inside the canopy. 480 

Because of these differences, it is likely that fluorescence radiative transfer issues will require 481 

more accurate considerations of canopy structural factors (leaf inclination/heliotropism, spatial 482 

variations in pigment and nutrient contents, phenological stages/leaf age, leaf clumping, crown 483 

shape, crop row orientation, canopy rugosity, porosity, roughness, etc., Fig. 2) than modeling 484 

solar radiative transfer inside plant canopies. The spatial arrangement of fluorescing and non-485 

fluorescing foliage elements within a canopy may have a large influence on . For example, 486 

forests may appear ‘darker’ in terms of  than croplands (Colombo et al., 2018), not necessarily 487 

because they emit less fluorescence, but because a portion of the ChlaF emission remains 488 

‘trapped’ in the vegetation and is reabsorbed, and thus cannot be observed by the sensor. 489 

Progress in SIF RTM of different complexity is summarized in 2.4. 490 

2.4 Forward model parameterization of SIF and the associated processes in leaf/canopy 491 

function/structure  492 

Existing models that have SIF-simulating capability and progress made so far are 493 

summarized in Table 1. Future theoretical innovations needed are discussed in Section 4. 494 

Considering the complexity of interacting processes (i.e., the left and right columns in Fig. 2), 495 

https://paperpile.com/c/tiuJeT/b0BC
https://paperpile.com/c/tiuJeT/Gs2C
https://paperpile.com/c/tiuJeT/k3rW
https://paperpile.com/c/tiuJeT/neei
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model parameterization can be distilled into a few key variables (i.e., the middle column in Fig. 496 

2). Among these variables, and are either input or state variables of a dynamic vegetation 497 

growth model; of a leaf and  can be simulated by leaf/canopy and soil RTM, respectively, or 498 

prescribed as input spectra;  is often treated as a constant, i.e., ~0.5. The remaining quantities 499 

have to be explicitly formulated, which can be categorized into two groups: variables related to 500 

leaf-level physiological functions including , , , and , and variables determined 501 

by leaf/canopy radiative transfer, including , , . All models with SIF-simulating capability 502 

have to incorporate both leaf-level physiology of ChlaF emission and leaf/canopy RTM of solar 503 

radiation and SIF, but to varying degrees of parameterization complexity, computational 504 

efficiency, and applicable scales (Table 1).  505 

Leaf-level modeling of ChlaF emission: Forward estimation of  requires the dynamic 506 

responses of , , , , and  to be known at each canopy depth, according to Eq 3. To 507 

the best of our knowledge, no models have been developed for , , and , therefore we here 508 

focus on   and .  and  are routinely measured with PAM fluorometry and 509 

can be easily parameterized as an empirical function of environmental conditions (e.g., Han, 510 

Chang, et al., 2022; Raczka et al., 2019; Serôdio & Lavaud, 2011; van der Tol et al., 2014). An 511 

advantage of such simple models is that they can be coupled directly with Eq 3 to forward-512 

calculate . Kinetic models of  based on its regulation by lumen pH have also been 513 

developed (e.g., Zaks et al., 2012). However, the latter models are probably too complex for 514 

large-scale applications of SIF as they involve many parameters that cannot be estimated directly 515 

at the leaf level. Recently there have been efforts in developing mechanistic closure solutions for 516 

 and  by modeling redox reactions along the electron transport chain (Gu et al. 2022). 517 

These closure solutions will allow  and   to be resolved in a coupled system of 518 

photophysics, photochemistry, and biochemistry of photosynthesis, as defined above.  519 

Leaf/canopy-level RTM of SIF: The widely employed leaf-level RTM includes FluoMODleaf 520 

and Fluspect (Pedrós et al., 2010; Vilfan et al., 2016, 2018). Dorsiventral (Stuckens et al., 2009) 521 

or 3D leaf RTM (Govaerts et al., 1996) exist, but these do not include physiological 522 

parameterization of ChlaF emission. At the canopy scale, FluorSAIL (Miller et al., 2005) and 523 

Soil-Canopy Observation of Photochemistry and Energy (SCOPE) (Van der Tol et al., 2009) 524 

were the first models to parameterize the absorption of PAR, as well as the ChlaF emission, 525 

reabsorption, and scattering. These models employ the concept of the Scattering of Arbitrarily 526 

Inclined Leaves (SAIL) model (Verhoef, 1984, 1985), a relatively simple stochastic model for 527 

inclined leaves in stacked layers, which further extended to SIF radiative transfer. This type of 528 

model treats the vegetation canopy as 1D horizontally homogeneous canopy, which is unable to 529 

realistically characterize heterogeneous canopies that have complex architecture and species 530 

composition. To address this issue, ray-tracing based models were developed to simulate 531 

radiative transfer of SIF within 3D canopies. Such types of models, including DART, FluorWPS, 532 

FluorFLIGHT, and FLiES (Table 1), are computationally more expensive; however, with Monte-533 

Carlo approaches, their applicability for satellite measurements is foreseeable in the near future 534 

(Wang et al. 2022). The recently developed FluorRTER model (Zeng et al., 2020), based on 535 

spectral invariant theory, could be suitable for 3D heterogeneous canopies and is 536 

computationally less demanding.  537 

Among all these models, the 1D SCOPE model is the most widely used model in the SIF 538 

research community, since it also includes full modules for calculating photosynthesis and 539 

https://www.codecogs.com/eqnedit.php?latex=NPQ#0
https://www.codecogs.com/eqnedit.php?latex=q_%7BLII%7D#0
https://www.codecogs.com/eqnedit.php?latex=NPQ#0
https://www.codecogs.com/eqnedit.php?latex=q_%7BLII%7D#0
https://www.codecogs.com/eqnedit.php?latex=q_%7BLII%7D#0
https://paperpile.com/c/tiuJeT/JmPd+dmhy+sofJ
https://paperpile.com/c/tiuJeT/JmPd+dmhy+sofJ
https://paperpile.com/c/tiuJeT/htRP
https://www.codecogs.com/eqnedit.php?latex=NPQ#0
https://www.codecogs.com/eqnedit.php?latex=NPQ#0
https://www.codecogs.com/eqnedit.php?latex=q_%7BLII%7D#0
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https://paperpile.com/c/tiuJeT/lFdi
https://paperpile.com/c/tiuJeT/Gs2C
https://paperpile.com/c/tiuJeT/VnD5+Ridx
https://paperpile.com/c/tiuJeT/vxq3
https://paperpile.com/c/tiuJeT/Cf5f
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energy budget. It couples the leaf-level physiological module of ChlaF emission (Van der Tol et 540 

al., 2014), the leaf-level RTM Fluspect (Vilfan et al., 2016, 2018), and the canopy-level RTM 541 

SAIL (Verhoef, 1984, 1985), with subsequent updates to incorporate canopy vertical 542 

heterogeneity and to improve computation efficiency (Yang, Prikaziuk, et al., 2021). SCOPE has 543 

emerged as a standard tool (or a synthetic “virtual truth”) for process interpretation (e.g., Verrelst 544 

et al., 2015; Yang, Prikaziuk, et al., 2021) and for benchmarking other models, including both 545 

large-scale Terrestrial Biosphere Models (TBMs)/ Land Surface Models (LSMs) (e.g., Li et al., 546 

2022) and  small-scale complex 3D models (e.g., Zeng et al., 2020; Zhao et al., 2016). 547 

Furthermore, SCOPE has been taken as the standard paradigm for parameterizing leaf-level 548 

ChlaF emission and predominantly adopted (with varying actual implementations) by 549 

researchers into TBMs/LSMs (Parazoo et al., 2019). The basic strategy of SCOPE’s leaf-level 550 

ChlaF emission parameterization (Fig. S1) is to 1) compute  (the rate constant of NPQ) as an 551 

empirical function of the degree of light saturation (derived from the actual and potential ETR), 552 

which in turn 2) closes the system of equations (i.e., having the number of equations equal the 553 

number of unknowns) for calculating photochemistry, non-photochemical heat dissipation, and 554 

PSII ChlaF emission according to the principle of energy conservation (i.e., , ,  555 

form a closed equation for PSII, and knowing any two of them is sufficient to resolving the third, 556 

assuming  and  are constants). This strategy, denoted as FvCB+ , has to compute 557 

photosynthesis and actual ETR first, from FvCB, prior to derivation of , , and SIF. It is 558 

subject to uncertainties propagated from parameter uncertainties present in FvCB (Rogers et al., 559 

