
 1

Sources of Formaldehyde in U.S. Oil and Gas 

Production Regions 

Barbara Dix*1, Meng Li1,2, Esther Roosenbrand1,3,+, Colby Francoeur1,2,4, Steven S. Brown2,5, 

Jessica B. Gilman2, Thomas F. Hanisco6, Frank Keutsch7,#, Abigail Koss8,##, Brian M. Lerner9,##, 

Jeff Peischl1,2, James M. Roberts2, Thomas B. Ryerson10,###, Jason M. St. Clair6,11, Patrick R. 

Veres12,##, Carsten Warneke1,2, Robert J. Wild13,##, Glenn M. Wolfe6, Bin Yuan14,15##, J. Pepijn 

Veefkind3,16, Pieternel F. Levelt17,16,3, Brian C. McDonald2, and Joost de Gouw1,5 

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, 

Boulder, Colorado, 80309, United States 

2. NOAA Chemical Sciences Laboratory, Boulder, Colorado, 80305, United States 

3. Department of Civil Engineering and Geosciences, Technical University of Delft, 2628 CN 

Delft, Netherlands 

4. Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, 80309, 

United States 

5. Department of Chemistry, University of Colorado, Boulder, Colorado, 80309, United States 

6. Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, 

Greenbelt, MD 20771, United States  



 2

7. Paulson School of Engineering and Applied Science and Department of Chemistry and 

Chemical Biology, Harvard University, Cambridge, MA 02138, United States 

8. TOFWERK USA, Boulder, CO 80301, United States 

9. Aerodyne Research, Billerica, MA 01821, United States 

10. ChampionX Emissions Technologies, The Woodlands, TX 77381, United States 

11. Joint Center for Earth Systems Technology, University of Maryland Baltimore County, 

Baltimore, MD, 21228, United States 

12. Research Aviation Facility, NCAR Earth Observing Laboratory, Boulder, Colorado, 80307, 

United States 

13. Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, 

Austria 

14. Institute of Environmental and Climate Research, Jinan University, Guangzhou 511443, 

China 

15. Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for 

Environmental Quality, Guangzhou 511443, China 

16. Royal Netherlands Meteorological Institute, 3731 GA De Bilt, Netherlands 

17. NCAR Atmospheric Chemistry Observations & Modeling Lab, Boulder, Colorado, 80307, 

United States 



 3

+ now at Faculty of Aerospace Engineering, Technical University of Delft, 2628 CN Delft, 

Netherlands  

# was at Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United 

States, during SONGNEX 

## was at 1. and 2. during SONGNEX 

### was at 2. during SONGNEX 

 

KEYWORDS: formaldehyde, oil and gas, emissions, VOCs, NOx, air quality  

 

ABSTRACT 

We analyzed observational and model data to study the sources of formaldehyde over oil and gas 

production regions and to investigate how these observations may be used to constrain oil and 

gas VOC emissions. The analysis of aircraft and satellite data consistently found that 

formaldehyde over oil and gas production regions during spring and summer is mostly formed by 

the photooxidation of precursor VOCs. Formaldehyde columns over the Permian basin, one of 

the largest oil and gas producing regions in the United States, are correlated with production 

locations. Formaldehyde simulations by the atmospheric chemistry and transport model WRF-

Chem, which included oil and gas NOx and VOC emissions from the fuel-based oil and gas 

inventory, were in very good agreement with TROPOMI satellite measurements. Sensitivity 

studies illustrated that VOCs released from oil and gas activities are important precursors to 
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formaldehyde, but other sources of VOCs contribute as well, and that the formation of secondary 

formaldehyde is highly sensitive to NOx. We also investigated the ability of the chemical 

mechanism used in WRF-Chem to represent formaldehyde formation from oil and gas 

hydrocarbons by comparing against the Master Chemical Mechanism. Further, our work 

provides estimates of primary formaldehyde emissions from oil and gas production activities, 

with per basin averages ranging from 0.07 kg h-1 to 2.2 kg h-1 in 2018. A separate estimate for 

natural gas flaring found that flaring emissions could contribute 5% to 12% to the total primary 

formaldehyde emissions for the Permian basin in 2018. 

 

1 Introduction 

The production of crude oil and natural gas in the U.S. has seen rapid growth since the mid- 

2000s, due to the development and use of horizontal drilling and hydraulic fracturing. The 

emissions of methane associated with this activity have received ample attention (e.g. 1–4). Also 

important are emissions of air pollutants such as nitrogen oxides (NOx) and volatile organic 

compounds (VOCs), which can react to form ozone in the sunlit atmosphere.5 The emissions of 

VOCs are poorly constrained.3,6–8 For example, Pétron et al. (2014)8 found that benzene 

emissions in the Denver-Julesburg basin were significantly underestimated in different emission 

inventories, Ahmadov et al. (2015)7 showed that VOC emissions in the Uintah Basin in Utah 

were underestimated by a factor of ~2 in the regulatory emission inventory, and a study by 

Holliman and Schade (2021)9 suggests hydrocarbon emissions are in exceedance of permits in 

the Eagle Ford Shale in Texas. 
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Most production regions in the U.S. are in relatively remote regions, where ground-based 

pollution measurements are sparse or non-existent. Satellite remote sensing data have therefore 

played an important role in quantifying the emissions of methane and nitrogen oxides.2,10–14 

Satellite measurements of the non-methane hydrocarbons released from oil and gas are not 

available to date. What is available are measurements of formaldehyde (HCHO), which can be 

released as a combustion byproduct and formed in the atmosphere from the photooxidation of 

precursor VOCs. Satellite measurements of formaldehyde have been used to constrain biogenic 

emissions of isoprene, which is very efficient in forming formaldehyde.15 The goal of this work 

is to study the sources of formaldehyde in oil and gas production regions with an eye towards 

using the measurements to constrain oil and gas VOC emissions. Questions we focused on 

include the relative contributions of direct emissions versus chemical formation of formaldehyde 

and the importance of oil and gas hydrocarbons as formaldehyde precursors. Understanding 

