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Goals and references

 Goal: to connect “out-of-time-ordered correlators” with as many “information-theoretic” quantities as we can, in hopes to

better understand what the OTOC actually measures.

* Joday’s talk:
1. Information Scrambling over Bipartitions: Equilibration, Entropy Production, and Typicality
Styliaris, Anand, Zanardi; Phys. Rev. Lett. 126, 030601 (2021)]

2. Information scrambling and chaos in open quantum systems
Zanardi, Anand; Phys. Rev. A 103, 062214 (2021)]

3. BROTOCs and Quantum Information Scrambling at Finite Temperature
[Anand, Zanardi; Quantum 6, 746 (2022)]

e Related works:

4. Quantum coherence as a signature of chaos
[Anand, Styliaris, Kumari, Zanardi; Phys. Rev. Research 3, 023214 (2021)]

5. Scrambling of Algebras in Open Quantum Systems
[Andreadakis, Anand, Zanardi; Phys. Rev. A 107, 042217 (2023), Editors’ Suggestion]

6. Scrambling and operator entanglement in local non-Hermitian quantum systems
[Barch, Anand, Marshall, Rieffel, Zanardi; Phys. Rev. B 108, 134305 (2023), Editors’ Suggestion]




Thermalization in closed quantum systems

e Unitary dynamics “preserves” information (about the initial state).
 E.g., perfect distinguishability:(y/(0) | #(0)) =0 = (yw(®)|p(r)) =0 V> 0.

* Question: so how can closed quantum systems thermalize?

» Idea: bipartition in the system Z = Z , Q® # 5 = the rest of the system acts as a bath = thermalization.
 Thermalization: Equilibration, bath state independence, subsystem state independence, Boltzmann form, etc.

» Equilibration: A system equilibrates if | (7)) evolves towards “some” state and remains “close” to it for almost all
times.

. Equilibration of local observables: Let p(7) = Z Pn(0)e’ i|E, — E,|ih | m){n |then if the ‘time-averaged’ variance of an

observable A, 52 .= [Tr{o(NA) — Tt A Is exponentially small then we have ‘apparent equilibration’.
A {p( ) } peq

« Formally, given a Hamiltonian H with ‘non-degenerate energy gaps’ + all eigenstates are Haar random — every local
initial state will equilibrate.

. (pS(t) a)S) < ﬁ <deff1(a))) where D(p, 6) := %Hp — o]l and 1/d*"(w) = Tr [a)z]

e e e ——— —— S e e

Iéootnotes/references:
H' Peter Reimann Phys. Rev. Lett. 101, 190403 (2008) and Linden et. al, Phys. Rev. E 79:061103 (2009




Out-of-time-ordered correlators

» Given two (local) operators V and W and the time-evolution operator U, = e~

1
. CylBt) = Tr (V. WILV). Wlpy )

consider the following quantity:

* Here py 1= e PP [ Z(B) is the Gibbs state an inverse temperature 5. And V() := UfVUt is the Heisenberg evolved

operator.
* Too complicated...we would like to ‘simplify’ this quantity.

« Assume f# = 0 and V, W are unitary. Recall HAH% ="Tr [ATA] is the Hilbert-Schmidt norm.

1 1 1 &
Cy (1) = 2—du [V(©), W]z =1 - ERe Tr (VIOW' VW] =1 - - Z Re (jIVIOWVOW|j)).
j=1

OTOC
* ‘Four point correlation function’ that is not time-ordered, hence OTOC.
* As a ‘generalized’ Loschmidt echo (return/survival probability):

| | 2
. Recall the Loschmidt echo is defined as, [(7) := | (y| e"HTeR) e~ |y | where K is a perturbation.

Fyw(@) = (w| VIOWVOW|w) = (| UVIUWT : UVUW |y)

(&) (D)

S— S e ———T—— — = = ———

| IEootnote\;;/references:
| 1. Unscrambling the physics of out-of-time-order correlators, Brian Swingle, Nature Physics volume 14, 988-990

e = —= ———




Operator growth of local operators under local Hamiltonian

RPN
] B (ity’
‘Nested commutators’ in the Heisenberg picture: W(7) = e""We ™" = 2 _j' |H, -, [H,W],---].
=0 /-

