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Multiagent Cyber-Physical-Human (CPH) systems in realistic environments operate under 

uncertain conditions. Communication among agents, aimed at reducing the uncertainty, is 

itself subject to uncertainty. We propose to manage uncertainties in autonomous, long-

duration operations of multiagent systems via a modified Honeybee Foraging (HBF) 

behavioral scheme. The resulting system, Autonomous Persistent Intelligent Swarm (APIS), 

incorporates two new behaviors to ameliorate informational uncertainty. When “scouting”, 

agents are tasked based on informational quality and reliability rather than solely on 

priorities.  When “dancing”, agents are tasked to rendezvous with other dancing agents to 

exchange information at close range, where successful communication is guaranteed. When 

coupled with uncertainty-aware modeling across agents, these behaviors improve situational 

awareness and resilience of the system, enabling it to function under more uncertain 

conditions arising during long-duration missions.  

I. The Problem 

We propose a new method for cooperative, distributed control of a heterogeneous multiagent system operating under 

uncertainty. A Cyber-Physical-Human (CPH) team comprises interconnected systems―computers, physical systems 

governed by software, and humans―acting in a collaboration to accomplish a set of tasks [1]. A key prerequisite of 

successful CPH teaming is operational safety: humans must be able to work side-by-side with autonomous systems, 

without being exposed to significantly greater hazards than nominal. Hazards in CPH teams stem primarily from 

unpredictable, uncertain, or uncontrolled elements, which move the system from safe to unsafe states.  

Operational safety in CPH teams has been extensively studied [2] [3] [4], with mitigation relying on 

predictability of the autonomous component behavior. Recent research into long-term safety strategies for CPH 

systems has suggested that such systems benefit from “anti-fragility”, or the ability for the system to learn from 

mistakes and adapt to changing environments, as humans can [5]. Reliable operation of CPH teams depends on the 

system’s robustness to uncertainty in data that inform the system’s operation, as uncertain informational sources 

give rise to hazardous behavior. For example, swarms of airborne agents rely on an understanding of one another’s 

states for avoidance of midair collisions [6].  

In a multi-agent aerial system with many inspection and service targets, valuable ground equipment, and 

participating humans, there are many sources of uncertainty. To render such a system operationally viable, we 

require a method for coordinating the actions of agents in a way that minimizes uncertainty while maintaining 

efficiency. To manage uncertainties, we set out to incorporate direct management through model-based task 

assignment with adaptive, “anti-fragile” management, through model learning and improvement. 

 Here we focus on uncertainties due to the quality of communication among the system participants, as well as 

combined uncertainties arising from the limited accuracy and timeliness of the physical system state estimation, 

capabilities, decision-making of other agents, environmental perturbations, and mission-specific information on 

objectives, such as position and priority, among others. Understanding uncertainties and their propagation in agents’ 

decision-making throughout the system informs task assignment and assessment of the outcomes’ predictability and 

trustworthiness, which, in turn, inform the overarching decision-making of the human team members. Furthermore, 

such understanding allows for more predictable operation, reducing autonomous system performance variability and 

improving trust and CPH effectiveness. In this paper, we limit our investigation to the machine component of a CPH 

team, because machine trustworthiness is a prerequisite to that of the entire system.  

Traditional task allocation in a swarm is based on task priorities. See [7] and [8] and references therein for an 

informative review of approaches. Task assignment algorithms vary significantly in effectiveness and applicability, 

from scenario to scenario. We examine a simplified scenario of servicing tasks in an informationally uncertain 
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environment to create a basic platform for comparison of multiple fundamentally different task assignment 

algorithms.  

Operations in uncertain environments are often addressed by introducing structure into the system. For example, 

drone swarms may fly in formation [9], or along preset paths to encourage or enable information sharing [10], or 

according to predefined rules of spacing and layout [11], or by maintaining constant communication between agents 

and ground control stations [12], or any number of other approaches aimed at instilling a degree of order and 

cooperation into a system, which otherwise may function in unpredictable ways. Adding structure, although 

effective at remedying specific scenarios, limits general adaptability of the system by potentially constraining an 

agent’s autonomy (e.g., independence) too severely.  