2017; Walker et al., 2021) and the empirical NPQ model for computing . Indeed, the wide 560 

discrepancy of simulated SIF across TBMs/LSMs and deviations from observed SIF may result 561 

at least partly from these uncertainties (Parazoo et al., 2020; Yang, van der Tol, et al., 2021), as 562 

each individual model has different actual implementation of FvCB and  formulations. 563 

Moreover, this approach essentially conflicts with the original intention of using SIF in a forward 564 

mode to curb uncertainties in current photosynthesis estimates from FvCB.  565 

The level of detail of the canopy radiative transfer representation in RTM essentially 566 

determines the computational demand and applicable scales (Table 1). For regional to global 567 

applications, the 1D SCOPE model with multi-layer treatment is practically unmanageable due 568 

to computational demand. Currently, global TBMs/LSMs usually employ the “big-leaf” strategy 569 

to simplify the canopy RTM. In these models, the SIF anisotropy cannot be explicitly modeled 570 

(Li et al., 2022), but most often treated as an empirical scaling factor derived from SCOPE 571 

ensemble simulations. Both SCOPE and the 3D family of models are capable of simulating the 572 

anisotropy impact on  by explicitly specifying the sun-canopy-sensor geometry. The major 573 

limitations of 3D models are the significant computational demands that prevent them from 574 

global simulations, as well as required input of leaf/canopy structure/functional information that 575 

are often challenging to obtain. Detailed description of the strengths and weaknesses of each 576 

model is summarized in Table 1.577 
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https://paperpile.com/c/tiuJeT/AMIL
https://paperpile.com/c/tiuJeT/gU2P+Cf5f
https://paperpile.com/c/tiuJeT/9MSo
https://paperpile.com/c/tiuJeT/LWL2+Gwcs
https://paperpile.com/c/tiuJeT/LWL2+Gwcs
https://paperpile.com/c/tiuJeT/PcTa+VDiM
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Table 1. Summary of existing process-based models that have SIF-simulating capability. 578 

 579 

Model Leaf-level 

parameterization of 

ChlaF emission 

Canopy RTM 

of SIF 

Sun-canopy 

-sensor 

geometry 

 Application Pros Cons C

E^ 

Ref 

Leaf RTM  
Biochemic

al 

3D (horizontally) heterogeneous canopy - small scale scenes 

DART# Fluspect None Explicit modeling based on 3D ray-

tracing 

Full spectra • Natural 

landscapes 

• DART only: 

including urban 

landscapes 

• Suitable for 

small scale 

scenes with fine 

complex 

composition and 

structure 

• DART only: 

Integration with 

Lidar 

• Computationally still too 

demanding to be applied at 

large scale (>100m), but 

more efficient approaches 

may emerge. 

• Requiring accurate 

leaf/canopy 

structural/functional info as 

priori input, which are often 

challenging to obtain 

• No leaf-level ChlaF 

emission formulation 

included (except FLiES) 

• No vertical heterogeneity 

in vegetation structure 

• Not yet thoroughly 

validated with in-situ data 

 (Gastell

u-

Etchego

rry et 

al., 

2017) 

FluorWPS Fluspect As a 

function of 

PAR& 

 (Zhao et 

al., 

2016) 

FluorFLIGHT# Fluspect None  (Hernán

dez-

Clement

e et al. 

2017) 

FLiES FluoMODLeaf FvCB +   (Sakai 

et al., 

2020) 

https://paperpile.com/c/tiuJeT/uosq
https://paperpile.com/c/tiuJeT/uosq
https://paperpile.com/c/tiuJeT/uosq
https://paperpile.com/c/tiuJeT/uosq
https://paperpile.com/c/tiuJeT/uosq
https://paperpile.com/c/tiuJeT/uosq
https://paperpile.com/c/tiuJeT/gU2P
https://paperpile.com/c/tiuJeT/gU2P
https://paperpile.com/c/tiuJeT/gU2P
https://paperpile.com/c/tiuJeT/IKjQ
https://paperpile.com/c/tiuJeT/IKjQ
https://paperpile.com/c/tiuJeT/IKjQ
https://paperpile.com/c/tiuJeT/IKjQ
https://paperpile.com/c/tiuJeT/IKjQ
https://paperpile.com/c/tiuJeT/aaTb
https://paperpile.com/c/tiuJeT/aaTb
https://paperpile.com/c/tiuJeT/aaTb
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FluorRTER Fluspect None Explicit modeling based on SRTE • 

Computationally 

more efficient 

than the ray-

tracing approach 

• Potential for 

large-scale 

applications 

 (Zeng et 

al., 

2020) 

1D (horizontally) homogeneous canopy - point to landscape scale 

SCOPE Fluspect FvCB +  • Explicit modeling based on 

SAIL 4-stream approach 

• Multi-layer canopy (nlayer = 

10LAI)$ 

Full spectra • Process 

interpretation 

• Benchmarking 

for both 3D and 

global 

TBMs/LSMs 

• 

Computationall

y more efficient 

than 3D models 

• Vertical 

heterogeneity in 

biochemical 

and/or 

biophysical 

properties 

• Not suitable for 

horizontally heterogeneous 

canopy, e.g., crops with 

row structure, forests with 

complex architecture 

• Requiring accurate site-

specific leaf/canopy 

structural/functional info 

as priori input, which are 

often challenging to obtain 

•  formulation 

empirical and susceptible 

to uncertainties in FvCB 

• Impact of biotic stress 

not represented 

 (Van 

der Tol 

et al., 

2009, 

2014; 

van der 

Tol et 

al., 

2019; 

Yang et 

al., 

2017; 

Yang, 

Prikaziu

k, et al., 

2021) 

1D (horizontally) homogeneous canopy - global scale TBMs or LSMs 

BETHY + 

SCOPE 

Fluspect FvCB +* • Multi-layer 

canopy (nlayer = 

60) 

• Not explicitly 

represented 

• Only output 

• Single 

wavelength  

• A 

• Global 

(forward) 

simulations of 

• 

Computationally 

most efficient 

• Uncertainties in model 

structure (formulations) and 

 (Koffi 

et al., 

2015) 

https://paperpile.com/c/tiuJeT/Cf5f
https://paperpile.com/c/tiuJeT/Cf5f
https://paperpile.com/c/tiuJeT/Cf5f
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/Gs2C+D39L+PJsJ+TsTg+BWSS
https://paperpile.com/c/tiuJeT/q7R2
https://paperpile.com/c/tiuJeT/q7R2
https://paperpile.com/c/tiuJeT/q7R2
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JSBACH None FvCB +  • Multi-layer 

canopy (nlayer = 

3) 

• Assuming a 

constant 

exponential 

attenuation factor 

of ChlaF emission, 

calibrated to 

SCOPE 

simulations 

nadir and/or 

hemispherically

-integrated 

TOC SIF 

(calibrated to 

SCOPE 

ensemble 

simulations) 

• BETHY only: 

No info 

provided 

• JSBACH 

only: No SIF 

magnitude, as 

no wavelength 

separation 

conversion 

factor 

calibrated to 

SCOPE 

ensemble 

simulations 

• BETHY 

only: No info 

provided on 

wavelength 

adjustment 

SIF for 

comparison with 

in-situ and/or 

satellite SIF 

retrievals 

• Data 

assimilation by 

ingesting SIF 

measurements to 

constrain 

parameters 

and/or variables 

related to GPP 

simulations 

for large-scale 

simulations 

• Vertical 

heterogeneity in 

biochemical/bio

physical 

properties (for 

some models) 

parameters of FvCB, , 

SIF parameterizations for 

global PFTs 

• Simplified SIF leaf-to-

canopy RTM formulations 

• Depend on external 

simulations of SCOPE for 

deriving simple conversion 

factors or parameterizations 

to account for escape 

probability at certain 

viewing angle(s) and 

specific wavelength 

 (Thum 

et al., 

2017) 

SiB* None FvCB +* • One "big-leaf" 

model NOT 

separating sunlit 

and shaded 

portions 

• Assuming a 

factor accounting 

for leaf to canopy 

scaling calibrated 

to SCOPE 

simulations 

 (Haynes 

et al., 

2020) 

