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Abstract – This paper establishes the feasibility of using Natural Language Processing (NLP) to classify 

NOTAMs or Notices to Airmen – a pilot messaging framework to gather real-time situational awareness. 

Present day air mobility operations heavily rely on NOTAMs. However, pilots often have difficulty interpreting 

NOTAMs due to the sheer volume of inapplicable messages and unclear abbreviations. Using NLP, the 

presented study analyzes the accuracy of classifying NOTAMs and, thereby, the efficiency of generating 

actionable interpretations in real time. To this effect, efficacies of four NLP neural network architectures were 

analyzed, including three Recurrent Neural Networks (RNNs) with GloVe, Word2Vec, and FastText word 

embeddings, and one trained Bi-Directional Encoder Representations from Transformers (BERT) model. The 

four neural networks were trained and evaluated on three open-source datasets of varying text lengths, 

vocabularies, and grammars, taken from e-commerce product descriptions, social media tweets, and 

unstructured descriptions for data and analytics services on open data marketplaces such as NASA’s Data and 

Reasoning Fabric (DRF) platform. This provided cross-analysis of each neural network architecture’s 

performance per text type. The best performing architecture, BERT, was then fine-tuned on a collection of 

open-source NOTAM data. Post-training, a real-time NOTAM classification service was implemented to draw 

inference on new NOTAMs using the trained model, which demonstrated close to 99% accuracy in 

classification. This modular classification service is envisioned to be integrated with a data and analytics 

delivery platform, such as the DRF, thus availing real-time contextualization of NOTAMs to air mobility 

clients, humans, and machines for enhanced decision making. 

I. Introduction 

 Notices to Airmen (NOTAMs) are notices containing information essential to personnel concerned with flight 

operations. NOTAMs are sent by government agencies and airport operators and are used to communicate real-time 

status updates that are not known early enough to be broadcasted by other means. They indicate abnormal statuses 

including the establishment, condition, or change of any facility, service, procedure, or hazard of any component of 

the National Airspace System (NAS) [1].  

 Because they contain such critical safety information for airspace stakeholders, NOTAMs have adapted a specific 

seven-line format. They are written completely in upper case and contain various special contractions to make 

communication more efficient, Fig. 1. However, the lack of standardization, particularly in the United States, along 

with the convoluted abbreviation system and sheer volume of NOTAMs has caused serious issues in the past. For 

example, Air Canada Flight 759 nearly crashed into four other airlines as it attempted to land on a San Francisco 

taxiway in July 2017 because information was not extracted from a NOTAM [2]. In many situations, pilots may not 

be familiar with all the coding and abbreviations found in a NOTAM – as a result, flight-critical information is missed, 

and flight personnel safety is jeopardized.  

Recently, there have been pushes by the Federal Aviation Administration (FAA) to align United States domestic 

NOTAMs with International Civil Aviation Organization (ICAO) standards [3]. However, this alone will not eliminate 

the confusion pilots have to identify critical elements in large briefing packages of coded NOTAMs. While recent 

digitalization of NOTAMs has helped improved organization, there are significant strides to be made improving this 

message system for pilots.  
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Recent advancements in neural networks (NN) and natural language processing (NLP) offer new opportunities to 

automate and optimize NOTAMs to the benefit of all flight operations stakeholders. More specifically, the recent 

breakthrough of transformer architectures in machine learning has made huge strides in generalizing models to a 

variety of use cases. Transformer architectures, which are based solely on attention mechanisms, have been 

successfully applied to natural language processing in both large and limited datasets [4]. These breakthroughs offer 

huge opportunities for application in the field of NOTAMs. 