Biologically inspired autonomous systems strive to remedy this issue by focusing on the behavior of, and 

interactions among, agents over the course of a mission. As with general task assignment algorithms, research has 

been conducted on a wide variety of behavioral structures which exhibit swarming properties to solve numerical 

optimization problems, such as swarms of fish [13], fireflies [14], ants [15], with more biologically- and nature-

inspired algorithms covered in [16], for further review. Although primarily examined in the context of general 

numerical optimization, the principles of such methods can be applied readily to physical problems of task 

assignment optimization, with similar benefits of effectiveness and reliability. 

We propose to manage informational uncertainty via an analogue of Honeybee Foraging (HBF) [17] [18] 

behavioral approach. HBF, an extension of the Artificial Bee Colony [19] approach to numerical optimization, has 

shown promise in multi-objective optimization [20], a desirable trait when addressing the problem of many-to-many 

agent-task assignment. HBF relies on the scouting, foraging, and communicating behaviors exhibited by honeybees 

to find and share information about the problem space with other agents, and in so doing, generate consensus models 

of the environment, which may be used for optimization; in our case, for task assignment. 

For the purposes of physical operations, we partition HBF behavior into three main “jobs”: harvesting, scouting, 

and dancing. Honeybee harvesting functions similarly to standard auction-based algorithms for task assignment, 

wherein bees seek out food sources which they perceive to be of the highest value (characterized by high benefit and 

low cost for that bee). This standard harvesting behavior is augmented by scouting and dancing, which aim, 

respectively, to gather and disseminate information about the environment, to aid in task assignment.  

Honeybee scouting is an exploratory behavior, where individual bees investigate the environment without prior 

information about the possible location of useful sites, such as sources of food or nesting locations. Honeybee 

dancing is a complex communication behavior occurring at preset sites (hives or colonies) which calls other bees to 

high-probability promising sites. We name the multiagent system controlled by our HBF scheme the “Autonomous 

Persistent Intelligent Swarm” or APIS. In addition to traditional priority-based task assignment, APIS employs two 

new, bee-inspired behaviors. To borrow honeybee terminology, we will refer to these behaviors as "scouting" and 

"dancing". 

APIS scouting agents, as do harvesting agents, assign themselves to tasks not being done by other agents. 

However, rather than assign a task based on apparent priority (which might be incorrect, due to errors in 

information), scouting agents randomly assign themselves to a task with the objective of gathering information on 

that task. In doing so, scouts may collect information showing certain tasks to be of a higher or lower priority than is 

normally apparent to the swarm, thus adding adaptability to swarm task assignment. Without scouting, new 

information may not be collected, because harvesting agents act upon apparent task priority.  

To aid in disseminating scouting information and information gathered by harvesting agents during the normal 

course of their mission, dancing agents rendezvous at a preset location for a given amount of time, with the sole goal 

of disseminating information. By choosing a rendezvous point located near high traffic corridors, dancing agents 

communicate their information to other agents passing by and to other dancing agents. The increased exchange of 

information further improves swarm coherency in environments with unreliable communication, by increasing the 

number of close-proximity encounters experienced by agents, potentially allowing for the use of shorter-range, more 

reliable methods of communication.  

To facilitate taking advantage of disseminated information, all agents also maintain environmental models of 

other agents and tasks, which may then be updated using exchanged information or preset evolutionary models; for 

example, the inspection urgency of platforms in the environment growing over time at some set rate. 

We hypothesize that this behavior will lead to improved resilience and system performance due to the enhanced 

exchange of higher-quality information. By gathering information on tasks which might not be investigated through 

scouting, by encouraging frequent exchange of information through dancing, and by storing information in a 

complete set of internal models, APIS agents will gain a more accurate picture of the tasking environment, in turn, 

leading to better task assignment.  
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The approach has the potential of retaining many of the optimality benefits of centralized coordination through 

informational consensus-building, while maintaining the resiliency and adaptability of a decentralized system. To 

test the validity of this hypothesis, we use a set of scenarios and behavioral parameters to compare the performance 

of APIS to a spectrum of auction algorithms presented in [21]. The comparison serves as a baseline test of the 

feasibility of APIS. Future experiments will include state-of-the-art algorithms to gain a more complete picture of 

the usefulness of APIS. 

