Adaptive Control and Scaling Approach
for the Emulation of Dynamic Subscale
Torque Loads

Santino J. Bianco - Donald L. Simon
NASA Glenn Research Center, Cleveland, OH, USA

Dr. Elyse D. Hill
Oak Ridge Associated Universities, Oak Ridge, TN, USA

AIAA Science and Technology (SciTech) Forum
January 8th — 12th 2024

This manuscript is a joint work of employees of the National Aeronautics and Space Administration and employees of Oak Ridge Associated Universities under Contract/Grant No. 80HQTR21CA005 with the National Aeronautics and Space
Administration. The United States Government may prepare derivative works, publish, or reproduce this manuscript and allow others to do so. Any publisher accepting this manuscript for publication acknowledges that the United States Government
retains a non-exclusive, irrevocable, worldwide license to prepare derivative works, publish, or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes.



Introduction

 Motivation

« The aviation industry is pursuing electrified aircraft propulsion
(EAP) due to its ability to increase engine/aircraft
performance, efficiency, and operability.

* Need to replace turbomachinery during initial EAP control
algorithm verification on hardware due to cost and safety
risks.

« Previously published approach for replacing turbomachinery
has limitations.
« Purpose

* Present a modification to published emulation control
approach that reduces or eliminates its limitations.




Scope -4

1. Introduce original approach and discuss limitations.
2. Explain adaptive approach and prove stability.

3. Explain hardware-in-the-loop test setup to verify
controller operation.

4. Show and discuss performance results.



Concept
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Turbomachinery is replaced and the dynamical characteristics of the system are preserved.
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Original Approach -4

 Sliding Mode Impedance Controller with Scaling (SMICS) [1]

Emulation EM Torque f

T, =/]p],551 Ty, + T, + nsat(s, ) + Kps + K; | [sldt + Kp § |+ Bpwp — Tg,

™~

Plant Inertia : -
| Plant Damping Coefficient

« Lyapunov Stability Analysis

V =—s| nsat(s, @) + Kps + K; f[s]dt + Kp $

« Because of red, asymptotic controller stability unable to be proven.

« Because of uncertainty in green, sliding mode control effort is
increased. Thus, chatter is increased.

Unable to prove asymptotic stability or correct for plant parameter uncertainty using original approach.
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Adaptive Approach -4

« Adaptive Sliding Mode Impedance Controller with Scaling (ASMICS)

Ty :\jP]E_Sl (TES + T, — Bg, CUP) — Tg, + BP(UP }—\nsat(s, ¢) — KPS}
Y Y

o Adaptation Laws Ueq: impedance portion s: sliding mode portion
Jp = ~¥;pSJE, (TES + Tg, — BESCUP)
Bp = —VBpSWp

« Lyapunov Stability Analysis
V = —s(nsat(s, @) + Kps)

« Controller stability proven due to removal of red and addition of
adaptive parameters.

Adaptive approach is asymptotically stable and corrects for plant parameter uncertainty.
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Implementation - 1

« Facility: Hybrid Propulsion Emulation Rig (HyPER) [2]

« Engine: Electrified Advanced Geared Turbofan 30,000 Ibf thrust

« Controller: Turbine Electrified Energy Management (TEEM) [4]

(AGTF30) [3]
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Tested in a sub-scale facility configured to represent a parallel hybrid-electric turbofan propulsion system.
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Implementation -
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Test Plan

 Sea-level static conditions.
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Turbofan model commanded burst/chop throttle maneuver at sea-level static conditions for seven different tests.
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Results/Discussion

Legend
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Accuracy of turbofan model behavior increased. Significantly reduced controller efforts.
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Robustness Analysis
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100% change in initial plant parameter guess has little effect on ASMICS operation.
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Summary/Conclusions

« An adaptive emulation controller was tested and
verified in a hardware-in-the-loop environment.

« Emulated mechanical loads of turbofan on a parallel hybrid
electrical architecture.
 Compared against original, non-adaptive approach.

- Adaptive approach:
« Asymptotically stable in the sense of Lyapunov.
« Increases turbofan model operation accuracy.
« Decreases control effort.
« Robust to significant plant parameter uncertainty.
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