 

 

Fig. 1 Examples of NOTAMs 

 The feasibility study presented in this paper explores the utilization of NLP to contextualize NOTAMs into 

different functional categories. The motivation is derived from the potential for not only improved decision-making 

on part of human pilots but also seamless integration of smart unmanned aerial systems (UASs) into the national 

airspace (NAS). NLP can augment NOTAM interpretation on both manned and unmanned aerial systems, which can 

help standardize communications across the NAS. A wide range of industry applications in recent times have brought 

forth significant progress in NLP along with large language modeling (LLM). With the advent of newer model 

architectures that are substantially faster and more accurate than their predecessors, NLP has risen to the level of 

finding its space in mission critical applications. Effective in interpreting highly specialized expressions such as 

NOTAMs, as demonstrated later in the paper, NLP, and artificial intelligence (AI) in general, in aviation operations 

can be seen much closer than the technology of the distant future. 

 This paper is organized as follows: section II provides a general overview of the different ongoing efforts in the 

research domain for analyzing NOTAMs using non-conventional approaches. Section III presents the preliminary 

evaluation of multiple popular NLP architectures using different types of data. In section IV, the utilization of the best 

performing NLP architecture for NOTAM classification is presented. Section V summarizes the NOTAM 

classification test. Finally, section VI concludes the paper with a summary of findings and future directions. 

II. Background 

 Various contemporary research exploring AI-based contextualization for complex language expressions, such as 

NOTAMs, can be found in the scientific community. [5] discusses the “processing and integration of time-sensitive 

NOTAM information over data link as well as the graphical presentation to the pilot on an EFB application” with the 

intention to help pilots better interpret NOTAMs. [6] discusses an approach for NOTAM processing with Natural 

Language Processing. It uses an attention layer on top of a traditional bi-directional RNN. Storage and graphical 

display of NOTAMs to improve the visibility of message information is discussed in [7]. [8] sheds light on selecting 

NOTAMs based on subject and status codes that are used with the selected phase of flight to determine a relevance 

code each NOTAM according to a set of relevance rules, which are used to help pilots filter out irrelevant NOTAMs. 

Self-supervised learning using BERT, leading to a structured language called Airlang, has been presented in [9]. A 
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good exploration of different pre-build models such as BERT, RoBERTa, and XLNet on NOTAM data is given in 

[10]. Several other work on automated NOTAM interpretation, as found in [11, 12, 13, 14, 15, 16, 17], are noteworthy 

as they demonstrate keen interest within the aviation community for such studies and the emergence of novel 

approaches. In general, much of the state-of-the-art research in the NOTAM interpretation focuses on filtering out 

irrelevant ones prior to reception by a pilot. To achieve this, NLP methods are being explored. Furthermore, 

visualization of NOTAMs for the pilot upon reception using Electronic Flight Bags (EFB) is another area of interest. 

 Study presented in this paper aims to deliver a data contextualization framework targeting NOTAMs. The long-

term vision is to have this framework generalized to more aeronautical communications methods beyond NOTAMs, 

such as pilot-controller conversations, ATC meeting notes, Standard Operating Procedure (SOP) references, etc. 

While several other feasibility studies report that NLP can be computationally impractical for such real-time needs, 

our approach strives to minimize the computational latency using massively parallel processing on Graphics 

Processing Units (GPUs).  

III. Feasibility Study with AI 

Prior to examining NOTAM data, three unique datasets were identified with the goal of exploring the feasibility of 

text classification with Natural Language Processing on texts of various lengths, vocabularies, and grammars. The 

datasets are preprocessed individually, but each follow an 80-20 train-test split and use the same hyperparameters. 

The first dataset, dubbed the ecommerce dataset, contains 50,425 ecommerce product descriptions (27,802 after 

dropping duplicates and missing values) [18]. Each instance belongs to one of four categories - Electronics, 

Household, Books, and Clothing & Accessories. The second collection of texts is dubbed the tweet dataset [19]. This 

dataset contains 21,459 short texts (21,456 after dropping duplicates and missing values) categorized into one of six 

labels – anger, fear, happy, love, sadness, and surprise. The third dataset, dubbed the DRF services dataset, contains 

449 service descriptions categorized into one of five labels – Ambiguous, Emergency, Flight Operations, Ground 

Operations, and Weather. DRF, or Data and Reasoning Fabric, services are decentralized tools served to air mobility 

clients through the DRF core [20]. Fig. 2 displays the distribution of data across classes for each of the datasets. 

