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This paper presents a comprehensive study of methods to evaluate advancement of autonomy
and mission risk acceptability in Urban Air Mobility (UAM) systems. We introduce a Community
Benchmark Problem (CBP) for Intelligent Contingency Management (ICM) in UAM. The
paper underscores the integration of two pivotal frameworks: UL 4600, an American National
Standards Institute standard for autonomous product safety evaluation, and the Capability
Maturity Model Integration for Development (CMMI-DEV), a process improvement approach.

These methodologies bring a novel approach to UAM, with UL 4600 extending its technology-
neutral stance to emphasize safety case construction, risk analysis, and autonomy validation of
UAM systems. CMMI-DEV offers a structured, validated process for understanding maturity,
thereby enhancing the quality and predictability of new UAM operations. Together, these
frameworks allow us to establish a capability-maturity model specifically for ICM in UAM.
This approach facilitates dynamic scoring and tracking within the UAM context, addressing the
unique challenges and evolving nature of these systems. Illustrating the practical application
of these methodologies, the paper applies the proposed measures to our Generic Urban Air
Mobility simulation, serving as a model for future research and development in intelligent flight
systems.
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I. Introduction

Urban Air Mobility (UAM) aims to revolutionize transportation by providing on-demand aviation services in urban
environments. As UAM garners increased interest, one challenge stands prominent: the absence of standardized

benchmarks for evaluating the performance, safety, handling, and flight quality of UAM vehicles and operations.
Benchmark problems have played a pivotal role in the broader landscape of autonomy. The Defense Advanced
Research Projects Agency (DARPA) Grand Challenge [1], Urban Challenge [2], and Subterranean Challenge [3], for
example, have significantly advanced the autonomous land vehicles domain. The National Aeronautics and Space
Administration (NASA) Urban Air Mobility Noise Working Group (UNWG) [4] has made strides by proposing noise
prediction tools, metrics, and reference vehicle designs. Similarly, the RoboCup Soccer competition [5] set standards
in multi-agent systems. Academia, industry, and government consistently refer to these benchmark problems when
producing their own research, such that the community has a common, well-known set of constraints and metrics from
which to compare.

Establishing UAM benchmarks is a complex task given the diversity in vehicle designs, propulsion systems, and flight
patterns intrinsic to UAM. Yet, the importance of establishing benchmarks cannot be understated. UAM involves various
vehicle types, propulsion systems, flight modes, mission profiles, operational environments, and user preferences. Also,
noise, handling, and flying qualities are critical in determining the effectiveness and safety of operations, influencing
factors such as vehicle stability, maneuverability, and passenger comfort. A benchmark for UAM needs to assess these
aspects and pave the way for innovation, collaboration, and standardization – all crucial for UAM’s success. These
do not encompass the gamut of UAM scenarios, neglecting factors like vehicle installation effects, unsteady flight
conditions, and varying user expectations. UAM is a dynamic and evolving field that requires constant adaptation and
learning. Therefore, benchmark constraints and scoring metrics must be flexible enough to accommodate different
situations and objectives, and rigorous enough to provide meaningful and reliable results.

This paper presents the following contributions to benchmarking in the domain of intelligent flight systems:
• Introduction of novel methodologies for assessing mission complexity and mission risk acceptability. This provides

a structured approach to evaluating and enhancing Intelligent Contingency Management (ICM) capabilities for a
UAM Community Benchmark Problem (CBP).

• Pioneering UL 4600 [6] and Capability Maturity Model Integration for Development (CMMI-DEV) [7] standards
integration into UAM frameworks. This contribution enhances the safety and maturity models within intelligent
flight systems and offers a versatile benchmark for comparing and improving intelligent flight solutions.

• Showcasing the practical application of these methodologies in real-world scenarios. This includes their use
within both commonly used and specific UAM frameworks, providing valuable insights and practical guidance for
the broader intelligent flight community.

We describe two methodologies that were developed for measuring the progress of developing mission complexity and
mission risk acceptability into the simulation framework developed under the NASA Langley Research Center (LaRC)
ICM for UAM sub-projects [8]. The methodologies were developed to measure the sub-project’s progress during a
yearly benchmark exercise. The framework for scoring is extendible and aligned with Boolean logic rules that enable
the community to contribute to future tools. Finally, we describe how the constraints and scoring mechanisms were
applied to a common, widely available UAM framework before describing its application to our own framework, the
Generic UAM (GUAM) simulator.

II. Background
Autonomy is a crucial enabler for UAM, offering improvements in safety, efficiency, scalability, and affordability.

However, it also introduces significant challenges in verification, validation, certification, and regulation [9]. Therefore,
the measurement and comparison of autonomy levels in UAM vehicles and systems are essential. NASA’s "Enabling
Autonomous Flight and Operations in the National Airspace System (NAS) sub-project" is an initiative consolidating
stakeholder perspectives to develop a national strategy for advanced autonomous operations [10]. This sub-project,
through workshops, has identified core requirements and pathways for operationalizing increasingly autonomous
systems, applicable to both UAM and small uncrewed aerial system (sUAS). NASA’s Integrated Aviation Systems
Program (IASP) is centered on the practical application and flight demonstrations of advanced aviation technologies
[11], with its Integration of Automated Systems (IAS-1) flight tests focusing on the automation necessary for scalable
UAM operations [12]. The UAM Operational Concept (OpsCon) document provides an in-depth overview of the UAM
environment, discussing the vision, goals, operational practices, and performance metrics for UAM [13]. It reflects
NASA’s UAM Coordination Assessment Team (UCAT) efforts in documenting the development of UAM [14]. The
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UAM Maturity Level (UML) scale, developed under UCAT, categorizes the evolutionary phases of UAM systems
from their inception to full integration into everyday life [15]. Various stakeholders have informed this scale, focusing
primarily on passenger-carrying scenarios, and considering different risk tolerances for other use cases. These initiatives
are significant in the UAM domain. They address various challenges associated with autonomy, enhance human-machine
interactions, and provide frameworks to assess the readiness of autonomous systems.

The problem of a benchmark evaluation methodology for UAM autonomy is a combination of the respective problems
of evaluating System of Systems (SoS), evaluating autonomy algorithms, and evaluating Artificial Intelligence (AI). As
of the time of this writing, there is no consensus on a framework for holistically evaluating any of these. The concept
of SoS describes a superstructure of operationally independent systems targeting a unified goal [16, 17]. Similarly,
evaluating autonomy algorithms and AI involves assessing the ability of uncrewed systems to perform complex tasks
with minimal human intervention and adapt to changing environments [18, 19]. This is apparent in the Society of
Automotive Engineers (SAE) scale [20] later adopted for UAM by Radovic [21]. However, there is also no universally
accepted definition or measure of autonomy for uncrewed systems [22], and different methods have been proposed based
on different levels of autonomy [23, 24].

Benchmark definitions for evaluating UAM Frameworks, essential in simulating and executing missions of varying
complexities, should align with established operational standards. The specifics of UAM Corridor operations, as
described in Federal Aviation Administration (FAA)-regulated guidelines [25], are in a state of evolution. FAA
regulations will likely intersect with urban planning, particularly in establishing and managing vertiports and other
essential infrastructure. As UAM is a nascent and rapidly evolving field, these concepts, guidelines, and regulations are
subject to continuous refinement and development, influenced by ongoing research, technological advancements, and
input from various stakeholders.

A. Safety and Maturity Modeling
UL 4600, the American National Standards Institute (ANSI) standard for the safety evaluation of autonomous

products, is primarily designed for self-driving cars [6]. Its scope extends to applications in diverse fields like mining,
agriculture, and maintenance, and includes lightweight Uncrewed Aerial Vehicles (UAVs), making it a versatile
framework potentially applicable to UAM. The standard is founded on a claim-based approach, which does not prescribe
specific technological solutions but instead focuses on creating a comprehensive safety case. UL 4600 addresses critical
areas, including safety case construction, risk analysis, safety aspects of the design process, testing, tool qualification,
autonomy validation, data integrity, and human-machine interaction. Importantly, it includes security as a requirement,
does not delve into performance criteria or define pass/fail criteria for safety, and does not set acceptable risk levels or
ethical product release requirements.

A UL 4600 Safety Case is a structured argument, supported by evidence, that a system is safe for a given application
in a given environment. It typically includes:

1) Claim: A statement expressing a characteristic of the autonomous product or system relevant to safety.
2) Argument: A logical structure that links evidence to the claim (e.g., Performance targets, Safety Performance

Indicators (SPIs), Methodologies).
3) Evidence: Data supporting the claim, including test results, analyses, and expert judgments.

The safety case aims to address potential risks, demonstrating adequate safety measures comprehensively. Claims can
start out broad and be narrowed into sub-claims with a specified strategy, which also requires arguments and evidence.

CMMI-DEV is a process improvement approach that provides organizations with the essential elements for effective
process improvement [7, 26]. Capability Maturity Model Integration (CMMI) has been recognized as one of the most
renowned models in the software development industry since its inception in 1987. The model has undergone several
adjustments over the years to maintain its relevance and applicability in evolving industry contexts. This continued
evolution and adaptability have contributed to its sustained popularity in development. The Software Engineering
Institute (SEI) has maintained data on the "time to move up" for organizations that have adopted CMMI. For example,
since the release of CMMI, the median time for organizations to move from CMMI Maturity Level 1 to Level 2 is
around five months, with a median movement to CMMI Maturity Level 3 taking an additional 21 months [27]. The
CMMI-DEV model provides a comprehensive framework for evaluating and enhancing process maturity, focusing on
improving the quality and predictability of processes to yield higher-quality products or services. Its structured levels of
process maturity range from initial (ad hoc, chaotic processes) to optimized (continuous process improvement).