ORCHIDEE None • A simplified 

empirical model 

calibrated to 

SCOPE ensemble 

simulations 

 (Bacour 

et al., 

2019) 

BEPS None • Two "big-leaf" 

model accounting 

for sunlit and 

shaded portions 

• Exponential 

 (Cui et 

al., 

2020; 

Qiu et 

al., 

https://paperpile.com/c/tiuJeT/s8os
https://paperpile.com/c/tiuJeT/s8os
https://paperpile.com/c/tiuJeT/s8os
https://paperpile.com/c/tiuJeT/H3HG
https://paperpile.com/c/tiuJeT/H3HG
https://paperpile.com/c/tiuJeT/H3HG
https://paperpile.com/c/tiuJeT/dwjz
https://paperpile.com/c/tiuJeT/dwjz
https://paperpile.com/c/tiuJeT/dwjz
https://paperpile.com/c/tiuJeT/6cFr+ulMc
https://paperpile.com/c/tiuJeT/6cFr+ulMc
https://paperpile.com/c/tiuJeT/6cFr+ulMc
https://paperpile.com/c/tiuJeT/6cFr+ulMc
https://paperpile.com/c/tiuJeT/6cFr+ulMc
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attenuation factor 

of ChlaF emission 

as a function of 

LAI and clumping 

index 

• Scattering factor 

of ChlaF emission 

as a function of 

LAI 

2019) 

CLM* None • Two "big-leaf" 

model accounting 

for sunlit and 

shaded portions 

• CLM4: 

Assuming a factor 

accounting for leaf 

to canopy scaling 

calibrated to 

SCOPE 

simulations 

• CLM5: Separate 

calculation of 

canopy-level 

escape probability 

for sunlit and 

shaded portions 

according to Zeng 

et al. (2019) 

• Empirically 

represented 

• Only output 

nadir and/or 

hemispherically

-integrated 

TOC SIF 

 (Lee et 

al., 

2015; 

Raczka 

et al., 

2019; 

Li et al., 

2022) 

&Based on Rosema et al. (1998) 580 
#RAdiation transfer Model Intercomparison (RAMI) participating model 581 

*Subjective to version differences and/or formulation variants 582 
^CE denotes computational efficiency; models are broadly sorted in increasing order of CE, color-coded in a warm (low CE) to cold 583 

https://paperpile.com/c/tiuJeT/6cFr+ulMc
https://paperpile.com/c/tiuJeT/o8r0
https://paperpile.com/c/tiuJeT/o8r0
https://paperpile.com/c/tiuJeT/o8r0
https://paperpile.com/c/tiuJeT/o8r0
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/eoGm+sofJ
https://paperpile.com/c/tiuJeT/3kfL
https://paperpile.com/c/tiuJeT/3kfL
https://paperpile.com/c/tiuJeT/3kfL
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(high CE) spectrum. 584 
$nlayer denotes number of canopy layers585 
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3. The inference question: What aspects of terrestrial ecosystem structure, function, and 586 

service can be reliably inferred from remotely sensed SIF and how? 587 

The relevance of SIF for inferring photosynthesis and the related ecosystem structural and 588 

functional information rests on the fact that ChlaF emission is directly coupled to the actual 589 

linear ETR from PSII to PSI (Gu et al., 2019). However, the canopy-leaving  (or more 590 

broadly ) needs to be converted to , prior to any meaningful inference of 591 

ecosystem structure or function. In the following, we first summarize current approaches that 592 

infer  from  or  (3.1), and then present the full equations to estimate the 593 

actual ETR and GPP utilizing ChlaF emission as input (3.2). Finally, we develop a “toy” model 594 

as an analytical framework (3.3), which not only offers direct mechanistic insights on 595 

interpreting the relationship between  and GPP at varying spatiotemporal scales or under 596 

different environmental conditions, but also enables a practical solution to compute 597 

regional/global GPP by taking remotely-sensed  as input. Note in this paper,  and 598 

 denote canopy-leaving SIF at TOC, which are assumed to be identical to the at-sensor SIF 599 

signal, i.e., negligible atmospheric absorption/scattering from the atmospheric column between 600 

TOC and the observing instrument, which is a reasonable assumption for solar Fraunhofer-line 601 

based SIF retrievals (Chang et al., 2020; Frankenberg et al., 2012). 602 

3.1 Inferring  from  or  603 

There are two common approaches to infer . The first attempts to estimate the 604 

fluorescence escape probability  escaping out of TOC (viewed from nadir), 605 

from the measured TOC reflectance . More commonly for spaceborne measurements, the 606 

directional TOC SIF radiance (and also the directional TOC reflectance) at sun-canopy-sensor 607 

geometry  is acquired, i.e., ; therefore the fluorescence escape probability is -608 

dependent, i.e., . The term ‘escape probability’ originated from 609 

recollision theory (Stenberg 2007; Knyazikhin et al., 2011), and appears to exhibit a red edge 610 

pattern very similar to reflectance (Fig. 3). Therefore, this approach takes advantage of the 611 

similarity of photon interception and scattering behaviors between ChlaF emission and excitation 612 

irradiance (i.e., for paths after first interaction with leaves and inducing ChlaF emission) within a 613 

canopy (Fig. 3; Yang and van der Tol 2018). As directional TOC reflectance is widely available, 614 

facilitating this type of approach is a practical way to approximate  or . 615 

https://paperpile.com/c/tiuJeT/NyDo
https://paperpile.com/c/tiuJeT/4fY9+A9Zj
https://www.codecogs.com/eqnedit.php?latex=%5Cbold%7B%5COmega%7D#0
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 616 

Fig. 3. Similarity between TOC fluorescence escape probability  and reflectance. (a) A 617 

diagram illustrating the radiative transfer paths of incident solar radiation and SIF within a 618 

canopy, adopted from Yang & van der Tol (2018). Definition of symbols is in Table S1. Orange, 619 

black, and red arrows represent incoming solar radiation, reflected/transmitted solar radiation, 620 

reflected/transmitted fluorescence, respectively.  and  denote leaf reflectance and transmittance 621 

respectively;  and  denote the relative partitioning of ChlaF emission in the backward and 622 

forward direction respectively;  is the canopy interceptance. (b)  and reflectance   as a 623 

function of wavelength simulated with SCOPE2.1 for a homogeneous C3 crop canopy viewed 624 

from nadir (detailed model parameter setup in Table S2).  625 

Yang & van der Tol (2018) demonstrated that irrespective of the complexity of radiative 626 

transfer, the relationship between  and  of a canopy over a black soil (i.e., 627 

) can be expressed as:  628 

  (4) 629 

here  is the canopy interceptance (depending on canopy gap fraction, unitless), and  is leaf 630 

scattering coefficients (i.e., the sum of leaf reflectance  and transmittance , unitless). Eq 4 631 

indicates that canopy reflectance  can serve as a practical solution to ‘correct’  632 

for structure related effects that may otherwise overshadow those of quenching mechanisms of 633 

ChlaF emission. Eq 4 is the theoretical foundation for following derivations and implementations 634 

of varying forms, i.e., Eqs 5a-h summarized in Table 2. However, there are two caveats in Eq 4. 635 

First,  and  may not be accurately known as a priori; second,  is assumed as zero, which in 636 

reality may not be the case and can contribute to  but not to ChlaF emission.  637 

To address the first caveat, Yang et al. (2020) developed the Fluorescence Correction 638 