0000000000000 0000000

[H, -] T 4" operators

000000000000 000 060606006060
[H, -] T 4° operators

00 000000000000 0606060060
[H, -] T 4° operators

0000000000 00000000060°

W 4 operators {/,.X,Y,Z}

* Notice a ‘lightcone’ in the operator dynamics above: this follows from Lieb-Robinson bounds.
« for any locally interacting lattice system, there exist positive constants &, u, v; » such that for any two operators a, b,

the following bound holds: ||[a(?), b]|| < Emin{ | supp(a) |, | supp(b) | }||al|||b]|le™* max{0, d(supp(a), supp(h)) — vt }

i Footnotes/references: — * i o
L1' Unscrambling the physics of out-of-time-order correlators, Brian Swingle, Nature Physics volume 14, 988-990

2018)




Intuitive/‘physics inspired’ remarks

* The faster the ‘operator growth’ the faster information scrambling.
* Intuition: if the unitary dynamics generates fast ‘local operator entanglement’ then we will have fast scrambling

* Relationship with integrability/chaos:

 Scrambling rates': Random matrix > Chaotic > Integrable models.
* Unfortunately, this is incorrect. The ‘short-time’ growth of the OTOC is not a reliable indicator of integrability vs.

chaoticity.

 “Weak quantum chaos”:
* Recall ‘weak chaos’ in classical systems refers to ergodic systems that only have a polynomial (as opposed to

exponential) sensitivity to initial conditions.
* Weak quantum chaos refers to local quantum many-body systems that are quantum chaotic (in the sense of spectral

statistics or decay of Loschmidt echoes) but do not have exponential growth of the OTOC (commutator).

_____ __

Footnotes/references:
1. Intuitively one expects this but this is not necessarily true, especially for lattice systems.

L i




Operator entanglement of linear operators

 How do we quantify entanglement of pure bipartite states?
» Schmidt decomposition: |y) € # 45 then there exist orthonormal bases |j,) € # 4, and |jz) € # g such that

) = T[4 Liad i) with 3,4;= 1

- Von Neumann entropy of reduced state = Shannon entropy of {4,}.

 Can we do the same for operators?
* Yes! Operator space is also a Hilbert space (equipped with Hilbert-Schmidt inner product).

. X = ZJ\/IJV] ® W, where (V, Vi) = d,6; and (W,, W) = dgb;;.

e Normalization: Zj A = %HXH% = %Tr [XTX]. For unitaries = 1.
* Linear entropy S;;(p) =1 =Tt [pz] of the ‘probability distribution’ obtained from {4;} gives us the operator

entanglement. |.e., operator entanglement of a unitary U is obtained as 1 — || A]|*.
* Analytical formula with ‘local swap’ operators:

1
. E,,(U) =1 - Tr [SAA/U‘X’zSAA,UT@z] where X 2 H ,QH s Q@ H 4y Q@ A ypand S, swapsA < A’

| Iéootnote\;;/references:
| 1. Paolo Zanardi Phys. Rev. A 63, 040304(R) (2001)

_ —
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Operator entanglement and entangling power

* Operator entanglement and Choi-Jdamiolkowski isomorphism:

: 1 d
. Choistate: |U) := U,g ® 1, 5| D) where |DT) = % =1

|7) | ) is @ maximally entangled state between

H QA

* This is equivalent to ‘vectorization’ of a matrix (stacking columns to generate a vector from a matrix).

* Notice, this Choi state is maximally entangled across AB|A'B'.
 Consider the following partition: AA’| BB'. Let us compute entanglement across this:
o PaslU) = Tryy [| U)(U\] is the reduced state

e Linear entropy: S;; (pa(U)) =1 —=Tr [pA AU )2] gives us the operator entanglement of U across A | B.

o . 1
. Recall, this is equivalent to computing EOP(U) =1 7 Ir [SAA,U®2§AA,UT®2]_

« Entangling power of a unitary = average entanglement generated by U when acting on random product states.

. gp(U) — b lSﬁnTI'B (U( ‘l//A> 0y ‘¢B>)>]

. epU) = a (EOP(U) + E, (USyp) - EOP(SAB)>, where & = d/(\/c_l + 1)2.

| Footnote;/references:
1. P. Zanardi Phys. Rev. A 63, 040304(R) (2001)
2. G. Styliaris, N. Anand, and P. Zanardi Phys. Rev. Lett. 126, 030601 (2021).

\
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Scrambling and operator entanglement

+ Setup: bipartite Hilbert space, # = # , @ # » = C% & C%, with local operators V, = V@ I, Wy =1, @ W.