 

 

Fig. 2 Different evaluation datasets and the distribution of classes in them 

(a) E-commerce dataset 

class distributions 

(b) Tweet dataset class 

distributions 

(c) DRF service dataset 

class distributions 
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We perform pre-processing on all three datasets. For all three datasets we convert all characters to lowercase, strip 

punctuation and non-alphanumeric characters, and remove stopwords (provided from NLTK). For the tweet dataset 

we remove all “@” mentions, hashtags, retweets, links, and Unicode characters in addition to the previously applied 

pre-processing steps. This is specific to tweets as they are more bloated with characters that may be discarded. Lastly, 

each data point is padded. 

Each of the first three datasets - ecommerce dataset, tweet dataset, and DRF services dataset are trained on four 

neural network architectures. The first architecture is a RNN with three layers: the first layer is a GloVe word 

embedding layer that uses a pre-trained word vector with 6B tokens, 400K vocab, and 300d vectors, the second layer 

is a LSTM with 32 units, 20% dropout, and 20% recurrent dropout, and the third layer is a dense layer with a softmax 

activation [21]. It uses the Adam optimizer with a learning rate of 0.001 and no weight decay. It measures categorical 

cross-entropy loss and tracks accuracy as its primary metric. The second architecture is again a RNN with three layers, 

differing from the first architecture only by the first layer: a Word2Vec word embedding layer with 300-dimensional 

pre-trained vectors for 3 million words and phrases [22]. Again, it uses the Adam optimizer and a learning rate of 

0.001, but has a weight decay of 0.001 as well to prevent overfitting. Like the first architecture, it also measures 

categorical cross-entropy loss and tracks accuracy as its primary metric. The third architecture follows the same 

pattern; it is a RNN with three layers differing from the first two architectures only by the first layer: a pre-trained 

corpus called lee_background which is packaged with the genism FastText module [23]. This architecture uses the 

Adam optimizer with a higher learning rate of 0.01 and no weight decay. Like the previous two architectures, the third 

architecture uses categorical cross-entropy loss and tracks accuracy as its primary metric. The fourth and last 

architecture used is a pre-trained BERT model - bert-base-uncased from Hugging Face [24]. This model is pre-trained 

on the large corpus of English data using a masked language modeling (MLM) objective and next-sentence prediction 

(NSP). In all four models, each dataset is trained with a batch size of 10 and 50 epochs. 

There are some hyperparameters that are not shared between models as well. Each architecture model uses early 

stopping with variable patience, depending on the speed of convergence. For example, the first architecture uses 

patience 5 for the ecommerce dataset and patience 3 for the tweet dataset and DRF services dataset. Additionally, the 

three RNN architectures use different dimensions for their embedding layers. The GloVe model uses embedding 

dimension 50, Word2Vec uses embedding dimension 300, and FastText uses embedding dimension 300.  

The three datasets were evaluated on the 4 models based on test accuracy and training time. More specifically, test 

accuracy was measured as the percentage of correct model predictions in a testing dataset, and training time was 

measured as the number of epochs, or iterations of training, taken to train the model. Test accuracy was validated by 

running model inference on the testing dataset and comparing predictions to ground-truth labels. Training time was 

validated using training metrics automatically generated by the model. 

For the ecommerce dataset, the BERT model had the best performance, followed closely by Word2Vec and GloVe. 

At convergence BERT achieved test accuracy 0.9599, Word2Vec achieved 0.9509, and GloVe achieved 0.9383. 

FastText lagged behind the other three models with a test accuracy of 0.8403. BERT converged the fastest, needing 

only 9 epochs while Word2Vec, GloVe, and FastText needed 14, 17, and 45 epochs respectively, see Fig. 3. With 

exclusion to BERT, which was used as a baseline measurement for the other three RNNs, Word2Vec and GloVe likely 

outperformed FastText because they used larger word embeddings. There were few complex words found in the 

product descriptions, which prevented FastText from taking advantage of its morphology based on out-of-vocabulary 

(OOV) vectorizations. 