In the context of UAM Framework verification, validation, and testing, CMMI-DEV offers a robust framework for
establishing and improving processes that ensure the reliability and safety of systems. It emphasizes process areas like
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Fig. 1 ICM GUAM Architecture

requirements management, technical solutions, product integration, verification, validation, and decision analysis and
resolution. Most organizations deploying any practical level of UAM use the practices and processes of CMMI-DEV,
particularly for software development [28], to some extent. The latest CMMI-DEV techniques and methods provide
a comprehensive framework for executing the described steps in a safety case evaluation [29, 30]. Introducing new
domains such as Data Management, People Management, and Virtual Work allows for a more nuanced classification
and evaluation of evidence. These domains, especially Data Management, align well with categorizing evidence like
experimental UAM Framework data and analytics. The model’s focus on continuous improvement and outcomes-based
performance, including updates in Agile and DevSecOps, supports the mapping and evaluation of evidence against
CMMI-DEV levels. Section III.B describes relevant aspects of the CMMI-DEV process areas in more detail.

B. ICM for UAM
The NASA’s Transformational Tools and Technologies (TTT) Autonomous Systems (AS) Project has been

instrumental in the UAM space. The project focuses on the transition to greater levels of autonomy for new
air transportation modes such as UAM. It identifies both the technological gaps and the challenges related to
human-autonomy interactions. As a sub-project of TTT, the ICM sub-project [31] seeks to promote principles and
experimentation that can address some of these challenges. The sub-project’s integration of AI [32] with high-quality
autonomy algorithms [33–35] and high-fidelity modeling [36–38] has produced the necessary knowledge to propose
measurements that address community concerns. The ICM research team is conducting theoretical and experimental
studies on various aspects of ICM, such as data uncertainty quantification, vehicle health management, trajectory
optimization, contingency detection and diagnosis, mission replanning and reconfiguration, human-machine interaction,
and verification and validation. The team has developed a UAM simulation framework that integrates various tools and
models to test and evaluate ICM concepts and algorithms in realistic scenarios. The public version of this simulation
framework, GUAM, permits the research community to introduce algorithms at the intersection of UAM, SoS thinking,
and AI.

GUAM’s architecture, shown in Figure 1, aims to facilitate research into more intelligent, adaptive UAM strategies.
It has two primary components: Vehicle Current and Future State, and Mission Execution. The former focuses on
monitoring and projecting the vehicle’s internal and external states, employing sensor fusion and trajectory prediction to
assess vehicle health and situation awareness. The latter deals with planning and executing missions, incorporating
adaptive control laws, onboard trajectory planning, and collision avoidance to ensure safety and efficiency, even in
the presence of uncertainties and faults [39, 40]. A critical element in GUAM’s success is the modeling of vehicles,
particularly the Lift-Plus-Cruise (L+C) configuration, a type of electric Vertical Takeoff and Landing (eVTOL) design
[41]. This is the primary vehicle for ICM testing, under GUAM, although other UAM-type vehicles are available. The
modeling approach integrates computational methods with real-time aerodynamic monitoring, using machine learning
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Fig. 2 Methodology for Scoring the UAM for ICM Community Benchmark Problem

for system identification and adjustments to dynamic aerodynamic changes. The progressive development of GUAM
is focused on expanding the coverage of contingencies, including unforeseen situations, while reducing reliance on
rigid rule-based systems. The architecture permits continuous integration of machine learning techniques, including
multi-agent reinforcement learning and neural networks.

III. Methodology
We establish a maturity model for UAM autonomy by leveraging two frameworks: UL 4600 and CMMI-DEV. This

model allows us to track both the complexity with which a UAM Framework can apply its underlying autonomy to
missions and the level of risk that can be accepted for missions. We denote these concepts as Mission Complexity and
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Mission Risk Acceptability, respectively. The purpose of the methodology, illustrated in Figure 2, is to leverage our
capability-maturity model to compute and track these concepts over time.

The Mission Complexity and Risk Acceptability of a UAM Framework are evaluated across several domains. UL
4600 Safety Cases are developed for each domain to assess the evidence supporting that domain’s complexity. The
process includes:

1) Identify Evidence Categories: Classify the evidence within each safety case with labels such as experimental
data and analytics.

2) Map Evidence to Capability Levels: Link each evidence piece to an appropriate CMMI-DEV Capability level.
3) Evaluate Maturity in Handling Risk: Assess each category’s maturity concerning the organization against the

CMMI-DEV Maturity model, focusing on aspects like documentation completeness and process effectiveness.
4) Aggregate Capability Level Scores: Calculate an overall capability level for each safety case by combining

individual evidence scores, considering their importance within the UAM framework.
5) Periodic Reassessment: Regularly reassess evidence capability and organizational maturity through benchmark

exercises to stay aligned with technological and operational updates in UAM frameworks.
The evidence for each sub-criterion within these domains undergoes a CMMI-DEV continuous capability level
assessment. The capability level, denoted as 𝐶𝑖 (𝑡), is a function of time 𝑡, reflecting the evolving nature of the evidence
supporting each domain of Mission Complexity.

Mission Risk Acceptability directly applies CMMI-DEV to aspects of the project, rather than filtering through the
lens of UL 4600 safety case evidence. This results in a time-dependent score 𝑅 𝑗 (𝑡), the ratio of Specific Goals (SGs)
met to total defined SGs for each domain 𝑗 . The methodology emphasizes dynamic scoring and tracking for both
Mission Complexity and Mission Risk Acceptability:

𝐶𝑖 (𝑡) = CMMI-DEV capability level for UL 4600 evidence in Complexity domain 𝑖 (1)

𝑅 𝑗 (𝑡) = % SGs at CMMI-DEV maturity level for Risk Acceptability domain 𝑗 (2)

Growing the UAM Framework to the point where it is "safe enough," is integrated with the development of a UL 4600
safety case. We establish evidence, performance targets, and SPIs for the safety cases in alignment primarily with the
FAA Concept of Operations for UAM [25] and the NASA UML [15]. With the safety cases established, we then use
first-order logic to formalize the methodology and track the evolution of the UAM Framework’s complexity and safety
capabilities. Using this approach, we craft a maturity model that describes how each maturity level is characterized by
mission risk acceptability, and capability level characterizes mission complexity.

A. Measuring Complexity
Mission Complexity in a UAM Framework addresses key aspects of safety and capability maturity across several

domains:
• Complexity of Environment: Assesses navigational adaptability in varying urban airspaces.
• Complexity of Mission Operations: Evaluates the framework’s capability in mission planning and execution,

including standard and emergency operations.
• Complexity of Autonomy: Measures the level of system automation, from minimal to advanced AI, impacting

the operator’s role
• Complexity of Decision-Making: Assesses the framework’s capacity for strategic and responsive decision-making

at various operational levels.
• Complexity of Mission Fault: Explores the framework’s approach to identifying and addressing potential mission

faults.
We describe the UL 4600 Safety Case, comprised of claims that the UAM Framework can perform and adapt to these
levels of complexity in the next subsections∗. The relationship between claims and evidence are described by formal
Boolean Satisfiability Problem (SAT) descriptions [42], where 𝜖𝑥 describes the existence and validation of 𝑥, which
describes measurements, metrics, or classes of algorithms that need to be implemented, tested, and continuously or
iteratively verified to justify a sub-claim.

∗NASA will publish the UL 4600 safety cases in full upon review. In this paper, we include brief summaries of each segment.
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1. Complexity of Environment
Examples of quantitative measurements 𝑥 for evidence 𝜖𝑥 to justify a claim about Complexity of Environment include

Dynamic Density [43], Temporal and Spatial metrics, Airspace Saturation metrics and Weather Model Complexity [44],
and Terrain Complexity Index (TCI) [45], with research utilizing Light Detection and Ranging (LIDAR) data to analyze
terrain complexity, including factors like elevation range and obstacle density, and developing trajectory planning
algorithms for emergency landings. Our study developed eight UL 4600 Safety Cases guided by such measurements
to shape evidence, performance targets, and SPIs. The sub-claims are combinations of environmental complexity
characteristics: Structured/Unstructured, Known/Unknown, and Static/Dynamic.

• Structured Environments: Characterized by well-defined patterns, enhancing predictability.
• Unstructured Environments: Lack regular patterns, presenting chaotic conditions.
• Known Environments: Well-explored and familiar terrains.
• Unknown Environments: Comprising uncharted or unfamiliar elements.
• Static Environments: Exhibiting minimal changes over time.
• Dynamic Environments: Undergoing rapid and constant changes.

Our methodology involves assigning each safety case to a three-dimensional category (e.g., Structured, Unknown,
Dynamic), with each case featuring tailored evidence claims, evidence, and performance targets that reflect the specific
environmental complexity. This approach comprehensively assesses the safety of the UAM Framework across diverse
operational scenarios. These complexity assignments necessitate distinct safety strategies, ensuring the UAM Framework
aligns with the varying operational conditions per UL 4600 standards. Formal SAT descriptions align the UAM
Framework with each unique environmental assignment, based on the evidence described for each sub-claim in the UL
4600 Safety Cases:

(Structured ∧ Known ∧ Static)
∧(𝜖VVR ∧ 𝜖VOC ∧ 𝜖ACM)

∧(𝜖CAC ∧ 𝜖TCI) ∧ (𝜖TCIc ∧ 𝜖DD)
(3)

(Structured ∧ Known ∧ Dynamic)
∧(𝜖VVR ∧ 𝜖VOC ∧ 𝜖ACM)

∧(𝜖CAC ∧ 𝜖TCI) ∧ (𝜖RA ∧ 𝜖TPP)
(4)

(Structured ∧ Unknown ∧ Static)
∧(𝜖VVR ∧ 𝜖VOC ∧ 𝜖ACM)

∧(𝜖NSA ∧ 𝜖UCS) ∧ (𝜖TCIc ∧ 𝜖DD)
(5)

(Structured ∧ Unknown ∧ Dynamic)
∧(𝜖VVR ∧ 𝜖VOC ∧ 𝜖ACM)

∧(𝜖EMUE ∧ 𝜖ADNC) ∧ (𝜖RTWU ∧ 𝜖TPP)
(6)

(Unstructured ∧ Known ∧ Static)
∧(𝜖ABM ∧ 𝜖SMP)

∧(𝜖CAC ∧ 𝜖TCI) ∧ (𝜖TCIc ∧ 𝜖IR)
(7)

(Unstructured ∧ Known ∧ Dynamic)
∧(𝜖TEMP_PROB ∨ 𝜖MDP)

∧(𝜖CAC ∧ 𝜖TCI) ∧ (𝜖RTWU ∧ 𝜖TPP)
(8)

(Unstructured ∧ Unknown ∧ Static)
∧(𝜖EA ∧ 𝜖NSN)

∧(𝜖PDA ∧ 𝜖NAT) ∧ (𝜖TCIc ∧ 𝜖DD)
(9)

(Unstructured ∧ Unknown ∧ Dynamic)
∧(𝜖MLA ∨ 𝜖EAA)

∧(𝜖DYN_IN ∨ 𝜖EMUE) ∧ (𝜖RTWU ∧ 𝜖TPP)
(10)

Where

𝜖ABM = High Modeling Accuracy for Agent-Based
Models.
𝜖ACM = Sufficient Airspace Traffic Complexity based
on chosen metrics(e.g., [46]).
𝜖ADNC = Adaptation to Novel Conditions Timeframe.
𝜖CAC = Certification of Aircraft Compliance.
𝜖DD = Sufficient Dynamic Density (or equivalent met-
ric).