VOC emissions from oil and gas production has important implications for understanding air 

quality and mitigating pollution. Not only do these emissions contribute to ground-level ozone 

pollution, but some of the oil and gas related VOCs are very harmful to human health, such as 

benzene and formaldehyde itself, which are listed by the U.S. Environmental Protection Agency 

as hazardous air pollutants.16 

In this paper, we will first analyze measurements of formaldehyde made during the 2015 

NOAA Shale Oil and Natural Gas NEXus study (SONGNEX). During SONGNEX, the NOAA 

WP-3D research aircraft was used to measure atmospheric composition in multiple oil and gas 

production regions in the central U.S. Our analysis will focus on quantifying the relative 

importance of direct emissions and secondary formation of formaldehyde. Next, we describe the 

observed formaldehyde columns from the satellite-based TROPOspheric Monitoring Instrument 



 6

(TROPOMI) over the Permian Basin in Texas, where oil and gas production is high. We 

compare the observed formaldehyde columns with output from the Weather Research and 

Forecasting coupled with Chemistry model (WRF-Chem), using our recently reported emissions 

estimates of NOx and VOCs from oil and gas production3 and report results from several 

sensitivity runs with the model that test the dependence of formaldehyde formation on emissions 

of oil and gas NOx and VOCs. We also test the ability of the chemical mechanism used in the 

WRF-Chem model to accurately describe formaldehyde formation from oil and gas VOCs using 

0-dimensional model calculations with the Master Chemical Mechanism. Finally, we use our 

results to estimate direct emissions of formaldehyde from oil and gas operations in different 

basins in the U.S. and discuss how these estimates compare to observations.  

2 Data and Methods 

2.1 SONGNEX Campaign 

The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) study was conducted in March and 

April of 2015. For this mission, the NOAA WP-3D research aircraft was equipped with multiple 

instruments to quantify greenhouse gases and air pollutants from oil and gas production as well 

as the products formed in the atmosphere from the oxidation of these emissions. SONGNEX 

flights included sampling in the following oil and natural gas basins: Bakken in North Dakota, 

the Upper Green River in Wyoming, the Uintah basin in Utah, the Denver-Julesburg basin in 

Colorado, the San Juan basin in New Mexico, and the Permian basin, Eagle Ford, Barnett and 

Haynesville regions in Texas. Outlines of the sampled regions and flight tracks are depicted in 

Fig. 1 on top of the oil and natural gas production volumes during March and April 2015. 

In this study we use data from the following measurements:17 

 Formaldehyde was measured by laser-induced fluorescence.18  
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 Nitrogen oxides and ozone were measured by cavity-ringdown spectroscopy. 

 Acyl peroxy nitrates were measured by chemical ionization mass spectrometry. 

 Methane was measured by IR laser absorption in a high-finesse cavity.4 

 Volatile organic compounds were measured in flight by proton-transfer-reaction time-
of-flight mass spectrometry19 and by post-flight gas chromatography-mass 
spectrometry analysis of canister samples.20 

 Sulfur dioxide was measured by pulsed ultraviolet fluorescence. 

 Pressure, temperature and relative humidity were measured by the NOAA WP-3D 
onboard instruments.17 

 

For analysis, all flight data were filtered to include boundary layer legs only. Further, time 

periods with distinct and anomalous high spikes in SO2 were used to remove data that likely 

contain emissions from large industrial sources, such as power plants.    

 

 

Figure 1: Oil and natural gas production regions sampled by the SONGNEX aircraft campaign 

shown on top of average oil (a) and gas (b) production volumes for March and April 2015 

(Enverus Drilling Info database, see Section 2.5). Black boxes outline the areas used for data 

analysis in this study and flight tracks within these areas are included in (b), where the inset 
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shows a zoom on the Denver-Julesburg basin. The background maps are scaled in industry 

standard units: oil production in barrels (bbl) per month and natural gas production in one 

thousand cubic feet (Mcf) per month.  

2.2 TROPOMI Satellite Data 

The TROPOspheric Monitoring Instrument (TROPOMI) is a spectrometer on ESA’s 

Copernicus Sentinel-5 Precursor satellite.21 The instrument provides daily global coverage of 

formaldehyde, NO2 and other trace gasses with a spatial resolution at nadir of 3.5  5.5 km2 (3.5 

 7.0 km2 before 6 August 2019) for the UV-visible wavelength range, where formaldehyde and 

NO2 are analyzed.22,23 Data from May 2018 onward are publicly available (formaldehyde: 

https://doi.org/10.5270/S5P-tjlxfd2; NO2: https://doi.org/10.5270/S5P-s4ljg54). Here we use 

version 1 of the level 2 reprocessed and offline formaldehyde24 and tropospheric NO2
25 vertical 

columns densities (VCDs) from 1 May 2018 to 29 February 2020. Formaldehyde VCDs from 

daily orbit files are gridded on a rectilinear latitude/longitude grid with a resolution of 0.1°  

0.125°, whereby the overlap of the satellite’s ground pixel corners with the grid boxes is used to 

generate weighted averages. To save computation time, NO2 VCDs that were previously gridded 

to 0.025°  0.025° with the same method,13 were integrated to match the coarser formaldehyde 

resolution. Only data with the recommended quality assurance are used (0.5 for formaldehyde 

and 0.75 for NO2).  Note that TROPOMI formaldehyde columns are reported to be biased low by 

25% for columns larger than 0.8  1016 molecules cm-2.26 However, none of the conclusions 

drawn in our study are impacted by this low bias, except where explicitly noted. 