For the tweet dataset, the BERT model had the best performance, followed closely by Word2Vec and GloVe. At 

convergence BERT achieved test accuracy 0.9319, Word2Vec achieved 0.9212, and GloVe achieved 0.8858. FastText 

lacked behind the other three models with a test accuracy of 0.4419. BERT converged the fastest, needing only 6 

epochs while Word2Vec, GloVe, and FastText needed 12, 42, and 50 epochs respectively, see Fig. 4. Word2Vec 

significantly outperformed the other two experimental architectures. The reason for FastText’s poor performance 

likely has to do with the brevity of words in tweets. Many of these words consist of single char-ngrams, so FastText 

is unable to concatenate multiple char-ngrams to evaluate larger vectors. Since it was trained with a relatively smaller 

corpus, OOV words would likely skew training. The reason for GloVe’s poor performance may stem from the lack of 

context and inter-word relationships. Again, as tweets are short and often include incomplete sentences, GloVe is 

unable to leverage word context very well. 

Again, BERT had the best performance for the DRF services dataset followed by GloVe and Word2Vec. BERT 

had a test accuracy of 0.7778, GloVe had 0.7640, Word2Vec had 0.7416, and FastText had 0.3371. BERT converged 

in just 5 epochs, Word2Vec in 9, GloVe in 14, and FastText in 20, see Fig. 5. Because this dataset was small, there is 

a significant drop in training and test accuracies for all models, as overfitting was slightly present, even with an early 

stopping callback. Like the reasoning in the previous two datasets, FastText performed poorly because it was unable 

to leverage the ability to vectorize OOV words with stronger technical jargon. 
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Fig. 3 Test accuracy and loss vs epochs per model for ecommerce dataset 

 

Fig. 4 Test accuracy and loss vs epochs per model for tweet dataset 

 

Fig. 5  Test accuracy and loss vs epochs per model for DRF services dataset 
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Based on the feasibility study of four popular models across three diverse datasets, we conclude that Natural 

Language Processing can be used for classifying NOTAMs. At least two of the models scored a test accuracy of 

0.7500 or higher on each of the datasets, with two of the datasets resulting in accuracies well over 0.9000. With BERT 

performing well consistently across each dataset, we can confidently move forward with classifying NOTAMs using 

the same approach. 

IV. NOTAM Data 

 Now that we know it is feasible to classify NOTAMs using Natural Language Processing, we can build a case 

study around real NOTAM data. We gathered open-source NOTAMs from the top 10 United States airports with the 

highest traffic in terms of total passenger traffic in 2021 [25]. The traffic volume at the selected airports ranges from 

75.5 million total passengers at the Hartsfield-Jackson Atlanta International Airport to 37.3 million total passengers 

at the Miami International Airport. The active NOTAMs from each individual airport were retrieved from the official 

FAA website [26] using the 100 nautical mile location filter and exported to their respective CSV files. The CSVs 

from each airport query were then merged into one dataset. The data collected includes all 9,810 NOTAMs that have 

been issued and not yet expired within 100 nautical miles of the top 10 United States airports with the most total 

passenger traffic in 2021. We call this the NOTAM dataset. 

Each NOTAM contains one of 13 class labels: Aerodrome, Services, Chart, LTA, International, GPS, Military, 

Route, Obstruction, Procedure, Airspace, Communication, or Navaid. These class labels represent the type of message 

being sent. They are not the same as the type of NOTAM, which is encoded in the message itself. Rather, the class 

labels represent the FAA-designated NOTAM series, which acts as a replacement for the domestic NOTAM subject 

[27]. The dataset is imbalanced, see Fig. 6, as the Obstruction, Procedure, and Aerodrome labels dominate nearly 75% 

of all NOTAMs while Services, Chart, International, and GPS account for a very small portion of the NOTAM 

dataset’s class labels. 