Here we report on a proof of concept, tested on a simplified multiagent system, across varying numbers of 

agents, targets, and various levels of uncertainty and job allotment. We observe and record the efficacy of the task 

assignment algorithm in reducing average task urgency and in reliability of performance across tasks. For each 

algorithm and scenario, we sum the priorities of targets in the mission area at each timestep and record an average 

priority score for the trial, with lower scores representing a comparatively more successful trial, with targets 

maintaining a lower priority. The trial scores are averaged across all trials to yield an average trial score metric, 

which determines the efficacy of the algorithm for a specific setting, relative to other algorithms we engage. 

Similarly, the standard deviation of the trial scores serves as a measurement of algorithm variability, with a higher 

standard deviation representing a larger expected variation in algorithm performance from trial to trial. 

In the remainder of the paper, we state our assumptions, describe the algorithm in detail, describe the test case 

and the associated performance metrics, and conclude with preliminary computational results.  

II. Assumptions and Problem Setting 

In this paper, our Design Reference Mission (DRM) is inspection and potential repair over a set of target points 

in a space, such as open air, ground, outer space, or other environments where a multi-agent team moves. We 

formulate the DRM to be widely applicable to real-world problems, such as aerial inspection of degrading platforms 

over a difficult environment, such as a volume of space with sandstorms or dense fog.  

Under realistic circumstances, task priorities and attendant informational uncertainties arise in a variety of forms 

and contexts. To maintain general applicability of the DRM, we compress these myriad priorities into a summary 

“urgency” metric, governing the servicing urgency of a particular task. We then apply a randomly generated 

distortion bias to that urgency, calculated from a standard deviation parameter of the simulation trial, governing the 

generation of distortion values across the simulation. 

A. Targets 

• Point (service) targets are static and randomly distributed over the inspection area. 

• Only one target may occupy a given 1x1 grid square. 

• A known baseline scalar urgency value is assigned to each target.  

o Baseline urgency is a given parameter, set across the entire trial and common to all targets. 

• An unknown, randomly generated scalar distortion value is assigned to each target and added to its 

baseline urgency to form “true” urgency. 

o The distortion factor is hidden from non-servicing agents. 

o The distortion factor is constant over time. 

• Urgency may vary with time. 

o For each time step where a target is not serviced by an agent, when a target and agent share a 

grid square, urgency increases by 1. 

o For each time step where a target is serviced by an agent, urgency decreases by 1 to a 

minimum of 0. 

o After remaining at 0 for a set amount of time, urgency resets to its base value.  

• Priority evolution over time is known to agents. 

• Evolution of apparent priority and true priority, from timestep to timestep is identical. 

• Each target broadcasts its priority within a given radius. For this simulation, all transmission radii are 

equal. 

B. Agents 

• We make no a priori assumption on control scheme centralization. The optimal choice of strategy 

depends on the context of the operations and is one of the active subjects of this research effort. We 

hypothesize that hybrid or fully decentralized control scheme will be the prevailing scheme. 

• For APIS agents, we assume full agent rationality; that is, given sufficient information, each agent is 

aware of the other agents’ optimal strategy. This is a strong assumption for general agents operating in 
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complex systems. Given that the system under consideration here is a cooperative swarm with known 

objectives, the assumption is not unreasonable. However, communication failures can turn cooperative 

agents into non-cooperative ones, and this case represents one of the system’s uncertainties. 

o In real-world environments, communication failure and resulting uncooperativeness could be 

the result of either communication equipment failure or of degraded environmental conditions, 

such as inclement weather. 

• Agents prioritize reducing target urgency as efficiently as possible. A mathematical model of this 

objective function is shown in Section IV. 