 

2.3 WRF-Chem and FOG 
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The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulates 

emissions, mixing, and chemical transformation of trace gases and aerosols simultaneously with 

meteorology. Emissions from oil and natural gas production are constrained by the Fuel-based 

inventory of Oil and Gas (FOG),27 which has recently been expanded to include VOC 

emissions.3 The calculation of FOG NOx emissions is based on reported fuel consumption and 

flare count observations. VOC emissions are scaled from NOx and based on observationally 

derived scaling factors from aircraft tracer-tracer ratios relative to methane.3 Note that FOG oil 

and gas VOC emissions do not include primary formaldehyde, because formaldehyde to methane 

ratios cannot be used to estimate primary formaldehyde emissions without accounting for 

photochemical aging. Annual averages of FOG NOx and VOC emissions are used as input to the 

WRF-Chem simulation and presumed to be constant over a 24-hour cycle. Further WRF-Chem 

input emission sources include the fuel-based inventory of vehicle emissions (FIVE) for mobile 

sources,28 and power plant emissions based on stack monitoring data from the continuous 

emission monitoring systems. Other point and area sources are from the National Emissions 

Inventory (NEI 2017). All anthropogenic sources, except FOG, include primary formaldehyde 

estimates with diurnal variations based on activity rates. Biogenic emissions come from the 

Biogenic Emissions Inventory System (BEIS) v3.14.29 To decrease computation time, WRF-

Chem utilizes the RACM-ESRL-VCP scheme,30 where ≥ C3 VOCs are lumped into HC3, HC5 

and HC8 bins.  

For comparison with TROPOMI, WRF-Chem output was interpolated from a 12  12 km2 grid 

in a Lambert Conformal projection onto a rectilinear latitude/longitude grid of 0.1°  0.125°. 

Tropospheric VCDs were calculated from WRF-Chem formaldehyde concentration profiles that 
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were then convolved with the TROPOMI averaging kernels and filtered to match the daily 

TROPOMI data coverage. 

2.4 F0AM 

The Framework for 0-dimensional Atmospheric Modeling (F0AM) is a MATLAB program for 

simulating atmospheric chemistry.31 F0AM is an open source software and freely available 

(https://github.com/AirChem/F0AM). For our 0-dimensional (0-D) model calculations we use 

the following chemical mechanisms available in F0AM: The Master Chemical Mechanism 

(MCM), version 3.3.132–36 and the Regional Atmospheric Chemistry Mechanism, version 2 

(RACM2).37 The latter is comparable to the chemical scheme used in WRF-Chem. Further 

details on model setup are given in Section 3.4 below.  

 

 

2.5 Industrial Activity Data 

Oil and gas production data are from the Enverus Drilling Info database. Production volumes 

are reported monthly for individual well locations and gridded here to match the TROPOMI 

formaldehyde maps. Flared gas volumes are derived from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) satellite shortwave and near-infrared data.38 Flare location, flared gas 

volumes and detection frequency are publicly available 

(https://doi.org/10.3334/ORNLDAAC/1874). Flare counts calculated for our study area are 

weighted by their detection frequency. 

2.6 Meteorological Data 
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Meridional and zonal wind components at 100 meters above ground as well as boundary layer 

heights are from the ERA-5 reanalysis from the European Centre for Medium-Range Weather 

Forecasts (ECMWF).39 These data are publicly available. ERA-5 data has an hourly temporal 

resolution and a spatial resolution of 0.25°  0.25° latitude/longitude. For the TROPOMI data 

analysis in Section 3.2, hourly wind components are interpolated in space and time to match the 

formaldehyde spatial grid and the TROPOMI overpass time. For the box model analysis in 

Section 3.6 we first averaged winds and boundary layer heights over six hours around local noon 

and then created seasonal averages from those data while keeping the original spatial resolution.  

3 Results and Discussion  

3.1 Analysis of SONGNEX Formaldehyde Measurements 

Formaldehyde data from the flight on 6 April, 2015 in the Permian Basin are shown in Fig. 2. 

Formaldehyde was found to be enhanced in the boundary-layer parts of the flight (gray-shaded 

areas) to mixing ratios of ~1.5 ppbv. To gain insight into the sources of formaldehyde, the data in 

Fig. 2 are compared with acetyl peroxy nitrate (also commonly referred to as peroxy acetyl 

nitrate or PAN), as an example of a compound with a photochemical source, i.e., a secondary 

source, and with NOx, as an example of a compound with a combustion source, i.e., a primary 

source. While formaldehyde and PAN were broadly enhanced in the boundary layer, the NOx 

data showed a lot of variability when the aircraft sampled downwind from a nearby source. 

Clearly, formaldehyde was found to be correlated much better with PAN (Fig. 2b) than with NOx 

(Fig. 2c), suggesting that formaldehyde’s photochemical source is larger than its primary 

emission source. 
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Figure 2: Analysis of formaldehyde data from the SONGNEX flight on 6 April, 2015 over the 

Permian basin. (a) Formaldehyde data with PAN (top) and formaldehyde together with NOx 

(bottom). Gray-shaded areas denote data obtained within the boundary layer that are used in 

subsequent analyses. Note that PAN here is scaled by a factor 3. (b) and (c) Correlation between 

formaldehyde and PAN and NOx, respectively. Line fits and the Pearson correlation coefficients 

r2 are added and show the higher correlation between formaldehyde and PAN. 

Correlations between formaldehyde, PAN and NOx were calculated for all SONGNEX flights. 