Vegetation Index (FCVI) (Eq 5b), the product of the fraction of absorbed photosynthetically 639 

active radiation   and , based on the radiative transfer theory. Here  is 640 

the broadband visible directional reflectance over the PAR spectral range, and  is 641 

directional reflectance over the range of the NIR plateau (~750-900nm). FVCI quantifies the 642 

https://paperpile.com/c/tiuJeT/0BCu
https://paperpile.com/c/tiuJeT/0BCu
https://paperpile.com/c/tiuJeT/0BCu
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
https://paperpile.com/c/tiuJeT/0BCu
https://paperpile.com/c/tiuJeT/joNU
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combined effect of PAR absorption and SIF scattering, therefore accounting for the aggregated 643 

effect of leaf/canopy structure on SIF.  644 

To address the second caveat, Zeng et al. (2019) proposed to use NDVI  to differentiate 645 

 of pure vegetation from soil, which does not contribute to ChlaF emission but 646 

impacts , i.e., Eq 5f.  647 

Note Eqs 4-5 are only valid when the sun-canopy-sensor geometries are identical 648 

between far-red SIF and reflectance (i.e., measured at the same time from the same platform in 649 

practice). Furthermore, Eq 4 (and therefore Eqs 5a-d, f-g) is valid only for far-red SIF but not for 650 

red SIF, likely due to the asymmetry in the relative partitioning of scattering over two sides of a 651 

leaf (i.e.,  vs ) between incident solar radiation and ChlaF emission in the red region (Yang & 652 

van der Tol, 2018) and the significantly more re-absorption of ChlaF emission at red within a 653 

canopy. To remedy this issue, Liu et al. (2020) extends the  formulation to red SIF (Eq. 5e) 654 

using empirical approximation of  to mitigate soil contamination. Strictly speaking,  655 

and  should be at the same wavelength , which in practice, are unfortunately not available 656 

if they are from different spaceborne instruments. Therefore, there is often a spectral mismatch 657 

between the far-red SIF and reflectance at NIR (e.g., Zeng et al., 2019). Other variants of 658 

 formulations and their corresponding caveats are summarized in Table 2. 659 

https://paperpile.com/c/tiuJeT/o8r0
https://paperpile.com/c/tiuJeT/0BCu
https://paperpile.com/c/tiuJeT/0BCu
https://paperpile.com/c/tiuJeT/asoi
https://paperpile.com/c/tiuJeT/asoi
https://paperpile.com/c/tiuJeT/asoi
https://paperpile.com/c/tiuJeT/o8r0
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Table 2. Summary of approaches developed to estimate  and concurrently to correct the BRDF (Bidirectional Reflectance 660 

Distribution Function) effect of . 661 

Approach  Pros Cons Ref SIF data 
Reflectance 

data  

Simple index based on reflectance and spectral invariant theory (analytical solution) 

                         (4) 
far-red C1; D1 T1, T2, T3; P1, P2, P3 

Yang and 

van der 

Tol, 2018 

Synthetic Synthetic 

                      (5a) 
far-red C1; D3, D4, D5; Mitigating T1, P1, P2 T2, T3; P3; S8 

Zhang et 

al., 2019 
TROPOMI TROPOMI 

     (5b) 
far-red C1; D1, D2, D4 T1, T2, T3; P3; S1, S3 

Yang et al. 

2020 
In-situ In-situ 

(5c) 
far-red 

D1, D2, D3, D4, D5; Mitigating T1, 

P1, P2 
T1, T2, T3; P3; S2 

Zhang et 

al., 2020  

In-situ; 

OCO-2 

In-situ; OCO-

2 

 (5d) 
far-red D1, D2, D4, D5; Mitigating T1, P1, P2 T1, T2, T3; P3; S1, S2 

Liu et 

al.2020 
In-situ In-situ 

        (5e) 
red D1, D2, D4, D5; Mitigating T1, P1, P2 T2, T3; P3; S1, S2, S6 

Liu et al., 

2020  
In-situ In-situ 
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      (5f) 

far-red D1, D2, D4, D5; Mitigating T1 T2, T3; P1, P2, P3; S1, S2 
Zeng et al., 

2019 

Synthetic; 

TROPOMI 

Synthetic; 

MODIS 

         (5g) 
far-red D2, D4, D5; Mitigating P1 

T2, T3; P1, P2, P3; S2, S3, 

S4, S5 

Hao, Asrar, 

et al.2021; 

Hao, Zeng, 

et al., 2021; 

Hao et al., 

2022 

In-situ; 

OCO-2; 

TROPOMI 

In-situ; 

MODIS 

                 (5h) 
red D2, D4, D5; Mitigating P1 

T2, T3; P1, P2, P3; S2, S3, 

S4, S5, S6 

Hao, Zeng, 

et al., 2021; 

Hao et al., 

2022  

In-situ In-situ 

Kernel-driven approach  
red, far-

red 
D4, D5 S3, S7 

Hao, Zeng, 

et al., 2021; 

Hao et al., 

2022 

In-situ; 

TROPOMI 

In-situ; 

MODIS 

Explicit RTM model (numerical solution) 

A geometric-optical bidirectional model (simplified) 

accounting for separation of sunlit and shaded portions 
far-red 

• Theoretically rigorous derivation 

based on the geometric-optical 

bidirectional reflectance approach 

• Considering clumping index 

• Computationally affordable for 

global applications 

• Assumption of constant 

sunlit vs shaded fractions 

• Theoretically valid for far-

red only 

He et al., 

2017 
GOME-2 NA 

Data-driven approach 
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Random forest with directional reflectances from red, 

red-edge, and far-red as input 

red, far-

red 

• Computationally efficient 

• Training data from synthetic data 

generated from model simulations, 

relaxing the dependance on extensive 

observational data for training 

• Not requiring wavelength consistency 

between reflectance and SIF 

• The global scalability is 

limited, as the machine 

learning type approach is 

known for weak capability 

for extrapolation 

• Uncertainties in training 

data propagated from 

uncertainties in 

structural/parameter models 

that are used for generating 

synthetic data 

Liu et al., 

2018 

In-situ; 

HyPlant 

In-situ; 

HyPlant 

Note:  and  denote far-red and red fluorescence wavelengths respectively;  means integrated over the PAR spectral range; 662 

 denotes bidirectional reflectance factor. 663 

● C1: Theoretically rigorous derivation based on spectral invariant RTM theory 664 

● T1: Theoretically valid for black soil background only 665 

● T2: Theoretically valid for far-red only, as the required assumption of the same partitioning between transmittance (forward) vs 666 

reflectance (backward) of PAR and forward vs backward ChlaF emission only valid at far-red 667 

● T3: ChlaF emission excited by scattered PAR omitted in the theoretical derivation 668 

● D1: Computational simplicity and efficiency 669 

● D2: Required input widely available from existing spaceborne measurements 670 

● D3: Considering impact of clumping index on canopy interceptance 671 

● D4: Applicable to ecosystems with moderate to dense vegetation coverage 672 

● D5: Possibly applicable to ecosystems with sparse vegetation coverage 673 

● P1: Requiring identical sun-canopy-sensor geometry between far-red SIF and reflectance, currently challenging to obtain from spaceborne 674 

measurements from different platform/instruments 675 

● P2: Requiring identical wavelength between far-red SIF and reflectance, which can be challenging for spaceborne measurements from 676 

different platform/instruments 677 

● P3: No direct measurements of interceptance, which requires approximation 678 

● S1: Approximation of  (  from chlorophyll only) as  679 

● S2: NDVI taken as a proxy of pure vegetation signal, excluding the soil effect on NIR reflectance, while NDVI not a perfect measure for 680 

"pure" vegetation 681 

● S3: No estimation of  682 
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● S4: Only view angle, not solar angle 683 

● S5: Requiring kernel-based BRDF model 684 

● S6: Theoretical derivation involving many empirical approximation 685 

● S7: Requiring multi-angle SIF measurements 686 

● S8: Spaceborne reflected radiance not atmospherically corrected, affecting BRF calculation687 
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The second type of approach relies on RTMs (Table 1) to numerically solve  (e.g., Celesti et 688 

al., 2018; Yang et al., 2019), often with reflectance spectra as input to anchor the leaf/canopy 689 

structural parameters/variables that are required to invert RTMs. This approach may be feasible 690 

at the field or landscape scale but can be computationally formidable at regional and global 691 

scales. The FluorRTER RTM, with promising computational efficiency, offers potential to 692 

correct  of 3D canopies for airborne and satellite retrievals. 693 

 Other approaches to estimate  include data-driven (Liu, Liu et al., 2018) and kernel-694 

driven approaches, which can effectively normalize  into hotspot or nadir viewing directions 695 

if multi-angular SIF measurements are available (Hao, Asrar, et al., 2021; Hao et al., 2022; Hao, 696 