. ‘Bipartite OTOC’: G(¥) := SV W, [CVA,WB(t)], where [y, y, denotes Haar averaging V,, Wy over the corresponding

Haar measures on Z 4, # .

« Main result: the bipartite OTOC quantifies exactly the operator entanglement of U, = e " That is,

1
G =1 5 Tr (SauUB S 4 U ®?).

 Measure concentration + Levy’s lemma => deviations from the average are exponentially suppressed.

* Notice that this quantity can be estimated by averaging over a unitary 1-design such as Pauli operators on each

subsystem.
* [Yan, Cincio, Zurek; Phys. Rev. Lett. 124, 160603 (2020)]: (Assumes weak coupling + Markovianity to show that) bipartite
OTOC = thermal average of Loschmidt Echo signals.

* QOperational distinction: notice that this OTOC measures operator entanglement and not entangling power => it is maximal
for a SWAP unitary, which actually generates no dynamical entanglement on states!

| Footnote;/references:
1. P. Zanardi Phys. Rev. A 63, 040304(R) (2001)
2. G. Styliaris, N. Anand, and P. Zanardi Phys. Rev. Lett. 126, 030601 (2021).

|
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Diagnosing quantum chaos with bipartite OTOCs
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~ Hpppy = — Z OjZGjZ—I—l — gz 0; — hz o;, chaotic if g # 0 # h. Integrable if h = 0,g # O.
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L1 L L
_ Hypp = - aj?q]il — ) 8o, —h 6, where we draw each from the uniform distribution each g; € [ W, W|. 1 = O is Anderson
j=1 j=1 j=1

localized.



Long-time average of operator entanglement

2 [ [
Short-time growth of operator entanglement: G(U,) = f(H )t2 + O(£), where f(H) = - H-Trp[H® d_B - 2 ®Tr,[H]
B A

* The above expression tells us that growth rate is controlled by interaction across the ‘boundary’ A | B in H.
* Unfortunately, short-time growth cannot distinguish chaotic and integrable models in lattice systems...

 What about long-time behavior?
* Finite system + unitary evolution => no equilibration in the strict sense.

. O .
Infinite-time average of an observable, f(7) := lim —J f(t)dt. If limit exists then f(¢) = lim f(7).
T—oo I 0 [—00
* No-resonance condition (NRC): both the energy levels and the energy gaps are non-degenerate.

Spectral decomposition: H = Z E, gbk) <¢k‘ and ,0]?() = Tr)?< ‘¢k> <¢k‘ ) where y = {A, B}. Then,
k

1 2 ] 2 |
G(1)NRC = | - 2 ( | R | 5 ” RY ” 2) with R := <pl£)()’pl(x)>_
XE{A,B}

* This contains information about (state) entanglement across the full system of Hamiltonian eigenstates => ‘infinite
temperature’ quantity.

N —

| F;);tnote;‘,/references:
{‘I. G. Styliaris, N. Anand, and P. Zanardi Phys. Rev. Lett. 126, 030601 (2021).
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Two analytical results + numerical simulations

2L/ 2

 ‘Maximally entangled’ Hamiltonian: d, = dp = \/c_i = and | ¢,) are maximally entangled across A | B then

2 —
. GME(t)NRC = (1 — %) — 5,(1) = —log (1 — G(t)) ~ L is the time average operator 2-Renyi entropy

. Exponentially close to G™** = 1 — —. Implies small temporal fluctuations (e.g., Markov inequality).

» If all the eigenstates are product states (and NRC holds):

dy,dp
HyRrc-ps *= .kZl E || @ | ) (™ |, where the spectrum is from the Gaussian Unitary Ensemble (GUE). Then,
‘], =

2
NR - .
s = (1 1 ) = 5,() x%L (half of the qubits). ||
\/‘_l’ I —o— TFIM integrable
0'100?_ —— NRC-PS
% OOIO- —o=— Anderson
‘_lq f —o— MBL
OOOI? —— TFIM chaotic
1074 ~= GUE
—— ME

|
1

| F;);tnote;‘,/references:
| 1. BROTOCs and Quantum Information Scrambling at Finite Temperature. Anand, Zanardi; Quantum 6, 74

6 (2022)




Bipartite OTOC and local entropy production

* Local entropy production under ‘reduced’ dynamics:

. Let AW (y,) 1= Try [Ut (py ® I/dp) UT] and S;. (p) := 1 — Tr(p?), then

[

d; + 1

. G() = y -U (Slin [AY‘) ( ‘l/fU> <l/fU‘ )] ) where ‘l//U> =U ‘l//o> corresponds to Haar random pure states in
A

X .