Results are displayed in Fig. 3a (see Fig. S1 for average formaldehyde, PAN and NOx data). In 

15 out of 18 cases, formaldehyde was more strongly correlated with PAN, indicating a larger 

photochemical source for these basins as well. In the Upper Green River (UGR) on 27 April, and 

in the Bakken (Ba) basin, formaldehyde correlated more strongly with NOx than with PAN, but 

the degree of correlation was low in all three cases. It is notable that on flights in the Denver-

Julesburg (DJ) and Barnett (Bar) areas, the correlation between formaldehyde and NOx was 
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higher, and more similar to the correlation with PAN, than on other flights. Both regions are near 

large metropolitan areas, Denver and Dallas-Fort Worth, respectively, where urban emissions are 

mixed with the emissions from oil and gas production. These two areas were also characterized 

by above average NOx (Fig. S1). 

Generally, the poorer correlation between formaldehyde and NOx is driven by high NOx points 

in fresh emission plumes (e.g., Fig. 2c). We can make use of this fact to separate primary and 

secondary sources of formaldehyde by fitting NOx and PAN simultaneously in a multivariate fit. 

PAN serves as the predictor for photochemical formaldehyde formation and NOx as predictor for 

primary formaldehyde emissions. Given that mobile measurements, such as the SONGNEX 

aircraft observations, sample several fresh plumes, the fraction that correlates with NOx should 

mostly correspond to primary formaldehyde emissions in fresh plumes, while any influence of 

NOx on VOC oxidation rates should be captured by the correlation with PAN. In the multivariate 

fit, the measured formaldehyde is simulated by a fitted background and fitted fractions of the 

measured PAN and NOx data. The formaldehyde background is estimated by a 5th order 

polynomial as a function of time to account for sub-basin scale variations. Results are shown in 

Fig. 3 and an example of a multivariate fit is provided in Fig. S2. 
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Figure 3: Fit results for all analyzed oil and natural gas basins: San Juan (SJ), UIntah (UI), 

Denver-Julesburg (DJ), Upper Green River (UGR), Eagle Ford (EF), Haynesville (Hay), Barnett 

(Bar), Permian (Pe), and Bakken (Ba). Individual flight dates are included in parentheses. (a) 

Pearson correlation coefficients r2 for linear and multivariate fits. (b) Multivariate fit coefficients 

with fit errors for NOx and PAN. (c) Fractional contribution of PAN to the modeled HCHO 

above background, which is indicative of secondary HCHO formation in the atmosphere. Here, 

error bars are the combined NOx and PAN relative fit errors.  

 

The combined fitting of PAN and NOx leads to a better description of the observed 

formaldehyde, as indicated by the increased correlation coefficients across all basins (Fig. 3a). 

The derived fit coefficients for PAN and NOx in Fig. 3b show a high degree of variability across 
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basins. The variability in the PAN fit coefficient is likely caused by changes in atmospheric 

(photo-) chemical activity, temperature and the mix of precursor VOCs, while the NOx fit 

coefficient is sensitive to the number, magnitude and composition of fresh emission plumes that 

were sampled during a particular flight. Further differences between basins and flight days could 

be due to changes in local background concentrations that might not be adequately captured by 

the fitted background fraction and potential changes in emission sources. Using the fit coefficient 

results, we calculated the secondary fraction of HCHO, defined by the term proportional to PAN 

and divided by the sum of the terms proportional to PAN and NOx. The derived fractions are 

shown in Fig. 3c. They are on average (96±3)% and range between 91.1% (Ba 4-14) and 99.6% 

(UI 4-27). In several basins, the fractions were 100% within error margins. The displayed error 

bars are the combined relative errors of the PAN and NOx fit coefficients, where larger 

uncertainties are mostly driven by small NOx coefficients. Overall, these fractions are consistent, 

despite differences in atmospheric composition and chemistry between basins and flight days. 

These fit results indicate that the majority of formaldehyde measured during the SONGNEX 

campaign does not originate from primary sources but is formed in the atmosphere as a 

secondary product. The SONGNEX data was recorded during March and April, where 

photochemical activity is still relatively low. Larger primary fractions are expected during winter 

and even lower fractions during summer, which will be further discussed in Section 3.6 below.  

3.2 Analysis of TROPOMI Formaldehyde Measurements 

While the SONGNEX campaign provided a detailed picture of the chemical composition over 

oil and natural gas production areas in early spring (March, April), satellite measurements 

capture trace gas distributions over prolonged periods of time. Figure 4 shows TROPOMI 

formaldehyde vertical columns, separated into summer (June, July, and August) and winter 
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(December, January and February) data. For each season daily vertical columns were averaged 

over 3 months and, to improve signal to noise, for 2 years, 2018 and 2019. Winter data includes 

January and February of the respective following year.  

 

 

Figure 4: Average TROPOMI formaldehyde VCDs for (a) summer (June to August 2018 and 

2019) and (b) winter (December to February 2018/19 and 2019/20). Outlined boxes denote the 

oil and gas production areas probed by the SONGNEX campaign.  

 

Formaldehyde columns during summer are significantly higher than those during winter, 

indicative of the fact that most of the formaldehyde during summer comes from secondary 

production. The largest summer VCDs are found over the forested south-eastern United States, 

where large biogenic isoprene emissions lead to formaldehyde formation. Gradients over 

mountainous areas in the western part of the U.S. are mostly caused by changes in surface 

altitude, including those visible in the San Juan basin. None of the outlined oil and gas 



 17

production areas show a significant increase in formaldehyde columns that correlates with oil 

and natural gas production, except for the Permian basin during summer. Possible reasons for the 

lack of significant HCHO signals over other study regions are foremost the difference in total 

emissions. For large production regions, such as Eagle Ford in Texas, the oil and gas related 

formaldehyde signal is likely drowned out by the high background, while for the Bakken basin, 

the farthest north of the study region, atmospheric conditions might only allow for comparatively 

slower photochemistry, or higher wind speeds could lead to lower concentrations at the same 

level of emissions. The lack of significantly increased columns in any of the production areas 

during winter, when most photochemical formation is slow, means that any primary 

formaldehyde emissions are below the satellite’s detection sensitivity. As reference, spring and 

fall formaldehyde VCDs are provided in Fig. S3.  