𝜖DYN_IN = Application of Inference Models for Dy-
namic Responses to Unknown Conditions (e.g., [47]).
𝜖EA = High Exploration Algorithm Success Rate.
𝜖EAA = High Evolutionary Algorithm Optimization
Effectiveness.
𝜖EMUE = Efficient Management Rate of Unpredictable
Elements.
𝜖IR = Low Incident Rate.
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𝜖MDP = High Markov Decision Processes Success
Rate.
𝜖MLA = High Machine Learning Algorithm Success
Rate in adapting to unknown scenarios.
𝜖NAT = High Neural Network Accuracy for Traffic
Prediction.
𝜖NSA = Novel Scenario Adaptation.
𝜖NSN = Navigation Success in Unknown Static Envi-
ronments.
𝜖PDA = High Performance Data Accuracy.
𝜖RA = Validation of Rapid Environmental Adaptation.
𝜖RTWU = Validation of Real-Time Weather Updates.

𝜖SMP = Stochastic Model Predictions Alignment with
real-world data.
𝜖TCI = Low Terrain Complexity Index Discrepancy.
𝜖TCIc = Low TCI Conformance Deviation.
𝜖TEMP_PROB = High Temporal Probabilistic Model Ac-
curacy for dynamic changes in air traffic (e.g., [48]).
𝜖TPP = Low Traffic Pattern Prediction Error Rate.
𝜖UCS = High Flight Stability measurements In Unfore-
seen conditions.
𝜖VOC = High Vertiport Operations Compliance.
𝜖VVR = Verification and Validation of Records Match-
ing FAA or Experimental Environment Structure.

These descriptions form an accompanying knowledge base for these and other UL 4600 Safety Case claims and
sub-claims. The UAM Framework should be assigned to a combination of environmental characteristics by identifying
the above satisfiable equations. If the UAM Framework under assessment is not mature enough such that the quantitative
score or metric relevant to a SAT clause cannot be reasonably computed, then the corresponding variable for that
threshold is regarded as False. Note the emphasis on artificial intelligence and evolutionary algorithms in the last two
categories. This is a recognition that we cannot meet these levels of autonomously handling uncertain environments
without such capabilities. The remainder of the breakdowns for the UL 4600 Safety Claims will be described more
briefly in subsequent sections with definitions in the Appendix.

2. Complexity of Mission Operations
The following categories describe the Complexity categories of the UAM Framework to facilitate Mission Operations:
• Simple Flight Plan: Direct or minimally routed trajectories, requiring basic navigation and minimal contingency

planning.
• Complex Flight Plan: Intricate routing with multiple waypoints, requiring dynamic rerouting as needed.
• Simple Flight Tasks: Basic maneuvers like takeoff, cruise, and landing.
• Complex Flight Tasks: Sophisticated maneuvers requiring precise control in challenging environments and

complex system interactions.
• Normal Operations: Routine flights within standard parameters.
• Abnormal Operations: Flights under challenging conditions, demanding enhanced skills.
• Recoverable Failures: Scenarios where the system maintains mission continuity despite faults.
• Unrecoverable Failures: Critical failures necessitating comprehensive emergency response protocols.
• Fundamental Handling and Flight Quality: Focuses on ensuring optimal handling and flight quality in basic

operational scenarios, emphasizing passenger comfort and cargo security.
• Advanced Handling and Flight Quality: Maintains superior handling and flight quality under complex

operational scenarios, focusing on enhancing passenger experience and safeguarding cargo integrity.
Unrecoverable faults must accurately reflect the cascading effects and system-wide impacts that would lead to a mission’s
failure, demanding a deeper integration with the simulation’s logic and possibly requiring more advanced algorithms to
model these scenarios realistically. While still challenging, recoverable faults are generally less complex, have more
localized effects, and require the simulation to model and execute less complex recovery protocols that return the
system to normal operations without the mission’s failure. Table 4 in the Appendix describes the corresponding SAT
sub-claims for Complexity of Mission Operations. This complexity category captures the UAM Framework’s ability
to manage unanticipated environmental variables and operational anomalies, also testing AI’s capability to maintain
operational integrity and execute contingency protocols under diverse conditions. In the case of fault injection, the
safety cases assess the framework’s ability to simulate, identify, and respond to faults, ranging from recoverable to
catastrophic scenarios. This assessment provides insights into the AI’s diagnostic and prognostic capabilities, response
strategies to system failures, and recovery mechanisms. When failure modes can have significant consequences, this
evaluation is pivotal in validating the AI’s competence in risk assessment, failure impact analysis, and emergency
management. Including both levels of Handling and Flight Quality requires the development of Mission Task Elements
[49]. This includes considering and testing realistic flight missions, which is increasingly important in the context of
passenger-centric UAM services and sensitive cargo operations.
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3. Complexity of Autonomy
Using automotive autonomy standards [20] and NASA’s UML [15] as guides, we delineate eight distinct levels of

Complexity of Autonomy for the CBP. For the CBP, assisted flight refers to levels where the human operator retains
significant control or oversight of the operations. The following categories fall under this classification:

• Manual Control (Level 1): At this level, all flight operations are manually conducted/commanded by the operator,
including navigation and stabilization.

• Flight Stability (Level 2): Introduces basic automated systems, leveraging Inertial Measurement Units (IMUs)
(e.g., gyroscopes and accelerometers), to assist the operator in maintaining flight stability.

• Envelope Protection (Level 3): Incorporates advanced safety mechanisms to prevent the aircraft from entering
unsafe flight conditions, with the operator overseeing these systems.

• Navigation and Collision Avoidance (Level 4): Automated systems guide the aircraft along predetermined routes
and assist in avoiding obstacles while the operator monitors and provides strategic courses of action.

Autonomous flight encompasses levels where the aircraft can perform operations with minimal to no human intervention.
These levels include:

• Conditional Automation (Level 5): The vehicle(s) can conduct entire flight operations autonomously under
specific conditions, but requires operator intervention when conditions are not met.

• Conditional Automation with AI (Level 6): Enhances conditional automation with AI capabilities, where the
operator supervises AI systems and intervenes with alternative courses of action as necessary.

• High Automation (Level 7): Signifies a near-complete shift to autonomy, with the operator’s role primarily
focused on system monitoring and providing courses of action in exceptional circumstances.

• Full Automation (Level 8): The pinnacle of autonomous UAM Frameworks, where the vehicle operates
autonomously in any scenario without the need for human oversight, and requires only high-level requirements
from operators.

This framework, described in further detail in Tables 5 and 6 in the Appendix, describes characteristics that flow toward
autonomy, necessitating a comprehensive understanding of the various levels of automation and their implications
on operational dynamics. The progression from assisted to autonomous flight in UAM Frameworks should reflect a
significant technological and operational shift. Implementing automated systems requires rigorous testing and validation
to ensure they perform reliably under various conditions. The systems must be sensitive and responsive to environmental
changes, yet robust enough to maintain stability without excessive interference in the operator’s control. This balance
is critical for safety and operational efficiency, representing a step forward in the journey towards higher levels of
autonomy.

4. Complexity of Decision-Making
The complexity of decision-making within a UAM Framework is integral in assessing its capability for autonomous

flight management. This complexity is defined by the framework’s ability to make informed, autonomous decisions
across various operational aspects. The sophistication of these decisions ranges from immediate operational responses
to anticipatory, strategic planning for long-term mission effectiveness. The following categories detail the complexity
levels at which the UAM Framework manages decision-making:

• Mission-Level Decision-Making: Involves strategic decisions based on overarching mission objectives and
constraints. Advanced levels involve optimizing mission goals across a series of missions.

• Task-Level Decision-Making: Focuses on decisions related to the sequencing and prioritization of specific
mission tasks. A mature framework dynamically adjusts task sequencing for optimal mission flow and efficiency.

• Plan-Level Decision-Making: Pertains to planning decisions for each task with adaptability, considering changing
resources and conditions. Higher maturity allows for dynamic planning adjustments in response to evolving
scenarios.

• Maneuver-Level Decision-Making: Involves decisions on maneuver selection for plan execution. An advanced
framework can proactively optimize mission performance through strategic maneuver selection.

• Control-Level Decision-Making: Concerns decisions about executing maneuvers through control inputs. At
higher maturity levels, the framework can enhance precision and efficiency in control execution.

• Health-Level Decision-Making: Centers on decisions based on the health status of the aircraft and subsystems.
An evolved framework anticipates and mitigates future risks, extending operational life.