 Notice that, | — §;;, =Tt (§p®2) where S is the swap operator between the two Hilbert spaces. This formulation

allows for the experimental estimation of G(#) from measuring linear entropy of random initial states.

N —

| F;);tnote;‘,/references:
{‘I. G. Styliaris, N. Anand, and P. Zanardi Phys. Rev. Lett. 126, 030601 (2021).
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Scrambling in open quantum systems

Given a unital quantum channel &, the OTOC in open quantum systems is G(&) :=

vy || [& (Vo) Wl

 The open ‘bipartite OTOC’ displays a ‘competition’ between scrambling and decoherence:

G(&) = %(dB Tr [S%@’Z (SAA,)] Ty [SAA,%‘X’Z (SAA,)]) |

decoherence

scrambling

e At the level of quantum states we see a competition between local and global entropy production:

Lot A () =& (WA ? i—) then, G(&)  E,, [Shn <TrB Ayl )] — diF, [Shn (A(WA))] |

J J
! T s s
0 10 20 30 40 50
time
(b)

. . . . — 7.7
_ Numerical simulations: Hygpy = 0.0\,
J
0.6 | ;‘ 0.6
—~ |l | 3 Py
= 04 | | | =0 “3 0.4
| e a=001 ©O
0.2 _ 0.2
_ | —— a=0.05
0.0, e . 0.0
0 10 20 30 40 50
time
(a)
'Footnotes/references:

L

—

{‘I. Information scrambling and chaos in open quantum systems. Zanardi, Anand; Phys. Rev. A 103, 062214

—g Z O}?C —h Z (;].Z with dephasing at the boundaries: \/aaf, \/a(fi.

a = 0.01,yv=0.01

...............................

| - integrable GW(&)
| = chaotic GW(&,
| - integrable G

| = chaotic G®(&,

2)

(
)
(&)
)




Crash course in resource theory of quantum coherence

* Fact: quantum systems exist in a (linear) superposition of quantum states.

Formally, let #Z =~ C%and B = { | ) }ch:l a “preferred” orthonormal basis. | ) = ) C; | j) is “basis-dependent”.
J

d 2
J= J7

diagonal/ivncoherent off—diagonval/coherent

+ E.g., Qubit, # =~ C?. Consider two different bases, B = {|0), |1)}and B’ = {| = )}. Then, | + ) is coherent w.r.t. B while

it is incoherent w.r.t. B’

d d
Incoherent states: all diagonal density matrices w.r.t. B. Fg= {0 | 0 = ij P20, p=1.}
=1 =1

J

J

* Incoherent operations: CP-maps & such that &(/) C S 5. E.g., permutations, diagonal unitaries, dephasing

superoperator.

» Coherence measure: functionals cg : §(#) — R such that (i) vanishes on incoherent states, p € S5 = cg(p) =0

and (ii) non-increasing under incoherent operations, Cp (%(p)) < cr(p).

N — __

| F;);tnote;‘,/references:
| 1. Colloguium: Quantum coherence as a resource. A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89,

L — s —— =




Quantifying coherence for mixed states

“Distance based measures”: minimize the distance from the set of “free states”.

d
Define the “dephasing superoperator,” Dg(X) 1= )’ IL XTI,
J=1

We will focus on two measures for guantum coherence:

c%el)(p) = min S(p||o), where S(p||lo) = Tr (,0 log(p)) — Tr (,0 log(a)) is the quantum relative entropy.

cES
cP(p) := min ||p — ol|3, where | X || i = Tr (X"X).
cES g
(rel) — S (D — S (2) — — 9 2— : ’
ci(p) = S (2g(p)) = S(p)and D) = || p=DeP) | = D, |/

JF#k
Coherence of unitary dynamics: given a set of incoherent states, how much coherence does it generate on average under

the action of U => “coherence-generating power” (CGP).
d

|
Formally: Pure incoherent states and averaging over the d states: G (%) = p Z Cp (‘Zl (Hj> )

j=1



OTOCs and coherence-generating power

* Result 1): Assume, V, W are nondegenerate unitaries with spectral decomposition, V = Z;-l:l exp[ié’j]l_[j and
d .
W = ijl explig]I1;.