To investigate whether the summer TROPOMI formaldehyde signal over the Permian basin is 

related to VOC and/or NOx emissions from oil and gas production activity, we look at the spatial 

correlation between the formaldehyde vertical columns and oil and gas production volumes for 

the same time period. For comparison, we include TROPOMI NO2 measurements as a tracer for 

primary emissions from oil and gas production. Prior studies have shown that satellite NO2 

VCDs over the Permian basin are correlated with oil and gas production activities since the mid-

2000s40–43 and can even be used to infer oil and gas related NOx emissions.13,14 The summer 

averages 2018/19 for formaldehyde, NO2 and oil and gas production are shown in Fig. 5a-c. 

Here, oil and gas production volumes are averaged on a grid that matches the satellite data. Since 

oil and gas production volumes are reported in different units, we first normalized each 

commodity to one by division with its respective maximum over the chosen area and then 

calculated the average shown in Fig. 5c. 
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Figure 5: Spatial correlation analysis of summer formaldehyde and NO2 VCDs with oil and gas 

production volumes. The top row shows the correlation analysis input: (a) formaldehyde VCDs, 

(b) NO2 VCDs and (c) normalized oil and gas production volumes. Red boxes in panels a and b 

indicate the cut-out that was used for cross-correlation with the total area of oil and gas 

production shown in panel c. (d) - (e) Results of the spatial correlation analysis (see text for more 

details). Points in panels d and e show the location of maximum spatial correlation, while arrows 

indicate ECMWF wind vectors at 100 m above ground. 

 

To analyze spatial correlations, we chose an area containing the highest formaldehyde and NO2 

VCDs, which is outlined in red in Fig. 5a and b. For the correlation analysis, the selected areas 

were shifted pixel by pixel in all directions across the complete oil and gas production map 

shown in panel c. The result is a 2D matrix containing the sum of the product of the overlapping 

regions for each shifted pixel position. This so-called spatial cross-correlation analysis was 
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performed with the signal.correlate2d function from the Python module SciPy 

(https://docs.scipy.org/doc/scipy). Results for formaldehyde and NO2 are shown in Figure 5d and 

e and are centered on the input VCD maps as indicated by cross hairs. Since the normalized oil 

and gas production is unitless, the cross-correlation results have the same units as the VCDs. 

Both spatial correlation results show a distinct maximum (white points in panels d and e) near 

the center and a mostly symmetrical drop-off in all directions. This pattern indicates a high 

degree of spatial correlation of both trace gases with oil and gas production and supports that 

increased formaldehyde VCDs over the Permian basin are indeed related to emissions from oil 

and gas activities. The shift of the correlation maxima to the north-west is caused by atmospheric 

transport and follows the prevailing wind direction (arrows in Fig. 5d and e). The relatively 

quick drop-off in the correlations is caused by the short atmospheric lifetimes of formaldehyde 

and NO2 of just a few hours during the summer. The chemical loss away from the source 

locations superimposes an exponential decay signal on the correlation results. But the fact that 

we are using oil and gas production volumes as proxy for emissions does not allow for a 

quantitative derivation of atmospheric lifetimes from these results. 

The formaldehyde correlation maximum is located farther downwind than that of NO2. To 

assess the differences between the two correlation results, we looked at the ratio of the 

formaldehyde to NO2 cross-correlation as shown in Fig. 5f. Despite being skewed into the 

prevailing wind direction, the ratio increases from the center outward in all directions, 

illustrating that the spatial correlation of NO2 with the locations of oil and gas production is 

tighter than that of formaldehyde. The tighter correlation of NO2 is consistent with primary NOx 

emissions. On any given day, NO2 columns will build up over the source area and decrease 

downwind due to chemical loss. In contrast, the broader spatial correlation of formaldehyde is 
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consistent with secondary formation in the atmosphere from oil and gas precursor VOCs, which 

continues to increase formaldehyde columns downwind until the chemical loss becomes greater 

than the formation. The difference in the location of the respective correlation maxima (white 

points in Fig. 5d and e) can provide a constraint on the average time delay between maximum 

NO2 and maximum formaldehyde columns downwind: Assuming a comparable atmospheric 

lifetime for both gases and using the average wind speed and direction, as displayed by the 

arrows in Fig. 5d and e, yields an additional atmospheric processing time of 1.4 hours before 

formaldehyde columns become dominated by chemical loss.  

3.3 Analysis of WRF-Chem Model Output 

We simulated formaldehyde concentrations over the Permian basin with the chemistry-

transport model WRF-Chem, using our recently reported FOG inventory emissions estimates of 

NOx and VOCs from oil and gas production.3 These WRF-Chem simulations were run with full 

chemistry across the continental U.S., including other sources of NOx and VOCs (see Section 

2.3), and for the time period of 10 July to 16 August, 2018. Results are shown as vertical column 

densities next to TROPOMI formaldehyde columns of the same time period in Fig. 6a and b. 