• Fault-Level Decision-Making: Involves detecting and preemptively addressing potential faults and failures.
• Recovery-Level Decision-Making: Relates to decisions for initiating recovery actions post-fault or failure. Higher
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maturity involves comprehensive recovery strategies to minimize mission disruption.
These decision-making areas are quantitatively evaluated within the UAM Framework to ensure alignment with

safety and efficiency criteria in the corresponding UL 4600 Safety Cases, described in Table 7 in the Appendix. The
framework’s capability to handle various levels of decision-making complexity is pivotal, as rapid, accurate, and
foresighted decision-making is critical for safety and efficiency. Notably, it is common for a UAM Framework to operate
concurrently at multiple, non-successive decision-making categories. This also reflects the framework’s evolving
autonomy, ensuring competence in managing complexities at each decision-making stage.

5. Complexity of Mission Fault
Managing mission faults is critical to ensuring safety and reliability. We classify mission faults into various

categories based on their nature and correctability, drawing from principles outlined in safety-critical systems research
[50]. The following categories shape the scores and UL 4600 safety case sub-claims for this category:

• Expected Faults: Anticipated based on historical data or predicted scenarios. Scored on predictive analytics and
historical data analysis.

• Unexpected Faults: Occur without warning. Scored on real-time diagnostics and response agility.
• External Faults: Resulting from environmental or external operational factors. Scored on environmental

awareness and interaction with external systems like air traffic control.
• Internal Faults: Originating from within the vehicle, such as mechanical or software issues. Scored on internal

monitoring, self-diagnostics, and fail-safe mechanisms.
• Correctable Faults: Resolvable during or before the next mission. Scored on adaptive mission planning and

in-mission correction efficiency.
• Uncorrectable Faults: Severe, mission-critical faults. Scored on emergency response protocols and minimization

of mission disruption and safety compromise.
The UAM Framework employs a three-dimensional scale for evaluating Mission Fault Complexity. This scale reflects
the multifaceted nature of operational challenges, drawing parallels with aviation’s Threat and Error Management (TEM)
practices [51]. Expected faults, predictable through historical data and predictive models, generally include routine
maintenance or known software issues. Unexpected faults, however, such as sudden system failures, require a robust
response due to their unforeseen nature and are heavily influenced by AI uncertainty [52]. The spectrum from External
to Internal faults covers the fault origin, with external faults being environmental challenges like adverse weather, and
internal faults being system-intrinsic issues like hardware malfunctions. Finally, the Correctable vs. Uncorrectable
fault dichotomy is vital for operational and emergency planning; correctable faults permit in-mission adjustments,
while uncorrectable faults often lead to mission aborts or emergency responses. An example of a correctable fault is a
temporary GPS signal loss, whereas an uncorrectable fault might be a critical failure in the propulsion system.

B. Measuring Risk Acceptability
In this section, we outline the Mission Risk Acceptability components of the benchmark, crucial for ensuring

UAM safety, efficiency, and public acceptance. Determining risk acceptability involves quantitative and qualitative
approaches, including numerical risk estimates and value judgments. Five risk acceptability categories are considered:
Contingency Management, Mission Success, Operational, Mission Redefinition, and Environment. Each is assessed
using CMMI-DEV Staged assessment processes, with scoring aligned to CMMI-DEV Maturity levels as shown in
Table 1. Relevant CMMI-DEV process areas for each category are detailed in Table 2.

Contingency Management concerning Mission Risk Acceptability describes how a system is prepared to handle
unexpected events or emergencies, reflecting its readiness and adaptability in crisis situations. This is crucial for
responding effectively to unexpected events in the dynamic urban airspace, encompassing challenges like adverse
weather, equipment malfunctions, or airspace congestion. UAM systems require robust contingency plans, including
alternative routes and emergency landing options, to ensure safety and mission completion. Inadequate management
in this area can lead to significant mission delays or accidents. This involves crucial CMMI-DEV processes such as
Risk Management (RSKM) for risk mitigation, Configuration Management (CM) for tracking and managing system
changes, and Project Monitoring and Control (PMC) for continuous oversight of UAM projects, ensuring adaptability
and response to sudden changes in conditions and effective integration of new components.

Effective Environmental risk management in this context requires a comprehensive understanding and modeling of
these varied environments to assess their impact on operations. Mitigation strategies must factor in traffic congestion,
obstacle avoidance, and communication systems for safe and efficient operations. Key CMMI-DEV Process Areas vital
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Table 1 Mission Risk Acceptability Category per CMMI Maturity Level

CMMI Maturity Contingency Management Mission Success Operations
Level 1: Initial Inadequate Vague Reactive
Level 2: Managed Feasible Post-Analysis Basic Monitoring
Level 3: Defined Well-Planned Scenario-Based Systematic
Level 4: Quantitatively
Managed

Human Comparable Conditional Predictive

Level 5: Optimizing Fully Explainable Attainable Adaptive and Innovative

CMMI Maturity Mission Redefinition Environment (Area/Population/Weather Resilience)
Level 1: Initial Rigid Deserted None None
Level 2: Managed Algorithm Modifiable Rural Low Low
Level 3: Defined Human Modifiable Suburban Low-Medium Medium
Level 4: Quantitatively
Managed

Human+AI Modifiable Urban Medium High

Level 5: Optimizing AI-Modifiable Emergency Extremely High Extremely High

Table 2 Most relevant CMMI-DEV Process Areas for Mission Risk Acceptability Categories

Mission Risk Accept-
ability Category

CMMI-DEV
Process Area

Maturity
Level

Significance

Contingency
Management

CM
Level 2 Ensures robust contingency plans and

risk mitigation strategies for effective
response to unexpected events.

PMC
RSKM Level 3

Environment

MA
Level 2

Involves managing the impact of
environmental factors on UAM
operations.

REQM
PI

Level 3RD
TS
CAR Level 5

Mission
Redefinition

DAR
Level 3

Enables flexible adaptation and
redefinition of mission parameters in
changing conditions.

IPM
RSKM

Mission
Success

PMC
Level 2 Focuses on managing mission

requirements and project planning to
achieve desired outcomes.

PP
REQM
RSKM Level 3

Operations

CM

Level 2
Focuses on managing mission
operational challenges, maintaining
safety and flight quality standards.

MA
PPQA
SAM

for Environment Risk Acceptability include Requirements Development (RD) and Requirement Management (REQM),
which ensure systems are designed and operated with these environmental factors in mind. This could entail developing
specific operational requirements tailored to different environments, such as noise reduction measures or enhanced
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navigation systems. Measurement and Analysis (MA) plays a crucial role in continuously assessing the operating
environment’s impact on UAM operations, involving data analysis on traffic patterns, weather, and airspace constraints.
Causal Analysis and Resolution (CAR) focuses on maintaining services effectively across diverse conditions, planning for
system redundancy and robust operation protocols. Additionally, Technical Solutions (TS) and Product Integration (PI)
enable agility in responding to environmental risks, with TS developing adaptable technical solutions and PI ensuring
their seamless integration into the UAM system, like advanced weather prediction tools or adaptable anti-collision
systems.

Mission Redefinition addresses the need for flexibility and adaptability in response to changing conditions or goals
in urban environments, like unexpected airspace restrictions or emergencies. This requires the systems to be agile and
capable of modifying mission objectives, routes, or strategies, often through a combination of algorithmic decision-
making and human expertise. Balancing these elements is crucial to optimizing mission outcomes, ensuring safety,
and complying with regulations. Key processes in managing this risk include Integrated Project Management (IPM),
RSKM, and Decision Analysis and Resolution (DAR). IPM focuses on flexible planning and execution, allowing for
rapid mission changes in response to evolving scenarios. RSKM involves preemptive preparation for scenarios that may
necessitate quick mission changes, such as analyzing urban traffic patterns or weather conditions. Finally, DAR aids in
making informed decisions during mission redefinition, evaluating various factors like fuel efficiency, time delays, and
safety, ensuring a balanced approach between algorithmic adaptability and human judgment.

Mission success concerning Mission Risk Acceptability describes how well the system achieves its defined objectives,
considering the effectiveness and efficiency of its operations under varying conditions. It hinges on managing risks
related to achieving desired outcomes, considering factors like mission complexity, operational efficiency, and plan
adherence. This begins with vague risk criteria in early development stages, acknowledging but not fully quantifying
risks, and progresses to Post-Analysis criteria based on past mission evaluations. Advanced stages involve Scenario-based
criteria using detailed planning and simulations for different operational scenarios, and Conditional criteria based on
specific operational conditions. Attainable risk criteria are set, reflecting realistic standards achievable with current
technology. This comprehensive approach integrates REQM for defining mission requirements, Project Planning (PP)
and PMC for planning and execution, and RSKM for identifying and mitigating potential risks, ensuring a robust
framework for mission success in diverse UAM scenarios.

Mission Operations in this context refers to the entire system’s capacity to execute and manage flight tasks,
encompassing routine and complex operational aspects and responsiveness to changing scenarios. It addresses the
challenges and uncertainties inherent in daily tasks such as resource allocation, airspace management, traffic coordination,
and maintenance. Effective management of these risks involves establishing efficient operational practices and adapting
them based on real-time data analysis for optimal resource utilization and safety. This management is initially reactive
to operational needs, eventually becoming systematic and potentially adaptive (with the aid of AI). Crucial to this is
MA, which leverages vast amounts of operational data for efficiency enhancements, and Process and Product Quality
Assurance (PPQA), ensuring adherence to the highest safety and quality standards through regular checks and compliance
with aviation regulations. Additionally, CM plays a key role in the systematic management of operational changes, while
Supplier Agreement Management (SAM) focuses on maintaining standards with critical aerospace component suppliers.
Poor operational risk management can lead to issues like inefficient resource use, increased costs, and compromised
safety measures, underscoring the importance of these processes in maintaining smooth and safe UAM operations.

IV. Use Case: Measuring the Autonomy of GUAM
We applied our methodologies to the NASA TTT ICM sub-project simulator, known as GUAM. The NASA LaRC

development team for GUAM successfully completed three benchmark exercises, showcasing the ability to handle
vehicle and operational environment contingencies safely and cost-effectively. Benchmark 1 was pivotal, focusing on
creating an infrastructure that supports collaborative research within the ICM architecture:

1) GUAM Simulation Framework: Development of a MATLAB™†/Simulink environment, adaptable to various
vehicle types and research needs, forming the foundation for comprehensive simulation and analysis.