1
Then, Cy (1) = €a(%) ——Re( ), expli(t) = 0+ ¢, — poITr [Hka)Hme(r)Hl] )
JFLkFm

 Result 2): further assume {9]-, gbj}j independently and identically distributed on the interval [0,27), then,
o0 |Cvw(D)] = Ce(¥).

* Coherence of Hamiltonian eigenstates to distinguish integrable 1200l
| 8% :

v .

and chaotic phases. 2 1000l

{ L=l = |

_ X _X y .y < =l =

. = 42 (]xy <0j6j+1+6j0j+1>+Jzafgf“) o N
P T 600t

=

I = 400t

_|_l Z wo: + €505 | where 6 € {1,2,..., L} is the defect site = |

2 j "% e | 5 200

j=1 |

ol

* Defect in boundary vs. bulk => integrable vs. chaos.

N —




Regularized OTOCs and finite-temperature scrambling

. Regularized OTOC, Fﬁ(”)(t) =Tr [W:yVTthyVy] with y* = Pp-

0 2T
. E.g., Maldacena, Shenker, Stanford’s “bound on chaos”: d_ log < (d)(t) — (’")(t)> < 7
[
1 d
“Thermofield double state”: a (canonical) purification of a Gibbs state, |y (f)) = Z [ :BE]'/Z] 1) 1))

. 7P 5

* ‘Bipartite regularized OTOC’ (BROTOCQC) is equal to the purity of the time-evolved TDS:

Z(pl2)*
_VA,WB[F,EF)(Z‘)] — d(g(ﬁ; PAA’ ( ‘ W(ﬁ/zat)>ABA’B’>

* Infinite temperature => operator entanglement. Zero temperature => GS purity (if Hamiltonian is non-degenerate).

* Averaging over global Haar random unitaries = analytically-continued spectral form factor.

- F<A1’31»A2»B2)(t)] — ‘%ELH)(ﬁ/ZI"t)
A B, Ay€U(HK) B (d32°(ﬂ))

, 4
Here ZYD(p,1) = | Tr [e+0H] |

|
1\
M

'Footnotes/references:

{1 BROTOCS and Quantum Informatlon Scrambllng at Flnlte Temperature. Anand, Zanardi; Quantum o, 746 (2022)




Weak quantum chaos and non-Hermitian scrambling

* Lieb-Robinson bounds:
« for any locally interacting lattice system, there exist positive constants &, u, v; » such that for any two operators a, b,

the following bound holds: ||[a(?), b]|| £ Emin{ | supp(a) |, | supp(D) | }|all||P]le™ max {0, d(supp(a), supp(b)) — v ! |

e Even for local non-Hermitian Hamiltonians, LR bounds are violated!
 (Consider ‘effective’ non-Hermitian Hamiltonians for a continuously monitored system.

L Re(jIWVIWV]))
2 | —
o Wl || wavi |

1
A ‘normalized OTOC’: CV,W(t) =1- E

L—1 L L
A local non-Hermitian Hamiltonian: Hy = ]Z gjzajz“ + h Z sz + g Z <eﬂaj+ + e—ﬁ(;j—)
j=1 j=1 j=1
£ £ € €
(a) B=0 (b) B =0.25 (c) B=1 (d) B =2

i

'Footnotes/references:

‘ 1. Scrambling and operator entanglement in local non-Hermitian quantum systems, [Barch, Anand, Marshall, Rieffel, Zanardi; Phys. Rev. B 108, 134305 (2023), Editors’
r

- Suggestion]



Summary of results

Averaging the OTOC over local, Haar-random unitaries => operator entanglement of the dynamical unitary; and is
closely related to the entangling power of the unitary.

Averaging the OTOC over diagonal unitaries => coherence-generating power of dynamics

In open quantum systems, there is a competition between environmental decoherence and information scrambling
(i.e., scrambling can be masked because of decoherence).

Regularized OTOC when averaged over local Haar-random unitaries => purity of the thermofield double state.

Our formalism can be generalized to an algebraic framework that can detect scrambling between an algebra and its
commutant.

Good for detecting integrability-vs-chaos, localization transition, decoherence-vs-scrambling, measurement-induced

phase transitions, etc.

Thank you!