WRF-Chem and TROPOMI are in excellent agreement. Their respective average VCDs across 

the Permian basin (black outlines in Fig. 6) are virtually identical and still within about 20% 

when assuming a 25% underestimation of the TROPOMI formaldehyde columns.26 This result 

indicates that formaldehyde formation from oil and gas emissions is well described in WRF-

Chem when oil and gas emissions are constrained by the FOG inventory. It also reaffirms that 

most observed formaldehyde over the Permian basin during spring and summer is correlated to 

oil and gas production and comes from secondary sources.  
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To test the sensitivity of formaldehyde formation to oil and gas NOx and VOC emissions 

separately, WRF-Chem was run three more times in a sensitivity study: (1) A base case that 

excludes FOG emissions, (2) a model run with FOG VOC emissions only and (3) a model run 

with FOG NOx emissions only. All sensitivity studies included NOx and VOC emissions from 

other sources. Results are displayed in Fig. 6c-e. Case 1 (Fig. 6c, no FOG) quantifies the 

formaldehyde without local oil and gas NOx and VOC emissions and shows that inclusion of 

those emissions (Fig. 6a, with FOG) adds on average about 2  1015 molecules cm-2 to the 

formaldehyde column, which is about 0.5 ppb for a well-mixed, typical summer boundary layer 

height of 1.8 km. The second and third case produce formaldehyde yields that are comparable to 

the full FOG case, adding on average 1.4  1015 molecules cm-2 (Fig. 6d) and 1.3  1015 

molecules cm-2 (Fig. 6e) to the tropospheric column, respectively. In the second case (FOG 

VOCs only), additional formaldehyde is formed from oil and gas VOC emissions in the presence 

of  NOx from other sources, while in the third case (FOG NOx only), additional formaldehyde is 

formed from VOCs from other sources in the presence of oil and gas NOx. Interestingly, both 

scenarios produce almost identical formaldehyde, which suggest that the local emissions in the 

Permian basin are in a transition regime between being NOx or VOC limited. These results 

highlight the importance of understanding both oil and gas VOC and NOx emissions in order to 

correctly simulate VOC oxidation chemistry in atmospheric models, e.g., for air quality analysis. 

The implication for secondary formaldehyde formation is that both VOC and NOx emissions 

from oil and gas production are equally important. 
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Figure 6: Formaldehyde VCDs over the Permian basin for 10 July to 16 August, 2018 (a) 

simulated by WRF-Chem including the FOG inventory NOx and VOC emissions, (b) measured 

by TROPOMI and (c) - (e) WRF-Chem sensitivity studies. Numbers in each panel denote the 

average formaldehyde VCD in molecules cm-2 for the area marked by a black box.  

3.4 Evaluation of Chemical Mechanisms 

The chemical mechanism utilized in WRF-Chem is optimized for the simulation of urban 

pollution with faster reacting VOCs (alkenes, aromatics and higher alkanes). VOC emissions 

from oil and gas production, however, contain several slower reacting VOCs, especially smaller 

alkanes and aromatics. Therefore, formaldehyde formation from these precursors may not be 

adequately represented in WRF-Chem. To test the ability of the WRF-Chem chemical 

mechanism to accurately describe formaldehyde formation from oil and gas VOCs, we used 0-D 

model calculations with the Master Chemical Mechanism (MCM), which has explicit VOC 

reaction schemes and tested it against 0-D model calculations with the Regional Atmospheric 
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Chemistry Mechanism, version 2 (RACM2), the latter being comparable to the WRF-Chem 

chemical mechanism. As input, we used trace gas and ambient condition measurements from the 

SONGNEX Permian basin flight on 6 April, 2015 (Fig. 2). Boundary layer averages for the 

measured species are listed in Table 1. Average temperature, pressure, relative humidity and 

solar zenith angle are 867 hPa, 293° K, 31% and 40°, respectively. Note that high quality data of 

propene, an efficient formaldehyde precursor, was not available for SONGNEX. For subsequent 

discussion, measured VOCs in Table 1 are separated into different source categories according to 

their main emission sources: biogenic, emissions from combustion processes, other sources and 

fugitive or venting VOC emissions from oil and gas production. Methane is separated into a local 

oil and gas and other (background) source, due to its high background levels. For simplicity, we 

refrain from background corrections of other trace gases, such as acetaldehyde, or including 

source attributions for reaction products, such as acetone and MEK, which can also be formed 

from the oxidation of oil and gas VOCs.  
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Table 1. 0-D Modeling Input 

 

* Methane is separated into a background (BG) and oil and gas (OG) source by applying a 10th percentile background correction to 
the total measured methane. 

** Measured combined and split evenly for model input. 
 
 

Using F0AM (Section 2.4), the formaldehyde yield is simulated separately for each individual 

input VOC (MCM and RACM2) or VOC group (RACM2) over six hours at a constant OH 

concentration of 2106 molecules cm-3, while keeping the inorganic species constrained. Model 

results are shown in Fig. 7. Here the oil and gas (OG) source emission category is separated into 

“individuals”, which contain VOCs that have their individual reaction scheme in both MCM and 

RACM2, while “grouped” contains the VOCs that are lumped in RACM2 (see Table 1).  
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Figure 7: 0-D formaldehyde modeling results using the MCM and RACM2 chemical 

mechanisms with input VOCs measured over the Permian basin on 6 April, 2015. The legend 

follows the stacked bars in the graph top to bottom. Xylenes are simulated separately in both 

mechanisms, but their formaldehyde yield is so small that they have the same color code. 

 

As expected, the formaldehyde amounts simulated by individual chemical reaction schemes, 

i.e., all categories but “OG grouped”, are comparable in both the MCM and RACM2 chemical 

mechanisms. The formaldehyde yield for the grouped species, however, differs. Formaldehyde 

produced from the HC3 group in RACM2 is almost double the sum of the individual species in 

MCM, while the formaldehyde yield for higher carbon numbers is comparable to MCM. The 

smaller alkanes from oil and gas production are clearly not well represented by the lumped 

mechanism. The overestimated formaldehyde yield from the HC3 group is compounded by the 

fact that the HC3 alkanes make up 81.1% of the grouped species here. In total, however, the 

fraction of formaldehyde produced from grouped species is 26.3% for RACM2 and 17.9% for 
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the matching compounds in MCM and the combined fractional formaldehyde yield from “OG 

individuals” and “OG grouped” is 30.0% for RACM2 and 22.3% for MCM. Since most of the oil 

and gas production activities in the Permian basin are in remote areas, we can assume that the 

majority of VOCs from combustion sources are related to oil and gas activities. If, for example, 

we attributed 70% of combustion VOCs to the oil and gas sector, then the fractional 

formaldehyde yield from oil and gas related VOC emissions rises to 47.3% for RACM2 and 

40.6% for MCM. These results show that the impact of overestimated formaldehyde from the 

HC3 group in the RACM2 mechanism is determined by the fraction of HC3 VOCs to total VOCs 

as well as by the amount of precursor VOCs that are attributed to oil and gas activities. Here, the 

total difference is less than 10 percentage points. More broadly, these model results suggest that 

in the Permian basin secondary formaldehyde sources are mostly evenly spread between 

combustion and fugitive oil and gas sources. Within the combustion sources, acetaldehyde 

produces by far the largest amount of formaldehyde, while for fugitive sources, the largest 

formaldehyde fractions come from Butanes/HC3.  