2) Data Integration and Analytics: Establishment of a robust data pipeline linking the GUAM framework with
external machine learning and analytics tools, enabling seamless data exchange essential for intelligent contingency
management.

†The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either
expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.
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Fig. 3 UL 4600 Safety Case Claims and CMMI-DEV Capability Levels for GUAM Benchmarks

3) Data Storage and Sharing: Implementation of efficient data storage and sharing system using databases, enhancing
data accessibility and collaborative research.

4) AI and Analytics Tools: Utilization of NASA’s computing resources for in-depth analysis and decision-making
processes.

5) Data Visualization: Demonstrating proficiency in data visualization with tools like Unreal Engine™and
Microsoft (MS) AirSim, augmented with resources from NASA supercomputing.

Benchmark 2 for GUAM marked a significant step in evaluating vehicle control and replanning capabilities. This
benchmark involved flying a standard trajectory with various atmospheric challenges like winds and turbulence,
navigating around severe weather, and dealing with uncooperative intruders and gradual propulsive performance
degradation. The primary goals were to assess and adapt the vehicle’s performance using generalized control metrics,
and to monitor these adaptations. There were notable enhancements to the infrastructure supporting collaborative
research in the ICM architecture. GUAM evolved to allow for more versatile modeling, offering different levels of
detail. A key development was the integration of machine learning, which significantly improved the generation and
utilization of training data for machine learning models, notably in fault detection and adapting to vehicle dynamics
changes. Additionally, the introduction of Parametric Differential Dynamic Programming (PDDP) represented a major
advancement in trajectory planning, allowing for the simultaneous optimization of trajectories and time-invariant
parameters. The safety and control capabilities of GUAM were further enhanced by integrating collision avoidance
algorithms, like Optimal Reciprocal Collision Avoidance (ORCA), and using Bézier curves [53] for vehicle dynamics-
aware planning. These updates collectively marked a substantial progression in GUAM’s capabilities and its application
in UAM scenarios.

A. Mission Complexity Analysis
Figure 3 showcases the evolution of CMMI-DEV Capability Levels and UL 4600 Sub-Claims across the yearly

Benchmark Exercises for GUAM and its counterpart. Benchmark 1 addressed various contingencies and challenges
such as propulsive failures, control authority degradation, traffic management issues, atmospheric disturbances, and
complex decision-making scenarios. It utilized variable fidelity models to understand the intricate aerodynamics
of eVTOL vehicles and baseline machine learning techniques to assess vehicle capabilities and state changes. This
phase also initiated a significant overhaul in infrastructure to improve data analysis, visualization, and introduced new
machine-learning models for analyzing failures and loss-of-control scenarios.

By Benchmark 2, the decision-making of GUAM was focused solely on creating the Mission Manager system,
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Fig. 4 Mission Manager for the GUAM Framework

illustrated in Figure 4. The Mission Manager, a critical decision-making component in GUAM, encompasses various
advanced flight mission management modules. The Cognitive Read provides mission-critical data, supplied by the
Cognitive Architecture, which provides advanced vehicle analyses to guide decision-making. Collision Avoidance
focuses on detecting and resolving conflicts using physics and perception. Placeholders were made for future support
of the other components: The Mission Monitor maintains mission progress and situational awareness, classifying
objectives into Short-Term Goals (STGs) and Long-Term Goals (LTGs), while the Off-Nominal Assessment module
identifies potential failures. The Short-Term Planner handles trajectory replanning, and the Long-Term Planner ensures
overall mission success. The Contingency Planner prepares for emergencies, crafting contingency plans for rapid
activation. Cooperative Control evaluates plans, and the Central Reasoner makes final decisions based on comprehensive
contextual reasoning.

By Benchmark 3, the development of the GUAM framework had significantly evolved past the Cognitive Architecture
and mission management. This phase focused on enhancing the framework’s ability to handle complex operational
scenarios, integrating machine learning for fault detection, advanced collision avoidance algorithms, and sophisticated
mission planning tools. The emphasis was on improving vehicle performance under various conditions and refining
decision-making processes during missions. The framework includes advanced analytics for scalable experimentation
and simulation, crucial for predicting vehicle behavior and ensuring robustness and adaptability to new autonomy
levels. The expanded decision-making hierarchy in the GUAM framework, from immediate to long-term planning,
is exemplified in the evolved Mission Manager system, which incorporates monitoring, assessment, and contingency
planning modules, central to mission success and informed decision-making.

14



Table 3 Results of Mission Risk Acceptability Analysis on GUAM

SGs Met SPs Met
Mission Risk
Acceptability
Category

CMMI-DEV
Process
Area

Benchmark
1

Benchmark
2

Benchmark
3

Benchmark
1

Benchmark
2

Benchmark
3

Contingency
Management

CM 2/3 2/3 2/3 5/7 6/7 6/7

PMC 1/2 1/2 1/2 3/5 7/10 7/10

Environment
MA 1 1 1 1 1 1
REQM 0 0 0 2/5 4/5 4/5

Mission Success
PMC 1/2 1/2 1/2 3/5 7/10 7/10
PP 1/3 2/3 2/3 1/2 11/14 6/7
REQM 0 0 0 2/5 4/5 4/5

Operations

CM 2/3 2/3 2/3 5/7 6/7 6/7
MA 1 1 1 1 1 1
PPQA 1/2 1/2 1/2 1/2 3/4 3/4
SAM 1 1 1 1 1 1

B. Mission Risk Acceptability Analysis
In our analysis of Mission Risk Acceptability, we utilized the CMMI-DEV model, aiming to advance our Project

team to Maturity Level 2 – Managed. Achieving this level requires meeting all specific and generic goals of the Maturity
Level 2 process areas. We concentrated on several Process Areas at this Level relevant to the ICM for UAM sub-project
operations, including CM (Contingency Management and Operations Risk), MA (Environment and Operational Risk),
PMC (Contingency Management and Mission Success Risk), PP (Mission Success Risk), PPQA (Operational Risk),
REQM (Environment Risk), and SAM (Operational Risk).

Results are described in Table 3. We assessed the maturity of our CM processes across the project by evaluating the
number of Specific Goals (SGs) and Specific Practices (Specific Practices (SPs)) met, focusing on Mission Operations
and Contingency Management. Standardized CMMI checklists were used to gauge our current compliance level in
each Mission Risk Acceptability category. Our evaluation showed alignment of our processes with the SGs and SPs of
each Process Area. By Benchmark 2, we achieved all SGs for CM. Our project’s benchmarks revealed that while the
SGs remained largely consistent, there were notable changes in SPs across several areas, particularly within CM, PMC,
REQM, PP, and PPQA, indicating progress and adaptations in our approach to managing various risks.

In our analysis of Mission Risk Acceptability, we observed a consistent trend in Contingency Management,
Environment, Mission Success, and Operations Risk categories. While the SGs in these categories have remained
constant, indicating stable high-level objectives, there has been a notable evolution in the SPs. For Contingency
Management, CM and PMC maintained consistent SGs across benchmarks, but SPs showed improvement, especially for
PMC, which increased its SPs coverage. This suggests a refinement in how we implement Contingency Management. In
the Environment category, despite REQM’s SGs remaining at zero, there was a positive shift in SPs, highlighting better
execution of requirements management practices. Similarly, for Mission Success, PMC and PP demonstrated enhanced
execution of practices, with PP showing significant growth from Benchmark 1 to 3. Operations risk acceptability
exhibited stability in SGs for CM and PPQA, with a slight increase in SPs, indicating improved quality assurance
practices. SAM remained consistent, reflecting stable supplier management.

V. Implications of the CBP Framework
Applying CMMI-DEV to the development of evidence and measurement tools for UL 4600 Safety Cases, specifically

in the context of UAM Frameworks, offered several key benefits:
• Process Maturity Assessment: CMMI-DEV provides a structured approach to assess the maturity level of the

processes used to develop evidence and performance targets. It can determine how systematically and effectively
these processes are being managed, which is critical for ensuring the reliability of the Evidence-gathering
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capabilities described in safety cases.
• Capability Enhancement: By adhering to CMMI-DEV while following a safety case about intelligent UAM,

organizations can enhance their capability to develop sophisticated tools and algorithms, such as Reinforcement
Learning, Genetic Algorithms, and Adaptive Neuro-Fuzzy Inference Systems. This enhancement is especially
crucial for dealing with the complexities of dynamic and unstructured UAM scenarios.

• Quality Assurance: CMMI-DEV’s emphasis on quality assurance ensures that the tools and methods used to
gather evidence and set performance targets are robust, accurate, and reliable. This is especially important for
simulations and algorithms that must demonstrate an ability to adapt to rapidly changing conditions in unknown
environments.

• Continuous Improvement: The model encourages continuous improvement, which is vital in the context of UAM,
where technologies and operational environments are rapidly evolving. The maturity of evidence and measurement
tools can be progressively enhanced to meet the evolving safety requirements of UAM systems.

• Risk Management: CMMI-DEV’s focus on risk management aids in identifying and mitigating potential errors or
shortcomings in the evidence and measurement tools. This aspect is critical for ensuring that the safety cases
remain valid and effective even as the operational environment becomes more complex and less predictable.

With CMMI-DEV, the tools and processes stated in developing UL 4600 Safety Cases will mature within our GUAM
Framework, addressing the unique challenges posed by the ever-changing UAM ecosystem.

Concerning Mission Risk Acceptability, the static SGs coupled with the dynamic evolution of SPs suggest that
our core project goals have stayed the same, but our methods and processes to achieve these goals have become more
sophisticated and effective. This progression in SPs, particularly in risk management and quality assurance, shows
an enhancement in our ability to manage mission risks. Our practices have become more adept, leading to more
effective contingency management, better handling of environmental factors, increased mission success, and more robust
operational procedures. And analysis based on the Mission Risk Acceptability, using SPs, supports this increase in
effectiveness. This advancement in mission risk acceptability indicates a maturation in our risk management approach,
although the future focus on improving our SGs to align with these enhancements may be beneficial.