 

 

Fig. 6 (a) Distribution of the NOTAM dataset, (b) FAA mapping of NOTAM series to domestic subject 

The NOTAM dataset contained entries with an average length of 186.4 characters, with a minimum length of 14 

characters and maximum length of 13468 characters. Prior to training, the dataset is filtered and normalized. All data 

points are flattened into a single line, and invalid NOTAMs are filtered out. We define a valid NOTAM as one that 

fulfills the following criteria: 

 

1) Begins with an exclamation point followed by a valid location designator (i.e., LAX). 

2) Contains a valid NOTAM number in the format MM/####. 

 

In addition to the above criteria, we remove all NOTAMs that are categorized GPS or Communication, as the 

dataset only contains 33 NOTAMs labeled GPS and 107 NOTAMs labeled Communication. Both categories caused 

significant imbalance in the dataset and are chosen to be ignored because they make up a small portion of NOTAMs. 

Lastly, we identified pairs between a few classes: Navaid and Route, Obstruction and Service, and Procedure and 
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Chart. NOTAMs in each of these pairs of categories contain similar content; for example, both Navaid and Route 

contain navigation information. Before continuing with training, we also encoded class labels into integers. 0 mapped 

to Aerodrome, 1 mapped to Airspace, 2 mapped to Navaid, 3 mapped to Obstruction, and 4 mapped to Procedure. 

After dropping duplicates and filtering out invalid NOTAMs, the NOTAM dataset contained 7524 data points. The 

next step is to pre-process the data. Each data point is flattened, replacing all newline characters with a space character. 

Because we want to preserve various features of the NOTAM text itself, our procedure primarily relies on the pre-

trained model to handle necessary pre-processing. For example, padding is not applied in our native pre-processing 

step, but rather it is left to the pre-trained BERT model to handle. Moreover, we are using an uncased pre-trained 

BERT model which uses the input words in lowercase. 

 

 

Fig. 7  Encoded label distribution after filtering 

As seen in Fig. 7, the filtered dataset is more balanced than the original dataset. The 7524 NOTAMs were then 

split into training, validation, and testing datasets. 80% of the data was designated training, meaning that it would be 

used for the BERT model training. 10% of the data was designated validation, meaning that it would be used for 

measuring validation accuracies and loss throughout the model training. Lastly, 10% of the data was designated for 

testing, meaning that it would be used for model inference at the conclusion of training. The split of the data is 

completely random and stratified. This means that the training, validation, and testing datasets contain representation 

from each class label, while the contents of the datasets themselves are randomly distributed. 

V. NOTAM Classification 

 The model chosen for NOTAM classification is the pre-trained BERT model - bert-base-uncased from Hugging 

Face [24]. As mentioned in the feasibility study, this model is pre-trained on the large corpus of English data using a 

masked language modeling (MLM) objective and next sentence prediction (NSP). Masked language modeling 

randomly masks 15% of the words from the model training and reserves them for predictions, allowing the model to 

learn a bidirectional representation of a sentence. With next-sentence prediction, two masked sentences are 

concatenated, and the model is trained to predict whether the sentences follow each other immediately. Ultimately, 

BERT learns the inner representations of a corpus.  

Our approach for classifying NOTAM data uses transfer learning. The BERT model is pre-trained on a dataset 

consisting of 11,038 unpublished books and English Wikipedia [28] and consists of 110M parameters. This is helpful, 

as the model learns an inner representation of the English words that exist within a NOTAM. We fine-tune the model 

using the NOTAM dataset without freezing meaning that everything within the BERT model is updated during 

training, including the token embeddings and encoders. With this fine tuning, the model can extract NOTAM-specific 

jargon in addition to English words present in NOTAM messages.  