Zeng, et al., 2021). 697 

3.2 The full equation: Deriving the canopy-level ETR and GPP 698 

The total ChlaF emission consists of contributions from both PSII and PSI. Since the PSII 699 

emission dominates, and it can be easily probed with PAM fluorometry, Gu et al. (2019) related 700 

linear ETR and GPP to the PSII component of the total ChlaF emission. Further, as 701 

photochemistry, non-photochemical heat dissipation, and PSII ChlaF emission form a closed 702 

system according to the principle of energy conservation, the relationship between the actual 703 

linear ETR ( , µmol m-2 leaf area s-1) and the PSII ChlaF emission can be expressed in terms of 704 

either redox states of PSII ( ) or . Note  refers to the actual ETR instead of the 705 

potential ETR ( ) commonly used in the FvCB photosynthesis model (Farquhar et al., 1980). 706 

We derive the canopy-level total actual ETR (denoted as , µmol m-2 ground area s-1) based on 707 

 (Gu et al., 2019; Eq 21 therein).  708 

 709 

  710 
(6) 711 

Here  and  denote the minimum and maximum wavelengths of ChlaF emission.  712 

Further, GPP can be calculated by assuming: (1) all electrons from PSII are consumed 713 

either in carboxylation (CO2 assimilation) or oxygenation (photorespiration), and alternative 714 

electron sinks such as nitrate reduction and Mehler reaction are negligibly small (Alric & 715 

Johnson, 2017); and (2) the light-carbon reactions are in perfect balance (Gu et al., 2019; Han, 716 

Chang, et al., 2022). These two assumptions are fairly accurate under normal conditions but may 717 

be violated when plants are under stress (Tcherkez & Limami, 2019). For example, if drought 718 

and heat stresses force stomatal closure when sunlight intensity is still high, a proportion of the 719 

liner electrons may flow to oxygen to form reactive oxygen species, rather than to NADP+ for 720 

carbon assimilation, which may break these two assumptions. To calculate GPP, one must 721 

further decide whether the carboxylation is limited by the supply of reduced power NADPH or 722 

energy currency ATP. In typical applications of FvCB, NADPH is assumed to be limiting, which 723 
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is adopted here to calculate the GPP of a canopy (denoted as , µmol CO2 m-2 ground area 724 

s-1): 725 

 726 

 727 
   728 

(7) 729 

Here Cc (Pa) is the CO2 partial pressure in the stroma of chloroplast,  (Pa) is the CO2 730 

compensation point in the absence of day respiration, and  (unitless) is the fraction of total 731 

electron transport of mesophyll and bundle sheath allocated to mesophyll (for C4 plants only).  732 

Eqs 6-7 are the full equations to derive canopy-level ETR and GPP from ChlaF emission. Here 733 

 (or NPQ) must be modeled independently in order to close the system, which remains as a 734 

major theoretical gap in current literature (2.4 and 4.1).  735 

3.3 A toy model: Analytical solutions of canopy-level ETR and GPP from  736 

Comparison of Eqs 6-7 with 1-3 reveals that it is not straightforward to directly apply either 737 

 or  or even  to estimate  or , as Eqs 6-7 require information 738 

on vertical distribution of ChlaF emission that are determined by variations in canopy 739 

structure/functions (Fig. 2). Therefore it is not conducive to directly employ Eqs 6-7 to compute 740 

 or  analytically. To enable an analytical solution, we develop a toy model by 741 

simplifying Eq 3. Note here we utilize  for demonstration; a corresponding formulation 742 

based on  can be similarly derived (or converting  to  as a prior step). 743 

The major assumption to facilitate this simplification is that attenuation of emitted SIF and 744 

incoming PAR inside a canopy can be characterized with Beer's law (a commonly used strategy 745 

in global TBMs/LSMs). The toy model reads below (detailed derivation and other assumptions 746 

involved are provided in SI-6-8):  747 

748 
(8) 749 

https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
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 750 

(9) 751 

 752 

 753 

             (10) 754 

Here  and  denote the upward/downward escape probability of ChlaF emission for an 755 

infinitesimally thin leaf layer at TOC/BOC respectively; and  are empirical parameters for 756 

calculating  as a function of ;   and  denote the canopy-level fluorescence 757 

quantum yield of PSII and PSI respectively under steady state;   denotes the mean 758 

photosynthetic pigment content of the canopy;   and  are the canopy-mean broadband  and  759 

(i.e., integrated over the PAR spectral range 400 to 700nm) respectively. 760 

Eq 8 represents a minimalistic model at the canopy level, which reveals that  is 761 

affected by three groups of factors: leaf/canopy structure, the quantum yield of ChlaF emission 762 

(averaged between PSII and PSI), and light harvesting. The light harvested is the product of , , 763 

and incident light intensity at TOC, i.e., . The impact of leaf/canopy functions on ChlaF 764 

emission is represented by their impact on the mean quantum yield of ChlaF emission of a 765 

canopy. The canopy structure factor accounts for variations in the spatial display of 766 

photosynthetic pigments (e.g., leaf orientation, vertical layering, pigment packaging, canopy 767 

rugosity, or porosity, etc, Fig. 2) that affects the light extinction coefficients of both ChlaF 768 

emission (denoted as ) and intercepted irradiance for excitation (denoted as ). This toy 769 

model illustrates the joint control of leaf/canopy structure and functions as well as light 770 

harvesting on . For example, two canopies with the same  can differ in  if they 771 

differ in canopy/leaf structure or the mean quantum yield of ChlaF emission. This toy model is 772 

applicable for guiding  process diagnosis and interpretation or knowledge inference on what 773 

structural and functional information can be inferred from  (Sun et al., 2023b). We note 774 

that Eq 8 can be applied to a leaf by setting  and  (derivation in SI-6). Eqs 8 and 775 

S25 show that, even with considerable simplifications, additional inputs or constraints are always 776 

needed to reduce the degree of freedom to infer any structural or functional information from the 777 
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observed  at the canopy or even the leaf level. What additional inputs are available 778 

determine how  should be used and the level of complexity of such usage.  779 

 Eqs 9-10 present the analytical solution of canopy-level ETR and GPP utilizing at-sensor 780 

 as input, facilitating a forward calculation of these quantities that are not subject to 781 

existing uncertainties in the full FvCB model and/or  formulations (i.e., the NPQ-based 782 

strategy). Parameters in these equations can be estimated from vertically distributed 783 

measurements of light attenuation, leaf PAM fluorometry and gas exchange. Moreover, Eqs 9-10 784 

breaks  and  into components of structure, a ChlaF weighting factor, and CO2 785 

diffusion (e- use efficiency, for C3 only). Note that the toy model explicitly models  assuming 786 

it complies with Beer’s law, and therefore does not have to separately correct  before-hand, 787 

such as in 3.1. The system of Eqs 8-10 directly reveals what variables/parameters impact SIF and 788 

its relationship with GPP, in a more explicit fashion than the conventional light use efficiency 789 

(LUE) model. These analytical equations (along with those in SI) can be used to guide 790 

interpretation of SIF-GPP relationships, applications of SIF to different sectors under climate 791 

change, and innovations in observational instrumentation/setup (details in the companion paper, 792 

Sun et al., 2023b).  793 

On the other hand, Eq 10 also suggests modeling GPP from at-sensor SIF is complex. 794 

Although the community shares the hope of utilizing remotely-sensed SIF to radically reduce the 795 

long-standing uncertainty in GPP estimates, we must acknowledge (from Eq 10): 1) SIF is not 796 

GPP, and 2) SIF is not a panacea to fix all issues (e.g., LAI, , etc) that remain major 797 

contributors to the uncertainty in GPP estimation. First, the whole SIF dynamics is nonlinear 798 