VI. Conclusion
This research presents a significant advancement in the field of UAM, specifically addressing the critical aspect

of ICM. Our comprehensive study has led to developing a CBP that leverages validated capability-maturity models
and safety case frameworks to pave the way for future innovations in UAM. Throughout our investigation, we have
demonstrated the efficacy of our proposed solutions in tracking the maturity of UAM Frameworks in managing
contingencies within urban airspaces. As shown in our results, UL 4600 can be combined with CMMI-DEV to assess
growth in capability-maturity in a yearly Benchmark Exercise. Our findings underscore the importance of adaptive and
robust control mechanisms that can dynamically respond to the unpredictable nature of urban airspaces.

Furthermore, as we evolve UAM, particularly with the use of AI, it is imperative to embed ethical considerations
into the core of our methodologies and findings. The methodology in this paper makes it straightforward to integrate
an organization’s ethical principles into UL 4600 Safety Cases such that the understanding of how the capability,
process, and organization align with these principles is sufficiently tracked. NASA’s AI Ethics Framework [54] captures
principles that could integrate into the evidence, SPIs, and Methodologies of the UL 4600 Safety Case Claims from this
study. Future research will explore adding principles from both NASA’s AI Ethics Framework and climate-related goals
to our UL 4600 Safety Cases to ensure a systematic method for tracking alignment.

This study adds to the academic literature and offers practical insights for policymakers and industry stakeholders,
emphasizing the need for collaborative efforts to advance UAM technologies. Looking ahead, the CBP established in
this research opens numerous avenues for future exploration. It invites the academic community to refine further and
expand the supplementary material (UL 4600 Safety Cases and Knowledge Base), fostering a collaborative environment
for innovation. NASA will internally review and publish an updated version of the supplementary material. Future
research could further focus on integrating advanced machine learning algorithms and artificial intelligence to enhance
the decision-making processes in UAM Framework development.

Appendix
The appendix summarizes the UL 4600 safety cases for our Mission Complexity measurements‡.
‡The authors plan to publish the full UL 4600 Safety Cases after internal review within a year.
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Category Qualitative Description of Evidence Boolean SAT Formula
Simple Flight Plan
(𝑆𝐹𝑃)

Basic waypoint navigation and smooth trajectory planning,
adheres to UAM Corridor and FAA guidelines.

𝑆𝐹𝑃 ∧ 𝜖waypoint ∧ 𝜖smoothTraj ∧ 𝜖sysAdapt ∧
𝜖UAMAlign

Complex Flight Plan
(𝐶𝐹𝑃)

Intricate, multi-waypoint routes with dynamic routing and
adaptive control systems.

𝐶𝐹𝑃 ∧ 𝜖complexRoute ∧ 𝜖dynamicReroute ∧
𝜖mpcAdapt ∧ 𝜖rtDataProc

Simple Flight Tasks
(𝑆𝐹𝑇)

Basic altitude control and maneuvers, with resilience in
operational deviations and introductory compliance with
UAM Corridor and FAA.

𝑆𝐹𝑇 ∧ 𝜖altControl ∧ 𝜖maneuverExec ∧ 𝜖opDevResil

Complex Flight Tasks
(𝐶𝐹𝑇)

Advanced maneuvers that integrate system analytics, and
adapts to environmental changes.

𝐶𝐹𝑇 ∧ 𝜖advManeuver ∧ 𝜖sysInteract ∧ 𝜖adaptLearn

Normal Operations
(𝑁𝑂)

Standard operations within FAA parameters, ensures pro-
cedural compliance and operational integrity.

𝑁𝑂 ∧ 𝜖normalOps ∧ 𝜖opIntegrity

Abnormal Operations
(𝐴𝑂)

Challenging conditions with advanced navigation and
specialized emergency protocols.

𝐴𝑂 ∧ 𝜖challCond ∧ 𝜖highNavAcuity

Recoverable Failures
(𝑅𝐹)

Mission continuity despite faults with robust fault tolerance
and mitigation strategies.

𝑅𝐹 ∧ 𝜖recovFaults ∧ 𝜖mitigStrat

Unrecoverable Fail-
ures (𝑈𝐹)

Critical system failures with advanced fault injection meth-
ods and emergency responses.

𝑈𝐹 ∧ 𝜖critSysFail ∧ 𝜖emergResp ∧ 𝜖advFaultInj

Fundamental Han-
dling and Flight
Quality (𝐹𝐻𝐹𝑄)

Smooth passenger experience or secure cargo transit dur-
ing flights with minimal maneuvering or environmental
challenges.

𝐹𝐻𝐹𝑄 ∧ 𝜖smoothFlight ∧ 𝜖passComfReport ∧
𝜖stdCompliance ∧ 𝜖cargoStab ∧ 𝜖envImpactAssess ∧
𝜖feedbackAnalysis

Advanced Handling
and Flight Quality
(𝐴𝐻𝐹𝑄)

High standards of passenger comfort and cargo integrity
during complex flights with intricate maneuvers or chal-
lenging conditions.

𝐴𝐻𝐹𝑄 ∧ 𝜖advCtrlStab ∧ 𝜖complexOperResponse ∧
𝜖realTimeMonit ∧ 𝜖adaptiveCtrlSys ∧ 𝜖stressTestSim

Table 4 Complexity of Mission Operations: Categories and Their Corresponding SAT Formulas

1. Complexity of Mission Operations
In Table 4, we summarize the UL 4600 Safety Cases for Complexity of Mission Operations:, where

𝜖adaptiveCtrlSys = Implementation of control systems
adapting to changing conditions.
𝜖adaptLearn = Use of adaptive learning algorithms that
accomodate environmental changes.
𝜖advCtrlStab = Advanced control and stabilization tests
under complex flight scenarios.
𝜖advFaultInj = Use of advanced Fault Injection mecha-
nisms, encompassing methods like Monte Carlo simu-
lations or Chaos Engineering principles.
𝜖advManeuver = Execution of advanced operational ma-
neuvers.
𝜖altControl = Execution of fundamental flight tasks like
altitude control.
𝜖cargoStab = Use of sensors and algorithms to ensure
cargo stability and security.
𝜖challCond = Flights under challenging conditions, such
as adverse weather or complex urban landscapes.
𝜖complexRoute = Management of intricate routing with
multiple waypoints.
𝜖complexOperResponse = System response records to high

turbulence or maneuver-induced stresses.
𝜖critSysFail = Critical system failures leading to mission
failure.
𝜖dynamicReroute = Capability for dynamic rerouting in
response to evolving circumstances.
𝜖emergResp = Emergency response systems for critical
system failures leading to mission failure.
𝜖envImpactAssess = Analysis of external environmental
factors impacting flight stability.
𝜖feedbackAnalysis = Collection and analysis of passenger
and cargo handler feedback post-flight.
𝜖highNavAcuity = Requirement for high navigational acu-
ity in abnormal operations.
𝜖maneuverExec = Execution of basic maneuvers for flight
vehicles.
𝜖mitigStrat = Mitigation strategies employed by the sys-
tem to manage and mitigate impacts of recoverable
faults.
𝜖mpcAdapt = Implementation of Model Predictive Con-
trol adaptive algorithms for handling variable speeds
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Complexity of
Autonomy

Details

Manual Control
(MC)

Evidence Claim: The UAM Framework is designed to facilitate flight operations under full manual
control.
Evidence: Operator Control Algorithms, Human-Machine Interface (HMI) Effectiveness, Operator
Training and Simulation.
SPIs: Operator Response Accuracy, HMI Usability and Effectiveness, Training Effectiveness.
SAT: 𝑀𝐶 ∧ (𝜖opCtrlAlg ∧ 𝜖HMIeff ∧ 𝜖opTrain) ∧ (𝜖respAcc) ∧ (𝜖situAware) ∧ (𝜖manOverride)

Flight Stability
(FS)

Evidence Claim: The UAM Framework ensures enhanced flight stability through automated stabilization
systems.
Evidence: Stabilization Algorithms, Sensor Fusion and Accuracy, Operator-Automation Interface.
SPIs: Stabilization System Reliability, Deviation from Set Points, Response to Perturbations.
SAT: 𝐹𝑆 ∧ (𝜖stabAlg ∧ 𝜖sensorFusion ∧ 𝜖opAutoIntf) ∧ (𝜖flightStab) ∧ (𝜖sensorAcc) ∧ (𝜖opSysInteg)

Envelope Protec-
tion (EP)

Evidence Claim: The UAM Framework ensures safe flight operations with advanced envelope protection
systems.
Evidence: Advanced Envelope Protection Algorithms, Sensor Fusion for Flight Dynamics, Contingency
Management Tools.
SPIs: Effectiveness of Envelope Protection, Responsiveness of Contingency Management, Reliability of
Sensor Fusion.
SAT: 𝐸𝑃 ∧ (𝜖envProtAlg ∧ 𝜖dynMon ∧ 𝜖contMgmt) ∧ (𝜖envEff) ∧ (𝜖respTime) ∧ (𝜖contAcc)

Navigation and
Collision Avoid-
ance (NCA)

Evidence Claim: The UAM Framework autonomously navigates and avoids collisions, ensuring safety
and efficiency.
Evidence: Collision Avoidance Algorithms, Adaptive Control Systems, Sensor Fusion and Real-Time
Monitoring.
SPIs: Collision Avoidance Effectiveness, Navigation Precision, Sensor Data Reliability.
SAT: 𝑁𝐶𝐴 ∧ (𝜖colAvoidAlg ∧ 𝜖adaptCtrlSys ∧ 𝜖realTimeMon) ∧ (𝜖collAvoidRate) ∧ (𝜖navAcc) ∧ (𝜖realTimeResp)

Table 5 Summary of UL 4600 Safety Cases for Assisted Flight Levels of Autonomy Complexity

and altitudes.
𝜖normalOps = Management of standard operational con-
ditions within expected parameters.
𝜖opDevResil = Resilience in handling operational devia-
tions.
𝜖opIntegrity = Integrity of operational procedures en-
suring compliance with standard flight operations and
regulations.
𝜖passComfReport = Reports collected on passenger com-
fort during normal flight operations.
𝜖realTimeMonit = Real-time monitoring systems for pas-
senger comfort and cargo security.
𝜖recovFaults = Ability to continue the mission despite
encountering faults.
𝜖rtDataProc = Use of real-time data processing algo-
rithms for dynamic rerouting in response to unexpected
environmental factors.