3.5 Estimation of Primary Formaldehyde Emissions 

Insufficient knowledge of primary formaldehyde creates uncertainties when trying to model 

ozone formation from oil and gas emissions in air quality simulations.7,44 Separating primary 

from secondary formaldehyde in atmospheric measurements typically presents a challenge, since 

daytime formaldehyde concentrations are often overwhelmingly from secondary formation. 

Here, we constrain primary formaldehyde emissions based on the SONGNEX data analysis 

(Section 3.1) as follows: using NOx emissions from the FOG inventory (Section 2.3) as a tracer, 

direct formaldehyde emissions from oil and gas production are estimated by scaling FOG NOx to 

formaldehyde with the NOx multivariate fit coefficients (Fig. 3b). To do so, we first averaged 
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individual NOx fit coefficients for each basin (Fig. S4) and then scaled FOG NOx emissions for 

the years 2018 to 2020 with the averaged fit coefficients within each SONGNEX study area. 

Spatial distributions of primary formaldehyde emission estimates are shown in Fig. 8 for 2018 

(see Fig. S5 for 2019 and 2020). Spatial averages and sum totals are calculated for each study 

area and presented in Fig. S6. Averages per basin range from 0.07 kg h-1 to 2.2 kg h-1, while 

annual sum totals are between 8.6 kg h-1 and 1463 kg h-1 (San Juan, 2019 and Permian basin, 

2019, respectively; see Fig. S6). Within the Permian basin study area (Fig. 8b), the 

average/maximum for the scaled formaldehyde emissions in 2018 are 1.63/15.21 kg h-1 

(equivalent to 0.25/2.33  1014 molecules h-1 cm-2). The magnitude of these emissions is 

comparable to primary formaldehyde emissions of 1.1  1014 molecules h-1 cm-2 reported for 

urban areas in the northeast U.S.45 Figure 8c shows the primary formaldehyde emissions used in 

the WRF-Chem simulations (Section 3.3) that come from other sources. For the Permian basin 

study area, the average is 0.13 kg h-1, which is about an order of magnitude smaller than the 

estimated primary emissions from oil and gas production. This difference could point to the fact 

that a significant fraction of formaldehyde is missed when direct emissions from oil and gas 

production are not accounted for.  

 

 



 28

 

Figure 8: Primary formaldehyde emissions scaled from FOG NOx emissions for the year 2018 

for (a) all study areas and (b) zoom on the Permian basin. (c) Formaldehyde emissions used in 

WRF-Chem simulations (Section 3.3). Emissions shown in (c) are weekday emissions averaged 

over 6 hours around local noon.  

 

In oil and gas production regions, flaring can be a significant additional source of combustion 

related emissions. For example, NOx emissions from flaring were estimated to contribute 6% to 

the total oil and gas NOx emissions in the Permian basin in 20153,42 and 5% in 2018. To get an 

estimate on how much flaring contributes to primary formaldehyde emissions, we calculated 

annual flare counts for the Permian basin study area in 2018 and applied an emission factor range 

of 0.35 kg h-1 to 0.79 kg h-1 per flare based on reported measurements46 (see Section S1 for 

further details). Resulting average formaldehyde emissions from flaring are 0.09 kg h-1 to 0.2 kg 

h-1, which is equivalent to 5% to 12% of the total primary emissions for the Permian basin study 

area in 2018. This result is consistent with the magnitude of our total primary formaldehyde 
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estimate and the fractional formaldehyde contribution coming from flaring is highly comparable 

to that of NOx. 

3.6 Primary vs. Secondary Formaldehyde 

To get a sense how our primary formaldehyde estimates compare to observations, we applied a 

simple box model to simulate average seasonal formaldehyde abundances from primary 

emissions for the Permian basin study area for 2018 and 2019. Primary formaldehyde VCDs and 

mixing ratios were calculated based on our emission estimates, ECMWF wind fields and 

planetary boundary layer (PBL) heights averaged over 6 hours around local noon, and assumed, 

seasonally dependent, daytime chemical lifetimes. See Section S2 and Fig. S7 for further details. 

Results are reported for steady state conditions in Table 2. For easier comparison, winter 

calculations (Dec - Feb) use emissions from December. 

Table 2. Box Model Results for Primary Formaldehyde Emissions 

 

 

As expected, simulated primary formaldehyde abundances are smallest in summer (Jun - Aug) 

and largest in winter (Dec - Feb), due to the shortest and longest chemical lifetimes, respectively. 
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The magnitude of the modeled primary formaldehyde mixing ratios is between 0.012 ppbv for 

summer and 0.112 ppbv for winter. Taking the above background average formaldehyde 

measured during SONGNEX over the Permian basin as a reference, yields primary 

formaldehyde fractions of 4.6% and 7.2% for the simulated 2018 and 2019 spring mixing ratios, 

which is very consistent with the primary formaldehyde fraction of 5.5% derived for the Permian 

basin above (Fig. 3c). These results support our earlier conclusions that only a small fraction of 

boundary layer formaldehyde comes from primary sources. This fraction, however, is seasonally 

dependent, as illustrated by the box model results. The fraction of primary formaldehyde will be 

even lower during summer, when atmospheric photochemistry is most active. During winter 

though, the fractional contribution of primary formaldehyde could be significantly higher. 