(Eqs 3, 6, 7) which includes convoluted multiplications, integration, etc; hence integrated 799 

information in SIF (the direct observable) does not equal the integrated information in GPP (our 800 

target variable). Second, SIF is influenced by many factors that are shared with GPP (i.e., LAI, 801 

leaf angle, , environmental forcings), so it can to some extent integrate over the dynamic 802 

physiological complexities of photosynthesis, and may offer a shortcut to model GPP bypassing 803 

some of the uncertainties in individual factors (e.g.,  disappears in Eq. 10, Han, Chang, et 804 

al., 2022). However, LAI and clumping effect are still required in modeling GPP even though 805 

their impact is already (partly) incorporated by . 806 

4. Innovations: What innovations are needed to realize the full potential of SIF remote 807 

sensing for real-world applications under climate change? 808 

Moving forward, to jigsaw individual “puzzle” pieces (i.e., the six blind men and the elephant) 809 

into holistic and insightful mosaics (via synthesis and synergy) towards the ultimate goal of 810 

depicting a full picture of the elephant, innovations are required in both theory development and 811 

observing technology (Sun et al., 2023b). Innovations in these aspects should fill existing 812 

theoretical and data gaps that currently challenge applications (summarized in Fig. 4). Below we 813 

summarize existing theoretical gaps (4.1, Fig 4), followed with our insights on potential 814 

innovative solutions to address them (4.2-4.3) guided by the analytical framework developed 815 

https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
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above. Data gaps and corresponding innovative solutions are discussed in the companion data-816 

perspective paper (Sun et al., 2023b).  817 

 818 

 819 

Fig. 4. Existing theoretical and data gaps through the lens of applications (Sun et al., 2023b), and 820 

potential solutions moving forward. This paper focuses on the theoretical side (the right columns 821 

highlighted in dark color) of this diagram. NEE: net ecosystem exchange.  822 

4.1 Theoretical gaps 823 

Our derivations of the equations governing SIF dynamics (Eq 3) and relationships with key 824 

ecophysiological variables (Eqs 6-10) (e.g., photosynthetic pigment, ETR, and GPP) point to 825 

where theoretical gaps exist and provide guidance on connecting individual dots into a complete 826 

picture across scales (Fig. 4). These gaps are not independent and filling them requires advances 827 

in broader areas of photosynthesis and ecological research.  828 

The redox states of photosystems (i.e., , , ), as well regulated and unregulated 829 

heat dissipations (i.e.,  and ), play central roles in the dynamics of SIF and its 830 

relationships with pigment content, ETR, and GPP. It is difficult to utilize the full potential of 831 

SIF for ecophysiological applications without thoroughly understanding and modeling how 832 

redox state and NPQ processes affect the ChlaF emission (Eq 3). Either the redox states or NPQ 833 

must be known in order to utilize SIF to predict electron transport or GPP (Gu et al., 2019). The 834 

redox states and magnitudes of varoius heat dissipation pathways are an outcome of complex 835 

feedforward and feedback processes of photophysics, photochemistry, and biochemistry of 836 

photosynthesis. , , , and  are sensitive to environmental stress and affected by 837 

https://paperpile.com/c/tiuJeT/NyDo
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photodamage and photoinhibition, and change with phenology. The variations of  and  838 

have often been studied by decomposing them into a sustainable (photo-inhibited) component 839 

and a reversible component (Porcar-Castell, 2011; Raczka et al., 2019; Tietz et al., 2017). The 840 

presence of photo-inhibited components increases , and decreases  and . 841 

Although the redox state and NPQ of PSII are routinely measured by PAM fluorometry and 842 

studied extensively, we currently still lack broadly applicable and mechanistically sound models 843 

to represent their dynamics in natural envionments. In particular, compared with our knowledge 844 

about the control of PSII redox states and NPQ, we currently know little about the control of PSI 845 

redox states and heat dissipation processes due to lack of measurements.  846 

Nutrient content: Typically, the impact of nutrient contents on photosynthesis is 847 

investigated in terms of their relationship with photosynthetic capacity parameters such as the 848 

maximal carboxylation rate  and maximal potential electron transport rate . For the 849 

applications of SIF, it is important to understand the mechanistic basis of the impact of nutrient 850 

availability on these photosynthetic capacity parameters. This is particularly important for  851 

because electron transport (photochemistry) directly competes with SIF emission for energy 852 

partitioning. While the mechanism for the dependence of  on nutrient content is fairly well 853 

understood (e.g., Rubisco abundance depends on leaf nitrogen content LNC), how nutrient 854 

content mechanistically affects  is not clear, even though  and  exhibits empirical 855 

linear relationships (Wullschleger, S. D. 1993; Kattge and Knorr 2007). The “coordination 856 

theory” hypothesizes that plants can optimize LNC to balance Rubisco- and RuBP regeneration-857 

limited carboxylation rates (Chen et al., 1993; Wang, Prentice, Keenan, et al., 2017), alluding the 858 

linkage between LNC and . From the light reaction side, It has been reported that under the 859 

same environmental conditions, leaves with different nutrient contents may have different  860 

(Cheng, 2003) and . Also, foliar chlorophyll content depends on nutrient contents (Croft et 861 

al., 2017). It is likely that the foliar abundances of PSII and PSI and the stoichiometry between 862 

them also depend on nutrient availability; however, studies addressing this are rare. 863 

State transition refers to the migration of mobile light-harvesting complexes II (LHCIIs) 864 

and thus the redistribution/rebalancing of energy absorption and excitation between PSII and PSI 865 

(for a review, see Minagawa (2011)). This process results in a dynamic adjustment of . The 866 

energy balance between PSII and PSI is essential for the photosynthetic machinery to operate 867 

safely in fluctuating environments because these two types of photosystems are connected in 868 

series and the energy level of electrons transferred from PSII to PSI needs to be elevated by 869 

photons absorbed by the light harvesting complex of PSI. Thus, any imbalance between them can 870 

disrupt electron flow from PSII to PSI and to the eventual electron acceptor NADP+. When light 871 

regimes favor PSI, mobile LHCIIs in their de-phosphorylated form are attached to PSII, thus 872 

boosting its light harvesting and excitation. This condition is known as State 1. When light 873 

regimes change such that PSII is favored, mobile LHCIIs are phosphorylated and move to PSI to 874 

increase its absorption cross section, leading to State 2 of the photosystems. The energy 875 

imbalance between PSII and PSI and thus the need for state transition are sensed by the redox 876 

state of the pool of free plastoquinone (PQ) molecules which transport electrons within the 877 
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thylakoid membranes from PSII to Cyt. Currently we lack a quantitative model to predict state 878 

transition, and  is often assumed to be 0.5. But a change in the value of  will lead to a 879 

proportional change in ChlaF emission from PSII (Eqs 3 and 8), other conditions being equal. As 880 

a result, a dynamic  significantly impacts the response of ChlaF emission to variations in 881 

environmental conditions because of the change in energy allocation between PSII and PSI. 882 

ChlaF emission is believed to be dominated by PSII because PSI is photochemically more 883 

efficient than PSII (Hogewoning et al., 2012; Lazár, 2013). Thus, a change in PSII ChlaF 884 

emission cannot be compensated for by change in PSI ChlaF emission when  varies. Although 885 

state transition is often studied at short time scales (seconds to hours, Minagawa 2011), 886 

conceivably    could vary with canopy depth, phenology, species, and prevailing climate 887 

conditions (e.g. Porcar-Castell et al. 2014) which could affect the ratio of cyclic to linear electron 888 

transport required to support the Calvin-Benson Cycle, resulting in the need to rebalance the 889 

energy harvesting by the two photosystems. However, this remains uncharted and would deserve 890 

future attention.  891 

Although it is a reasonable assumption that PSI plays a minor role in ChlaF emission 892 

when the overall energy level is considered, it is not clear whether this assumption is also valid 893 

over wavelengths at which SIF is retrieved from existing instruments. This issue is equivalent to 894 

asking whether any difference in the PSII and PSI spectral shape functions (  and ) is 895 

sufficiently small such that PSII ChlaF emission dominates at every wavelength. SIF cannot be 896 

observed in broadbands and has to be observed at Fraunhofer lines, O2-A or -B bands. There is 897 

no a priori knowledge or observations to indicate how similar or different  and  are. Further 898 

studies on this issue either with theoretical analyses or observations are needed. If it turns out 899 

that PSI contribution cannot be ignored, then measurements and better understanding in the 900 

dynamics of  and  will be needed. 901 

The ultrastructure of thylakoids is not static and has been observed to swell in the light 902 

and shrink in the dark (Li et al., 2020). The ultrastructural dynamics of thylakoids can regulate a 903 

number of processes that control photosynthetic ETR, including macromolecular 904 

blocking/collision probability, direct diffusional pathlength, Cyt duty division (Johnson and 905 

Berry 2021), luminal pH via osmotic water fluxes, and separation of pH dynamics between 906 

granal and lamellar lumens in response to environmental variations. Gu et al. (2022) discussed 907 

these impacts in detail. As photosynthetic ETR is directly coupled to ChlaF emission, the 908 

thylakoid ultrastructural dynamics induced by changes in environmental conditions can feedback 909 

to SIF dynamics (Eqs 6 and 9). Furthermore, pigments are located in the thylakoid membranes. 910 