𝜖smoothFlight = Stability and control system validation
tests demonstrating smooth flight conditions.
𝜖smoothTraj = Implementation of smooth trajectory
planning, like efficient Bezier curve calculation.
𝜖stdCompliance = Historical flight data showing consis-
tent adherence to flight quality standards.
𝜖stressTestSim = Simulated stress testing to evaluate
flight quality under complex conditions.
𝜖sysAdapt = System adaptability to simple operator di-
rectives and environmental changes.
𝜖sysInteract = Managing complex interactions with au-
tomated systems.
𝜖UAMAlign = Initial alignment with UAM Corridor con-
cepts and FAA guidelines.
𝜖waypoint = Use of waypoint navigation algorithms for
straightforward route following.

2. Complexity of Autonomy
Tables 5 and 6 describe the UL 4600 safety cases developed for Complexity of Autonomy, where
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Complexity of
Autonomy

Details

Conditional Au-
tonomy (CA)

Evidence Claim: The UAM Framework operates autonomously under specific conditions with human
override capability.
Evidence: Robust Autonomous Flight Systems, HMI and Override Functionality, Environmental Adaptation
Systems.
SPIs: Autonomy Reliability, Human-System Interaction Efficacy, Operational Safety under Varying
Conditions.
SAT: 𝐶𝐴 ∧ (𝜖autoFlightSys ∧ 𝜖HMIoverFunc ∧ 𝜖envAdaptSys) ∧ (𝜖autoOpSuccess) ∧ (𝜖manualTrans) ∧ (𝜖opSafetyEff)

Conditional Au-
tonomy with AI
(CAAI)

Evidence Claim: AI integration enhances decision-making in conditional autonomy with operator
supervision.
Evidence: AI-Enhanced Decision-Making Systems, Dynamic Environmental Adaptation with AI, AI
Supervisory Systems.
SPIs: Reliability of AI Decision-Making, Effectiveness of Human-AI Interaction, Adaptability of AI
Systems.
SAT: 𝐶𝐴𝐴𝐼 ∧ (𝜖AIdecSys ∧ 𝜖envAdaptAI ∧ 𝜖AIsupSys) ∧ (𝜖AIDecAcc) ∧ (𝜖opIntervTime) ∧ (𝜖humanIntervMin)

High Automa-
tion (HA)

Evidence Claim: High automation enables autonomous operation with minimal human intervention,
except in rare cases.
Evidence: Advanced Autonomous Operation Systems, Sophisticated Monitoring and Alert Systems,
Fail-Safe Mechanisms.
SPIs: Autonomy Reliability, Monitoring and Alert System Effectiveness, Fail-Safe System Performance.
SAT: 𝐻𝐴 ∧ (𝜖advAutoOpSys ∧ 𝜖monAlertSys ∧ 𝜖failSafeMech) ∧ (𝜖autoOpRate) ∧ 𝜖anomDetectAcc ∧ 𝜖failSafeEngage

Full Automation
(FA)

Evidence Claim: Full Automation allows for autonomous operation with nominal human oversight in all
scenarios.
Evidence: Fully Autonomous Operational Systems, Robust Hazard Detection and Avoidance, System
Redundancy.
SPIs: Operational Autonomy, Hazard Detection Efficiency, System Redundancy and Reliability.
SAT: 𝐹𝐴 ∧ (𝜖fullAutoSys ∧ 𝜖hazDetAvoid ∧ 𝜖sysRedundancy) ∧ 𝜖autoOpSuccessAll ∧ 𝜖redundFailZero ∧ (𝜖certComplete)

Table 6 Summary of UL 4600 Safety Cases for Autonomous Flight Levels of Autonomy Complexity

𝜖advAutoOpSys = Advanced Autonomous Operation Sys-
tems.
𝜖AIDecAcc = AI Decision-Making Accuracy in Condi-
tional Autonomy with AI.
𝜖AIdecSys = AI-Enhanced Decision-Making Systems.
𝜖AIsupSys = AI Supervisory Systems.
𝜖anomDetectAcc = Anomaly Detection Accuracy in High
Automation.
𝜖autoFlightSys = Robust Autonomous Flight Systems.
𝜖autoOpRate = Autonomous Operation Success Rate in
High Automation.
𝜖autoOpSuccess = Autonomous operation success rate
under specific conditions.
𝜖autoOpSuccessAll = Autonomous Operation Success
Rate in Full Automation.
𝜖colAvoidAlg = Collision Avoidance Algorithms.
𝜖certComplete = Completion of Certification for Au-
tonomous Systems in Full Automation.
𝜖collAvoidRate = Collision Avoidance Success Rate in
Navigation and Collision Avoidance.
𝜖contAcc = Accuracy of Contingency Management.

𝜖contMgmt = Contingency Management Tools.
𝜖dynMon = Dynamic Monitoring for Flight Dynamics.
𝜖envAdaptAI = Dynamic Environmental Adaptation
with AI in Conditional Autonomy with AI.
𝜖envAdaptSys = Environmental Adaptation Systems in
Conditional Autonomy.
𝜖envEff = Effectiveness of Envelope Protection.
𝜖envProtAlg = Advanced Envelope Protection Algo-
rithms.
𝜖failSafeEngage = Fail-Safe System Engagement Rate in
High Automation.
𝜖failSafeMech = Robust Fail-Safe Mechanisms.
𝜖flightStab = Flight Stability Precision.
𝜖fullAutoSys = Fully Autonomous Operational Systems.
𝜖hazDetAvoid = Robust Hazard Detection and Avoidance
Systems.
𝜖HMIeff = Effectiveness of the HMI in operation.
𝜖HMIoverFunc = Human-Machine Interface and Over-
ride Functionality.
𝜖humanIntervMin = Frequency of Minimal Unscheduled
Human Interventions in Conditional Autonomy with
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AI.
𝜖manOverride = Effectiveness of Manual Override Sys-
tems.
𝜖manualTrans = Rapid Transition to Manual Control in
Conditional Autonomy.
𝜖monAlertSys = Sophisticated Monitoring and Alert Sys-
tems.
𝜖navAcc = Navigation Accuracy within predefined
routes.
𝜖opAutoIntf = Operator-Automation Interface.
𝜖opCtrlAlg = Implementation of Operator Control Algo-
rithms for manual control.
𝜖opIntervTime = Operator Intervention Time in AI Su-
pervision.
𝜖opSafetyEff = Operational Safety and Efficiency in Con-
ditional Autonomy.
𝜖opSysInteg = Operator-System Integration.
𝜖opTrain = Comprehensive Operator Training and Sim-
ulation programs.

𝜖realTimeMon = Real-Time Monitoring for Navigation
and Collision Avoidance.
𝜖realTimeResp = Real-Time Response to Dynamic Ob-
stacles and Changes.
𝜖redundFailZero = Redundancy Switch-over Success
Rate in Full Automation.
𝜖respAcc = Operator response accuracy in control in-
puts.
𝜖respTime = Response Time of Envelope Protection Sys-
tems.
𝜖scenario_anal = Scenario Analysis Tools for Impact As-
sessment.
𝜖sensorAcc = Sensor Accuracy in Flight Stability.
𝜖sensorFusion = Sensor Fusion and Accuracy in Flight
Stability.
𝜖stabAlg = Stabilization Algorithms in use.
𝜖situAware = Operator’s situational awareness level.
𝜖sysRedundancy = System Redundancy in Full Automa-
tion.

3. Complexity of Decision-Making

Table 7 Summary of UL 4600 Sub-Claims for Decision-Making Complexity

Decision-
Making Sub-
Claim

Summary of Evidence, Performance Targets,
and SPIs

SAT

Mission-level Focuses on strategic mission planning and real-
time adaptation with high accuracy and reliability.

𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖strategic_planning ∧
𝜖adaptation_mechanisms ∧ 𝜖objective_optimization ∧ 𝜖validation

Task-level High-efficiency task decomposition and multi-
option reasoning in task sequencing and accuracy
in task prioritization.

𝑡𝑎𝑠𝑘_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖task_decomposition ∧ 𝜖multi_option_reasoning ∧
𝜖task_prioritization ∧ 𝜖task_level_validation

Plan-level Feasible plan generation and adaptability in plan-
ning, high effectiveness in plan generation and
environmental adaptation.

𝑝𝑙𝑎𝑛_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖plan_generation ∧ 𝜖environmental_adaptation ∧
𝜖uncertainty_management ∧ 𝜖plan_level_validation

Maneuver-level Precision maneuver selection and aerodynamic op-
timization, aiming for high accuracy in maneuver
selection and efficiency.

𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟_𝑙𝑒𝑣𝑒𝑙∧𝜖maneuver_selection∧𝜖aero_optimization∧
𝜖real_time_data ∧ 𝜖maneuver_validation ∧ 𝜖dynamic_envelope ∧
𝜖offline_envelope ∧ 𝜖adaptive_maneuver

Control-level Autonomous control input adjustment and adaptive
control algorithms, with goals for precision in
control adjustments.

𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖control_input ∧ 𝜖control_precision ∧
𝜖adaptive_control ∧ 𝜖control_validation

Health-level Intelligent health monitoring and active health
assessment, focusing on reliability in health moni-
toring.

ℎ𝑒𝑎𝑙𝑡ℎ_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖health_monitoring ∧ 𝜖active_assessment ∧
𝜖health_based_decision ∧ 𝜖health_validation

Fault-level Fault detection and response algorithms, with tar-
gets of accuracy in fault detection and effective
fault analysis.