• Agents strive, when able, to avoid servicing the same target as other agents. Target servicing efficacy 

does not scale with the number of servicing agents at that target. 

• Agent collision risk in the grid world simulation is negligible, due to grid size. Obstacle avoidance logic 

does not need to be considered during agent positional state evolution process. 

o In a real-world environment of platform inspection, collision avoidance would be handled on a 

lower level, by a guaranteeably safe controller. 

C. Information and Sources of Uncertainty 

• Priority broadcasts from targets may be biased based on distortion value. 

o APIS agents that have previously serviced a given target and know that target’s true urgency 

can communicate the true priority to other agents. 

• Priority broadcasts may not reach agents, either from targets or other agents. 

o Agent-to-agent and target-to-agent communication is limited by communication range. Agents 

outside of the communication range of other agents or targets are not able to receive 

communications sent from those sources. 

• APIS agents maintain models of the position, current job, and servicing targets of other agents. APIS 

agents also maintain models of target urgency. All target positions and initial agent positions are known 

to all agents at the beginning of the mission. 

o APIS agents share models and broadcast information about themselves. Agents update their 

models when receiving first-hand information and when receiving information newer than 

their own model. 

o In the absence of external model updates, APIS agents evolve their agent model states 

according to the task assignment and control logic of the swarm. Agents also evolve their 

target models based on the modeled positions of agents which may be in servicing range. 

• All agents share identical decision-making logic, rendering the collection of agents a true swarm. 

III. Conceptual Approach  

Given the set of all initial agent positions 𝚾0
𝐴, all initial target positions 𝚾0

𝑇 , and all initial apparent (i.e., not 

compensated for unknown bias) target priorities 𝚸0, each agent 𝑖 will choose some target 𝑗 to visit and service, thus 

reducing target priority.  

The objective of the swarm is to minimize the average level of priority in the mission area and to produce 

predictable servicing results, i.e., to minimize variation in average priority from instance to instance. The priority 

may take many shapes in real-world applications. For example, if the task is for agents to inspect degrading 

platforms in an area, the priority may represent the time since the platform was last inspected, with the objective to 

minimize that time across all platforms. Each agent operates based on an individual instance of the task assignment 

algorithm common to all agents.  

To evaluate the efficacy of APIS, we compare its performance in completing the mission objective against the 

performance of a spectrum of baseline auction algorithms taken from [21], with varying levels of cooperation and 

target commitment. We use two performance measures, as follows. 

At each timestep of every trial, we record the sum of current true priorities across all targets in the area. The sum 

is then averaged, yielding a total trial score. Across all trials of a particular algorithm under given conditions, we 

average all trial scores and compute the standard deviation of the trial score. The trial score average serves as a 

measure of effectiveness, tracking how well the algorithm matches agents to appropriate targets and generally 

provides service to the targets in the area. The standard deviation of the trial score measures the reliability (or lack 

thereof) of a particular algorithm, demonstrating how much the performance of a given algorithm is subject to 

change from trial to trial. This is an important metric in CPH teams, where autonomous system’s predictability is a 

key criterion for trust and, thus, effective teamwork. 
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In the remainder of the section, we summarize the algorithms used in this study via pseudocode, to facilitate 

replicability. The term “bid”, defined in Function 1 (Computational Algorithm section), refers to a value calculated 

based on a target priority and relative distance of an agent from the target.  

 

Algorithm 1: Auctioning Task Assignment with Full Commitment, Full Coordination 

 

Given: 

 𝚨: Set of all agents in mission area 

 𝚻: Set of all targets in mission area 

 𝐁: Bounds of the mission area 

 𝑢: Baseline urgency of all targets in mission area 

 𝜎: Standard deviation from baseline urgency of all targets in mission area 

 𝑡: Timespan of mission 

 𝑡𝑟𝑒𝑠𝑒𝑡: Time before target priority reset 

Initialize:  

 𝑡𝑖 = 0              : Initialize current time 

 For each target 𝑗 in 𝚻: 