As the thylakoid swells and shrinks, the pigment packing on the membranes will shift, affecting 911 

 and thus photon interception and absorption and excitation energy transfer. Currently there is 912 

little knowledge regarding potential impacts of thylakoid ultrastructural dynamics on ChlaF 913 

emission. 914 

Alternative electron sinks: ETR from PSII to PSI, which can be inferred from the ChlaF 915 

emission, supports not only photosynthesis but also other stromal metabolisms such as nitrate 916 

reduction, photoreduction of oxygen, and emission of volatile organic compounds (VOC). As a 917 
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result, ETR that supports photosynthesis is smaller than the rate that can be inferred from ChlaF 918 

emission and SIF measurements (Von Caemmerer, 2000). Alternative electron sinks serve as 919 

photoprotective mechanisms when plants are under stress and the energy harvested by 920 

photosystems exceeds the need of carboxylation and oxygenation. Thus alternative electron sinks 921 

can be strong under stressful environmental conditions (Alric & Johnson, 2017). The presence of 922 

alternative electron sinks is likely a key physiological mechanism affecting the SIF dynamics 923 

and the decoupling of SIF and GPP (Fig. 2 and Eqs3, 6-10), which remains uncharted and 924 

warrants future research.   925 

   926 

Mechanisms and model parameterization of water and heat stress. One major 927 

knowledge gap is to pin down the exact mechanisms (e.g., leaf expansion/fall, heat dissipation, 928 

stomatal closure, hydraulic failure, carbon starvation) that plants use to respond and/or adapt to 929 

stress at different timescales, and how these stresses influence ChlaF emission and the observed 930 

SIF signal . Filling this knowledge gap is crucial to enable SIF applications for inferring 931 

plant traits, selecting stress-tolerant crop genotypes/phenotypes, precision agriculture 932 

management, as well as regional-scale monitoring and early warning capacity for stress and food 933 

insecurity, etc (Sun et al., 2023b). A barrier is that SIF itself and its coupling with GPP is 934 

affected by a myriad of interactive processes and environmental variations (the forward issue, Eq 935 

3), and thus the observed SIF  reflects their collective and interactive effects (the 936 

inference issue, Eqs 9-10). Additional complexity would arise if multiple stresses co-occur, e.g., 937 

heatwave and drought, insect outbreak accompanied with water/heat stress, or flooding followed 938 

with nitrogen leaching, etc. Under such scenarios, SIF may reveal their amplified or 939 

compensating effect, but SIF alone is insufficient to tease out individual contributions. 940 

Observational and modeling innovations are needed to tackle these challenges (Sun et al., 941 

2023b).  942 

 943 

Connection of SIF to stomatal conductance and transpiration. The apparent 944 

correlation between SIF and transpiration obtained so far, although promising, is sensitive to 945 

three assumptions: a) the ratio of transpiration (T) to total evapotranspiration (ET) approaches to 946 

unity (during the peak growing season without rain events) (Lu et al., 2018; Shan et al., 2019), b) 947 

stomata optimize their openness to balance carbon uptake and water loss (Shan et al., 2019; Zhou 948 

et al., 2022), and c) SIF is linearly related to GPP. However, the first assumption holds only for 949 

certain ecosystems with high LAI (e.g., crops, deciduous forests) but not others (e.g., 950 

Mediterranean ecosystems); the second could be a reasonable assumption but the exact 951 

conditions under which it holds require future investigations (Stoy et al., 2019). The third 952 

assumption can be violated at shorter timescales and/or under stress (thorough discussion in 3.3 953 

and Sun et al., 2023b).  954 

 955 

Estimation of SIF escape probability: The majority of SIF applications across all sectors so far 956 

(Sun et al., 2023b) do not effectively correct the escape probability SIF although a variety of 957 
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practical approaches have recently emerged (Table 2), confounding the validity of their findings 958 

and mechanistic understanding. Strictly speaking,  or can only be explicitly estimated 959 

with RTMs of SIF, ideally with the ray tracing approach that specifies the 3D structure of plant 960 

canopy. From RTM theory, we can explain the magnitude and directionality of the variations in 961 

SIF and  induced by vegetation structure (Joiner et al., 2020). However, the computational 962 

demand prevents its practical applications especially at the ecosystem scale and beyond.  The 963 

recent theoretical development of reflectance based approaches appears promising to 964 

approximate ; however, attempts to correct it across biomes and different scales are often 965 

inconclusive due to both noisy SIF data (Sun et al., 2023b) and various assumptions/limitations 966 

in the  formulations (P1-S8 in Table 2).  967 

 968 

4.2 Theoretical innovations at the leaf level: Coupling photophysics, photochemistry, and 969 

biochemistry 970 

The key theoretical gaps identified above call for corresponding theoretical innovations in 971 

solutions (Fig. 5). These gaps are not independent, and filling them requires system thinking at 972 

the level of molecular mechanisms. To better understand how innovative solutions may be 973 

developed, we adopt the three stages of reactions of photosynthesis: photophysical reactions, 974 

photochemical reactions, and biochemical reactions. The necessity of dividing the light reactions 975 

into the photophysical and photochemical reactions is due to the fact that these two groups of 976 

reactions occur at different places with vastly different time scales and follow different laws. 977 

 Because the three stages are coupled, any equations that describe only one or two of the 978 

three reactions cannot be closed. For example, Eqs 1-3 and 6 are photophysical equations and 979 

can be applied only when additional information on variables such as  and  is 980 

supplied. Eq 7 attempts to couple photophysics and photochemistry to model GPP, which also 981 

requires additional modeling of  and . The widely used FvCB model mechanistically 982 

describes the biochemical reactions, and depends on an empirical equation relating potential 983 

electron transport rate  to light intensity to provide a closure for modeling photosynthesis. 984 

 The weakest link in our efforts to relate SIF to GPP is photochemical reactions along the 985 

electron transport chain. The photochemical reactions are the bridge between the photophysical 986 

and biochemical reactions. While the models of photophysical and biochemical reactions have 987 

been sufficiently developed for SIF applications (Farquhar et al., 1980; Gu et al., 2019, Eqs 1-3, 988 

and 6), the same cannot be said for the photochemical reactions. Gu et al. (2023) derived 989 

analytical steady-state equations governing the states and redox reactions of complexes and 990 

electron carriers along the photosynthetic electron transport chain between PSII and Cyt. The 991 

impact of thylakoid ultrastructural dynamics on electron transport is represented by a light-992 

induced thylakoid swelling/shrinking function that is applied to the fraction of Cyt available for 993 

linear electron transport. These equations are universal to oxygenic photosynthetic pathways, and 994 

allow the redox conditions of the mobile plastoquinone pool and Cyt to be inferred with typical 995 
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fluorometry. There are three critical next steps that need to be taken. One is to apply a similar 996 

approach and derive governing equations for electron transport from Cyt to PSI to NADP+ 997 

(linear transport) or to the PQ pool (cyclic transport around PSI) (J. E. Johnson & Berry, 2021). 998 

The second is to develop a model that links the redox state of mobile plastoquinone (PQ) with 999 

state transition. The redox state of PQ, which is already modeled in Gu et al. (2023), triggers 1000 

state transition (Minagawa, 2011), and therefore could serve as a reliable predictor of state 1001 

transition. The third is to develop a mechanistic model that could predict the alternative electron 1002 

sinks, particularly VOC emissions, based on environmental conditions. Once these critical steps 1003 

have been accomplished, a complete photochemical model will be established, allowing a full 1004 

coupling of photophysical, photochemical, and biochemical reactions to mechanistically study 1005 