We keep many of the default hyperparameters used in the initial training of the BERT model. The model was 

trained for 1 million steps with batch size 256 while limiting sequence length to 128 tokens for 90% of the steps and 

512 tokens for the remaining 10%. Each token is a sequence of characters grouped together as a semantic unit for 

processing. It uses the Adam optimizer with an initial learning rate of 1e-4, a weight decay of 0.01, and a learning rate 

warmup of 10,000 steps. After the warmup, learning rate is linearly decayed. For fine-tuning on the NOTAM dataset, 

this pre-trained BERT model uses subset accuracy score as its computation metric, which is equivalent to the number 

of predicted labels matching ground truth / the number of total samples. We also considered using the F1 score, which 

0: Aerodrome 

1: Airspace 

2: Navaid 

3: Obstruction 

4: Procedure 
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is equivalent to 2 * (precision * recall) / (precision + recall). In an unbalanced dataset, pure accuracy score is 

misleading as labels with few samples may be classified incorrectly but will not substantially decrease the accuracy 

score. F1 score performs better on unbalanced datasets because it measures performance in both the precision and 

recall of a model. In the case of the NOTAM dataset, the dataset was slightly unbalanced. However, performance when 

training with accuracy score and F1 score did not make a significant difference, as testing accuracy reached higher 

than 98% in both computation metrics. We also use an early stopping callback of patience 1 for the model. This means 

that training will conclude when an epoch reaches an accuracy that is less than or equal to an accuracy it has previously 

reached. We noticed that the BERT model converged very quickly, reaching an accuracy of 0.986720 after the first 

epoch. Because of the fast convergence, early stopping with patience 1 was a reasonable choice. The purpose of using 

an early stopping callback is to prevent overfitting once convergence is reached. We fine-tuned the model with per-

device batch size 10 and 50 epochs (assuming it did not stop early due to the early patience callback). The evaluation 

strategy we use is epochs. 

Table 1: NOTAM model training progress summary 

Epoch Training Loss Validation Loss Accuracy 

1 No log 0.060482 0.986720 

2 0.121300 0.045256 0.992032 

3 0.121300 0.034074 0.993360 

4 0.028900 0.040537 0.994688 

5 0.019500 0.047369 0.994688 

  

The model was trained using a Dual NVIDIA RTX6000 Ada Generation Graphics Card with 48GB of 

GDDR6 memory. It was trained over NVLink using Cuda 11.8. With this hardware, the total training time only took 

8.35 minutes with an average epoch training time of 1.25 minute. As seen in the chart above, the model reached an 

accuracy score of 0.986720 after the first epoch and finished after five epochs with an accuracy score of 0.994688. 

There was no improvement in accuracy score between epochs four and five, and the model terminated due to early 

stopping. After the model was trained, we measured accuracy score on the testing dataset. The testing dataset was a 

stratified, random 10% split of the original NOTAM dataset that the model was not trained on. The resulting testing 

accuracy was 0.996, meaning that 99.6% of the samples in the testing dataset were classified correctly.  

We created an inference module to utilize the trained model. It provides a user-friendly method of utilizing the 

trained model. The inference module is a command-line Python tool that takes in NOTAMs as input from the user and 

produces a class prediction using the model. The tool also presents the confidence level of the prediction. The module 

can consistently produce predictions in ~0.1 seconds, enabling real-time classification in future applications. 

Fig. 8 shows an example of the inference module at work. It predicts each of the three user-inputted NOTAMs 

correctly with a confidence of 99% or greater for each one. The three NOTAMs are normalized and classified in 0.4 

seconds, 0.07 seconds, and 0.06 seconds. Detections are highlighted via yellow outlines in Fig. 8. The higher detection 

time for the first inference example stems from the one-time model initialization overhead that is taken when the 

application starts. 

 

 

Fig. 8 Inference module example 
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VI. Conclusion and Future Work 

The feasibility study to classify NOTAMs using NLP-based approach offers promising results, as we see close to 

99% accuracy in classification. Future efforts in this research will be dedicated to expanding the dataset to include a 

wider NOTAM pool from different regions across the US as well as international air operation sectors. Additionally, 

the NOTAM classifier will be made available as a service on the NASA DRF platform for airspace stakeholders to 

subscribe to and avail as an inline interpreter of NOTAMs for human and machine consumption. Given the versatility 

of the NLP-based classification approach in interpreting unstructured text, the utility of this research outcome can be 

extended to other application areas such as categorization of aviation service descriptions on open data marketplace, 

standard operating procedures (SOPs), and pilot-controller conversation transcripts.  
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