       𝑥𝑗 ←U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of target 𝑗 

       𝑝𝑗 ← 𝑢           : Initialize apparent priority of each target 

 Δ𝑗 ← N(𝑢, 𝜎) : Generate normally distributed distorted urgency values for each target 

 𝑝𝑗
𝑡 ← Δ𝑗          : Initialize true priority of each target 

 For each agent 𝑖 in 𝚨: 

       𝑥𝑖 ← U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of agent 𝑖 
Do until 𝑡𝑖 = 𝑡 
 For each agent 𝑖 in 𝚨: 

  If Bid(𝑖, 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡) = 0: 

   𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑁𝑜𝑛𝑒 

 For each agent 𝑖 in 𝚨: 

  If 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑁𝑜𝑛𝑒: 

   For each target 𝑗 in 𝚻: 

    𝑖. 𝑏𝑖𝑑𝑠[𝑗] ← Bid(𝑖, 𝑗) 
   For every other agent 𝑖𝑜𝑡ℎ𝑒𝑟  in 𝐀: 

    If InCommsRange(𝑖, 𝑖𝑜𝑡ℎ𝑒𝑟): 
     𝑖. 𝑏𝑖𝑑𝑠[𝑖𝑜𝑡ℎ𝑒𝑟 . 𝑡𝑎𝑟𝑔𝑒𝑡] ← 𝑁𝑜𝑛𝑒 

   𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 ← max⁡(𝑖. 𝑏𝑖𝑑𝑠) 
 EvolveTargets(T, A) 

 For each agent 𝑖 in 𝐀: 

  𝑥𝑖
+ ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑇𝑜𝑇𝑎𝑟𝑔𝑒𝑡(𝑥𝑖 , 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡)    

End Do 

 

Algorithm 1 represents the most cooperative version of the four auction algorithms presented for comparison. 

We hypothesize that its reliance on active communication to avoid double-servicing is likely to increase its variance 

slightly when compared to its fellow auction algorithms, due to the lack of guaranteed lines of communication in our 

scenario. However, this level of coordination is likely to yield some gains in efficiency, and its choice to commit to 

targets will avoid costly re-tasking. We thus conclude that Algorithm 1 will most likely outperform other auction 

variations, but may carry increased variance from trial to trial, reducing its usefulness in CPH teams. 

 

Algorithm 2: Auctioning Task Assignment with Full Commitment, No Coordination 

 

Given: 

 𝚨: Set of all agents in mission area 

 𝚻: Set of all targets in mission area 

 𝐁: Bounds of the mission area 

 𝑢: Baseline urgency of all targets in mission area 

 𝜎: Standard deviation from baseline urgency of all targets in mission area 
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 𝑡: Timespan of mission 

 𝑡𝑟𝑒𝑠𝑒𝑡: Time before target priority reset 

Initialize:  

 𝑡𝑖 = 0              : Initialize current time 

 For each target 𝑗 in 𝚻: 

       𝑥𝑗 ←U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of target 𝑗 

       𝑝𝑗 ← 𝑢           : Initialize apparent priority of each target 

 Δ𝑗 ← N(𝑢, 𝜎) : Generate normally distributed distorted urgency values for each target 

 𝑝𝑗
𝑡 ← Δ𝑗          : Initialize true priority of each target 

 For each agent 𝑖 in 𝚨: 

       𝑥𝑖 ← U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of agent 𝑖 
Do until 𝑡𝑖 = 𝑡 
 For each agent 𝑖 in 𝚨: 

  If bid(𝑖, 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡) = 0: 

   𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑁𝑜𝑛𝑒 

 For each agent 𝑖 in 𝚨: 

  If 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑁𝑜𝑛𝑒: 

   For each target 𝑗 in 𝚻: 

    𝑖. 𝑏𝑖𝑑𝑠[𝑗] ← Bid(𝑖, 𝑗) 
   𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 ← max⁡(𝑖. 𝑏𝑖𝑑𝑠) 
 EvolveTargets(T, A) 

 For each agent 𝑖 in 𝐀: 

  𝑥𝑖
+ ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑇𝑜𝑇𝑎𝑟𝑔𝑒𝑡(𝑥𝑖 , 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡)    

End Do 

 

Algorithm 2 retains the efficiency-improving commitment of Algorithm 1 but eschews coordination with fellow 

agents. Because coordination improves efficiency, Algorithm 2’s performance is likely to be lower than that of 

Algorithm 1. However, in a limited-communication environment, the variable performance of cooperative 

algorithms should not affect the non-cooperative Algorithm 2. Thus, we project a slight improvement in reliability 

over Algorithm 1. 