SIF-GPP relationships. 1006 

 Nevertheless, these steps are not easy and completing them will require substantial 1007 

research efforts at time scales ranging from seconds to seasonal. In particular, the coupling of 1008 

photophysics, photochemistry, and biochemistry will need to be tested for a wide range of 1009 

environmental conditions including water and heat stresses. Both redox reactions and diffusion 1010 

of electron carriers in photochemistry and enzymatic reactions in biochemistry are sensitive to 1011 

temperature. Although temperature response functions are available, these functions have been 1012 

rarely tested under extreme conditions. Water stress affects  and CO2 supply to Rubisco, which 1013 

will lead to feedback effects on the photophysical and photochemical reactions. At the present, 1014 

these feedbacks have not been understood. Furthermore, stresses may damage organs and tissues 1015 

such as photosystems and thylakoid membranes which would cause state change in the 1016 

photosynthetic machinery, which is hard to model. 1017 

In the interim, empirical models of key photophysical and photochemical variables based 1018 

on intensive and extensive PAM fluorometry measurements can be applied as temporary 1019 

solutions to satisfy the need for process-based guidance for analyzing the rapidly increasing 1020 

amount of SIF data. For example, simple light response functions of  (Serôdio & Lavaud, 1021 

2011) and  (Han, Chang, et al., 2022) can be used to satisfy modeling needs at diurnal time 1022 

scales. The empirical relationship between the photochemical yield of PSII and NPQ as 1023 

developed in Van der Tol et al. (2014) may also serve as a partial closure solution at conditions 1024 

when variations in  are small. Alternatively, one could potentially use estimated NPQ as 1025 

inputs. NPQ can be estimated by monitoring the photochemical reflectance index over short time 1026 

scales (Garbulsky et al., 2011). Nevertheless it must be emphasized these temporary solutions do 1027 

not have general applicability and their validity must be evaluated on a case by case basis. 1028 

 1029 
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 1030 

Fig. 5. Outlook for future SIF research efforts and priority. Research priority in mechanistic 1031 

understanding, measurements, and model development respectively for each leaf/canopy 1032 
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structure/function in Fig. 2 is mapped out. The letter D and S+ denote diurnal scale and seasonal 1033 

scale/beyond respectively, highlighting time scales each research effort should focus on. 1034 

4.3 Theoretical innovations at the canopy scale 1035 

Future research innovations at the canopy scale should focus on the following aspects. 1036 

Benchmarking RTM: Numerous leaf/canopy-level RTM with SIF capability have been 1037 

developed at different levels of complexity, but their performance and applicability across 1038 

biomes (with different leaf/canopy structures), landscape heterogeneities (with different 1039 

composition/abundance of land covers), and biotic/abiotic stresses (with different symptomatic 1040 

and asymptomatic spectral signatures) remains to be comprehensively evaluated. The RAdiation 1041 

transfer Model Intercomparison (RAMI) protocol (Widlowski et al., 2015) well-established for 1042 

surface reflectance can be adopted to benchmark SIF simulations. In particular, model validation 1043 

with in-situ measurements of SIF (Parazoo et al., 2019; Yang et al., 2020), along with surface 1044 

reflectance, e.g., SpecNet (Gamon et al., 2006), across diverse biomes and climate regimes is 1045 

critical to ensure the realism of RTMs, despite the difficulty in concurrently obtaining latent 1046 

quantities such as , and the actual leaf/soil optical properties. Moreover, the leaf/canopy 1047 

RTM can be further integrated with atmospheric RTM to facilitate direct integration of at-sensor 1048 

reflectance spectra (acquired by diverse platforms) (e.g., Yang et al., 2020). This can help 1049 

address how the varying O2-A depth between the direct and diffuse solar radiation impacts SIF 1050 

retrieval from reflectance spectra, which remains one major challenge to disentangle solely from 1051 

measurements.  1052 

 1053 

Improving computational efficiency of RTM: The formidable computational demand of 1054 

current RTMs (especially 3D) may be overcome with parsimonious surrogate models. For 1055 

example, the FluorRTER RTM (Zeng et al., 2020) has similar performance to the full 3D ray-1056 

tracing FluorWPS, but is computationally much more affordable. Machine learning represents a 1057 

promising pathway to effectively emulate complex physical processes with computational 1058 

efficiency. Both approaches have the potential to make RTM inversions more accessible to users 1059 

and more applicable at large spatial scales. For applications at global scales and/or spanning 1060 

decades (e.g., constraining carbon budgets), a two-stream treatment of SIF RTM would be 1061 

computationally more tangible (Li et al., 2022; Thum et al., 2017). In this case, an integrated 1062 

solar radiation and SIF RTM should be developed based on the first principles of radiative 1063 

transfer. From a physical point of view, the only difference between solar and SIF radiative 1064 

transfer is that the source of solar radiation comes from the sun above the canopy top while the 1065 

source of SIF is distributed within the canopy. Other than that, they follow the same physics. 1066 

Furthermore, SIF radiative transfer is analogous to the longwave radiative transfer in plant 1067 

canopies without the need to consider thermal emissions from sky; just like SIF, longwave 1068 

radiation also has sources in plant canopies. Therefore, the highly efficient matrix approach for 1069 

modeling longwave radiative transfer (Gu et al., 1999) can be modified to model SIF radiative 1070 
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transfer in plant canopies. Either a two-stream or matrix-based SIF radiative transfer modeling 1071 

approach, built upon basic physical principles, can be applied at regional to global scales. 1072 

 1073 

Refinement of the toy model: The analytical framework developed here can be employed as an 1074 

exploratory tool to facilitate process interpretation and diagnosis (Sun et al., 2023b), as it 1075 

explicitly reveals the core and complex interacting mechanisms that are hidden in the light use 1076 

efficiency models (Eqs 3, 6-8). Moreover, built upon theoretical understanding, the analytical 1077 

solution has the potential to be applied universally across spatial and temporal scales towards 1078 

various applications (Sun et al., 2023b). Nevertheless, in developing the toy model here, we have 1079 

deliberately removed many details so that we can focus on core mechanisms; therefore it should 1080 

be subject to rigorous test and refinement in the future due to various assumptions (detailed in 1081 

SI). For example, the current form of leaf to canopy integration is a highly conceptualized 1082 

notation, and can take different forms with varying complexity in actual implementations. In the 1083 

future, Eqs 8 and 10 can be expanded to separately model the sunlit and shaded components by 1084 

explicitly accounting for the direct and diffuse solar radiation. This will inevitably introduce 1085 

more complexities to model formulations. Moreover, Eqs 8-10 require additional information 1086 

(beyond the integrated canopy functional/structural information carried in SIF), i.e., 1087 

variables/parameters that are impacted by canopy structure (e.g., affecting solar and fluorescence 1088 

attenuation), vertical distribution/variation of leaf functions (i.e., the redox states and/or NPQ) 1089 

and pigment content/nutrient content (Fig. 5). Observational innovations are concurrently needed 1090 

to facilitate model improvement in these aspects. On the other hand, Eq 10 can be used to 1091 

diagnose the degree of linearity of SIF and GPP and contributing processes/parameters from the 1092 

physiological and structural perspectives.  1093 

 1094 

5. Conclusions 1095 

This review synthesizes theoretical understandings of photon harvesting, energy 1096 

dissipation pathways and SIF radiative transfer in leaves and canopy to develop an analytical 1097 

framework that 1) highlights the complex impacts of key leaf/canopy structure/function and their 1098 

interactions on ChlaF emission and 2) guides the transformation of at-sensor SIF into meaningful 1099 

information regarding photosynthetic electron transport and GPP. This framework enables 1100 

identifying actionable solutions to tackle existing theoretical challenges and research priorities 1101 

over the next 5-10 years. Key points this review aims to deliver are:  1102 

● Harnessing theory and data: Theories and data advancements should go hand-in-hand, 1103 

in order to shift from correlational analyses to causal quantification and reasoning. 1104 

● Appreciating the process complexity: SIF is a single signal regulated by a myriad of 1105 

complex biophysical, biochemical, and physiological processes in response to 1106 

https://docs.google.com/document/u/0/d/1ZiIsq31qZ8mXejhZzpopB64758FtfKEPrfXGg7HODGw/edit
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environmental variations and anthropogenic perturbations. Inferring specific processes 1107 

requires careful control of remaining interacting processes, with the aid of observation 1108 

technology that can offer complementary information.  1109 

● Versatile application potential of the toy model. The toy model developed should be 1110 

treated as an exploratory tool subject to rigorous test and refinement in the future due to 1111 

various assumptions. Nevertheless, it conceptually represents a substantial improvement 1112 

over light use efficiency models and can be employed at different spatial and temporal 1113 

scales for process interpretation/diagnosis towards various applications (Sun et al., 1114 

2023b).  1115 
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