𝑓 𝑎𝑢𝑙𝑡_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖fault_detection ∧ 𝜖fault_analysis ∧
𝜖fault_response ∧ 𝜖fault_validation

Recovery-level Recovery strategy formulation and mission re-
planning tools, aiming for efficiency in recovery
strategy execution.

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦_𝑙𝑒𝑣𝑒𝑙 ∧ 𝜖recovery_strategy ∧ 𝜖mission_replanning ∧
𝜖post_recovery_optimization ∧ 𝜖fail_safe_design
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Table 7 summarizes the UL 4600 Safety Case for the Complexity of Decision-Making claim, where:

𝜖strategic_planning = Implementation of algorithms capa-
ble of long-term mission planning.
𝜖adaptation_mechanisms = Integration of systems to adapt
mission objectives in real-time.
𝜖objective_optimization = Utilizing optimization tech-
niques for balancing multiple mission objectives.
𝜖validation = Comprehensive testing and validation of
mission planning algorithms.
𝜖task_decomposition = Implementation of algorithms for
breaking down complex missions into discrete tasks.
𝜖multi_option_reasoning = The system’s ability to evaluate
and reason about various optional tasks.
𝜖task_prioritization = Dynamic prioritization mecha-
nisms adjusting task priorities in real-time.
𝜖task_level_validation = Extensive validation and testing
of task-level decision-making systems.
𝜖plan_generation = Integration of algorithms for generat-
ing practical and executable plans for each task.
𝜖environmental_adaptation = Capability to adjust plans in
response to changing environmental conditions.
𝜖uncertainty_management = Systems designed to antici-
pate and accommodate uncertainties in planning.
𝜖plan_level_validation = Thorough testing and validation
of plan-level decision-making capabilities.
𝜖maneuver_selection = The incorporation of algorithms
that accurately select maneuvers.
𝜖aero_optimization = Advanced algorithms for optimizing
maneuvers considering aerodynamic efficiency.
𝜖real_time_data = Ability to process and integrate real-
time data for informed maneuver decisions.
𝜖maneuver_validation = Rigorous testing of maneuver se-
lection and execution algorithms.
𝜖dynamic_envelope = Capability to compute a real-time
dynamic flight envelope.
𝜖offline_envelope = Implementing algorithms for offline
computation of the flight envelope.

𝜖adaptive_maneuver = Using advanced algorithms for se-
lecting maneuvers based on a computed flight envelope.
𝜖control_input = System’s capability to autonomously
determine and adjust control inputs.
𝜖control_precision = Implementation of algorithms that
accurately set control parameters.
𝜖adaptive_control = Use of adaptive control systems that
adjust to varying flight conditions.
𝜖control_validation = Comprehensive testing and valida-
tion of control-level decision systems.
𝜖health_monitoring = Implementation of systems for con-
tinuous health status monitoring of the aircraft.
𝜖active_assessment = Capability for active probing of the
aircraft’s operational abilities.
𝜖health_based_decision = Integration of decision-making
algorithms that respond to health assessments.
𝜖health_validation = Comprehensive testing and valida-
tion of the health monitoring and decision-making
systems.
𝜖fault_detection = Implementation of systems for accu-
rate fault detection and diagnosis.
𝜖fault_analysis = Use of advanced modeling and simula-
tion methods for fault analysis.
𝜖fault_response = Integration of decision-making algo-
rithms for responding to detected faults.
𝜖fault_validation = Comprehensive testing and validation
of fault-level decision systems.
𝜖recovery_strategy = Formulation and implementation of
sophisticated recovery strategies.
𝜖mission_replanning = Implementation of tools for dy-
namic mission re-planning post-recovery.
𝜖post_recovery_optimization = Utilization of multi-criteria
optimization models for post-recovery operations.
𝜖fail_safe_design = Application of fail-safe system design
principles and real-time monitoring.

4. Complexity of Mission Fault
Table 8 summarizes the UL 4600 Safety Case for the Complexity of Mission Fault claim, where:

• 𝜖acc_int_plan = High accuracy of planning for expected
internal uncorrectable faults.

• 𝜖acc_int_pred = High accuracy of fault prediction for
expected internal correctable faults.

• 𝜖acc_plan = High accuracy of planning for expected
external uncorrectable faults.

• 𝜖auto_detect = Implementation of automated fault de-
tection systems for internal faults.

• 𝜖bayes_net = Use of Bayesian networks or similar
probabilistic models for anticipating uncorrectable
external faults.

• 𝜖crisis_mgmt = Use of crisis management systems for
managing uncorrectable faults.

• 𝜖diag_tools = Integration of advanced diagnostic tools
for detecting internal faults.

• 𝜖emergency_proto = Deployment of emergency manage-
ment protocols for uncorrectable faults.

• 𝜖env_sense = Advanced environmental sensing tech-
nologies for detecting external changes.

• 𝜖ext_detect_rate = High success rate in detecting unex-
pected external correctable faults.

• 𝜖ext_manage_rate = High effectiveness in managing un-
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Table 8 Summary of UL 4600 Sub-Claims for Mission Fault Complexity

Mission Fault
Sub-Claim

Summary of Evidence, Performance Targets, and SPIs SAT

Expected,
External,
Correctable

Utilizes machine learning, Monte Carlo simulations, and pre-
dictive models for fault management, with high accuracy in
predicting external faults and reducing mission impact.

(Expected ∧ External ∧ Correctable) ∧
(𝜖ml_alg ∨ 𝜖mc_sim ∨ 𝜖pred_mod) ∧ 𝜖env_sense ∧
𝜖real_time_data ∧ 𝜖ext_detect_rate ∧ 𝜖mis_disrupt_ext

Expected, Ex-
ternal, Uncor-
rectable

Employs probabilistic models and scenario analysis tools for
minimizing mission impact and ensuring safety, targeting high
planning accuracy and reduced mission disruption.

(Expected∧External∧Uncorrectable)∧
𝜖bayes_net ∧ 𝜖scenario_anal ∧ 𝜖acc_plan ∧
𝜖min_disrupt_ext

Expected,
Internal, Cor-
rectable

Uses fault prediction algorithms and diagnostics to ensure
operational efficiency, with high accuracy in internal fault
prediction and reduced mission impact.

(Expected ∧ Internal ∧ Correctable) ∧
𝜖reg_model ∧ 𝜖sys_diag ∧ 𝜖acc_int_pred

Expected, In-
ternal, Uncor-
rectable

Focuses on minimizing mission impact using statistical and
fault tree analysis, aiming for high accuracy in fault prediction
and minimizing disruption.

(Expected∧ Internal∧Uncorrectable)∧
𝜖stat_anal ∧ 𝜖fault_tree ∧ 𝜖acc_int_plan ∧
𝜖min_int_disrupt

Unexpected,
External,
Correctable

Ensures operational flexibility with environmental sensing
technologies and adaptive control systems, targeting a high
success rate in fault detection and limiting mission disruption.

(Unexpected∧External∧Correctable)∧
𝜖env_sense ∧ 𝜖real_time_data ∧ 𝜖ml_alg ∧
𝜖ext_detect_rate ∧ 𝜖mis_disrupt_ext

Unexpected,
External, Un-
correctable

Deploys advanced sensors and crisis management systems
for managing faults effectively, ensuring safety and mission-
critical objectives.

(Unexpected ∧ External ∧
Uncorrectable)∧𝜖sensor_array∧𝜖crisis_mgmt∧
𝜖ext_manage_rate ∧ 𝜖safety_ext

Unexpected,
Internal, Cor-
rectable

Maintains high operational efficiency using advanced diagnos-
tics, automated detection, and AI systems, with a high success
rate in fault resolution and limited mission impact.

(Unexpected∧ Internal∧Correctable)∧
𝜖diag_tools ∧ 𝜖auto_detect ∧ 𝜖rapid_response ∧
(𝜖int_detect_rate ∨ 𝜖mis_disrupt_int)

Unexpected,
Internal, Un-
correctable

Focuses on safety and operational continuity using system
monitoring, decision support, and emergency protocols, aiming
for effective fault management and rapid emergency response.

(Unexpected ∧ Internal ∧
Uncorrectable) ∧ 𝜖sys_mon ∧ 𝜖crisis_mgmt ∧
𝜖emergency_proto ∧ 𝜖fault_manage_eff ∧
𝜖response_time

expected external uncorrectable faults.
• 𝜖fault_manage_eff = High effectiveness in managing un-

correctable internal faults.
• 𝜖fault_tree = Incorporation of fault tree analysis for

internal fault pathways.
• 𝜖int_detect_rate = High success rate in detecting unex-

pected internal correctable faults.
• 𝜖mc_sim = Application of Monte Carlo (or similar)

methods for fault impact assessment.
• 𝜖min_disrupt_ext = Low level of mission disruption due

to expected external uncorrectable faults.
• 𝜖min_int_disrupt = Low level of mission disruption due

to expected internal uncorrectable faults.
• 𝜖mis_disrupt_ext = Low level of mission disruption due

to unexpected external correctable faults.
• 𝜖mis_disrupt_int = Low level of mission disruption due

to unexpected internal correctable faults.
• 𝜖ml_alg = Use of machine learning algorithms for

predictive analytics.

• 𝜖pred_mod = Use of predictive models for environmen-
tal and air traffic conditions.

• 𝜖rapid_response = Automated systems for rapid fault
correction.

• 𝜖real_time_data = The use of real-time data processing
systems for external fault management.

• 𝜖reg_model = Use of regression models for internal
fault prediction.

• 𝜖response_time = Low response time for implementing
emergency protocols in unexpected internal uncor-
rectable fault scenarios.

• 𝜖safety_ext = High level of safety in scenarios with
unexpected external uncorrectable faults.

• 𝜖sensor_array = Deployment of sensor arrays for envi-
ronmental monitoring.

• 𝜖sys_diag = Routine system diagnostics for internal
fault prediction.

• 𝜖sys_mon = Comprehensive system monitoring for
internal fault detection.
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