Around 25% has been simulated for urban areas during winter.47 Increases in primary fractions 

during winter can be especially expected for shallow boundary layers under meteorological 

inversion conditions, and, given the emission gradients across the Permian basin area (Fig. 8b), 

for locations closer to strong emission sources. The box model simulated primary formaldehyde 

VCDs are about 1 to 2 orders of magnitude smaller than the TROPOMI observation (see Figs. 4 

and 6), which renders signals from primary formaldehyde emissions below the satellite’s 

detection limit, even during winter. 

 

4 Summary and Conclusions 

We have examined sources of formaldehyde in U.S. oil and gas production regions, using in-

situ aircraft measurements from the SONGNEX campaign, TROPOMI satellite data and WRF-

Chem modeling output. The analyses of aircraft and satellite data consistently showed that most 

of the increased formaldehyde observed over oil and gas production regions during spring and 



 31

summer is the product of secondary formation in the atmosphere. For the SONGNEX campaign 

we found that across nine different oil and gas basins in the U.S., an average of (96±3)% of 

above background formaldehyde comes from secondary sources during April and March. Spatial 

correlation analysis of TROPOMI formaldehyde and NO2 columns over the Permian basin 

showed that increased formaldehyde VCDs during summer correlate with the locations of oil and 

gas production. The farther downwind shifted spatial correlation maximum of formaldehyde 

compared to NO2, is consistent with secondary formation in the atmosphere from oil and gas 

precursor VOCs, while NO2 comes from primary sources.  

Our work provides a constraint on primary formaldehyde by demonstrating that its emissions 

can be scaled using oil and gas related NOx emissions as described by the FOG NOx inventory. 

Good consistency was found between our scaled emissions and SONGNEX aircraft 

measurements in 2015, which supports the fact that our method of scaling formaldehyde 

emissions to NOx emissions is a good representation of oil and gas related primary formaldehyde 

emissions. We conclude that for spring through fall of any given year, primary formaldehyde 

emissions from oil and gas production will contribute significantly less than 10% to the total 

boundary layer formaldehyde. During winter though, this fraction could be higher, especially for 

shallow boundary layers and under meteorological inversion conditions. Future work could 

include adding the oil and gas related primary formaldehyde emissions into the FOG inventory.  

WRF-Chem modeled formaldehyde columns compared very well to TROPOMI formaldehyde 

observations, when oil and gas NOx and VOC emissions from the FOG inventory were included, 

indicating that the FOG inventory provides a good description of oil and gas emissions. 

Sensitivity studies on the impact of oil and gas related emissions on secondary formaldehyde 

formation illustrated that NOx emissions from oil and gas are equally important to oil and gas 
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VOC emissions in order to get the total VOC oxidation budget right. This is especially relevant 

for air quality studies that simulate ozone formation, but also affects air pollution mitigation 

strategies. For example, controlling NOx emission in order to reduce ozone has a significant co-

benefit in reducing (toxic) formaldehyde as well.48 

Based on the 0-D modeling study comparing MCM with RACM2, we found that smaller 

alkanes from oil and gas production are not well represented by the lumped VOC mechanism in 

RACM2, as used in WRF-Chem. The formaldehyde yield from the HC3 group in RACM2 was 

almost double that of the respective individual species in MCM. However, the impact of this 

overestimation on the total formaldehyde yield from secondary production is much smaller, in 

our case less than 10 percentage points and depends on the relative contribution of HC3 VOCs to 

the total amount of oil and gas related precursor VOCs. Going forward, understanding the 

relative importance of individual VOCs in formaldehyde formation and accounting for their 

abundance could help mitigate the effect of lumping oil and gas VOCs in chemical mechanisms. 

Based on our case study, butane and iso-butane produced about 95% of the formaldehyde in the 

HC3 group. Having explicit mechanisms for these species could help reduce the overproduction 

of formaldehyde in this group. Alternatively, product yields in the HC3 group mechanisms could 

be scaled down when working with oil and gas VOCs. 

With respect to understanding and tracking oil and gas VOC emissions, we found that 

hydrocarbons released from oil and gas activities are important precursors to formaldehyde, but 

other VOC sources contribute as well. The total budget of secondary formaldehyde formation is 

highly sensitive to NOx. As a result, modeling of formaldehyde over oil and gas regions needs to 

consider oil and gas hydrocarbons as well as oil and gas NOx emissions, but observing 

formaldehyde by itself is not an unambiguous proxy for oil and gas hydrocarbon emissions.  
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TROPOMI also measures glyoxal, another VOC that is formed in the atmosphere from 

precursor VOCs. Theoretically, a similar analysis could be performed with glyoxal 

measurements over oil and gas production regions. However, the glyoxal yield from our 0-D 

MCM modeling study (Section 3.4) is 0.005 ppbv, which is well below the satellite’s detection 

limit.49 Significant glyoxal signals from oil and gas production are therefore not expected. 

For large oil and gas regions in remote areas, such as the Permian basin, where anthropogenic 

emissions are mostly dominated by the oil and gas industry, future combined analysis of satellite 

NO2 and formaldehyde data might be able to provide a constraint on trends over time for 

formaldehyde sources and add some insight to the underlying oil and gas VOC emissions. 

Especially the recent successful launch of the Tropospheric Emissions: Monitoring of Pollution 

(TEMPO) satellite instrument, which will measure NO2 and formaldehyde on an hourly basis 

and at an unprecedented spatial resolution of 2  4.5 km2, will allow us to further monitor oil and 

gas emissions and, for the first time, observe the daytime chemical cycle from space.  
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