 

Algorithm 3: Auctioning Task Assignment with No Commitment, Full Coordination 

 

Given: 

 𝚨: Set of all agents in mission area 

 𝚻: Set of all targets in mission area 

 𝐁: Bounds of the mission area 

 𝑢: Baseline urgency of all targets in mission area 

 𝜎: Standard deviation from baseline urgency of all targets in mission area 

 𝑡: Timespan of mission 

 𝑡𝑟𝑒𝑠𝑒𝑡: Time before target priority reset 

Initialize:  

 𝑡𝑖 = 0              : Initialize current time 

 For each target 𝑗 in 𝚻: 

       𝑥𝑗 ←U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of target 𝑗 

       𝑝𝑗 ← 𝑢           : Initialize apparent priority of each target 

 Δ𝑗 ← N(𝑢, 𝜎) : Generate normally distributed distorted urgency values for each target 

 𝑝𝑗
𝑡 ← Δ𝑗          : Initialize true priority of each target 

 For each agent 𝑖 in 𝚨: 

       𝑥𝑖 ← U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of agent 𝑖 
Do until 𝑡𝑖 = 𝑡 
 For each agent 𝑖 in 𝚨: 

  For each target 𝑗 in 𝚻: 

   𝑖. 𝑏𝑖𝑑𝑠[𝑗] ← Bid(𝑖, 𝑗) 
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  For each other agent 𝑖𝑜𝑡ℎ𝑒𝑟  in 𝐀: 

   If InCommsRange(𝑖, 𝑖𝑜𝑡ℎ𝑒𝑟): 
    𝑖. 𝑏𝑖𝑑𝑠[𝑖𝑜𝑡ℎ𝑒𝑟 . 𝑡𝑎𝑟𝑔𝑒𝑡] ← 𝑁𝑜𝑛𝑒 

  𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 ← max⁡(𝑖. 𝑏𝑖𝑑𝑠) 
 EvolveTargets(T, A) 

 For each agent 𝑖 in 𝐀: 

  𝑥𝑖
+ ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑇𝑜𝑇𝑎𝑟𝑔𝑒𝑡(𝑥𝑖 , 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡)    

End Do 

 

Algorithm 3 now discards the commitment of Algorithms 1 and 2 but retains the coordination of Algorithm 1. 

This approach is likely best suited in situations where task priority can vary wildly, which necessitates re-

computation of task assignments, possible only in a noncommittal auction implementation. However, in our prosed 

DRM of gradually and predictably fluctuating priorities, such dramatic re-computation will likely hinder more than 

help, as agents re-target many times during their lifespan and waste travel time. Thus, we project Algorithm 3 to 

demonstrate worse performance than Algorithms 1 and 2. However, the strength and frequency of this noncommittal 

tasking may result in predictable (though sub-optimal) trials. Thus, Algorithm 3 is likely to exhibit reliability that is 

similar to that of Algorithm 2 and greater than that of Algorithm 1. 

 

Algorithm 4: Auctioning Task Assignment with No Commitment, No Coordination 

 

Given: 

 𝚨: Set of all agents in mission area 

 𝚻: Set of all targets in mission area 

 𝐁: Bounds of the mission area 

 𝑢: Baseline urgency of all targets in mission area 

 𝜎: Standard deviation from baseline urgency of all targets in mission area 

 𝑡: Timespan of mission 

 𝑡𝑟𝑒𝑠𝑒𝑡: Time before target priority reset 

Initialize:  

 𝑡𝑖 = 0              : Initialize current time 

 For each target 𝑗 in 𝚻: 

       𝑥𝑗 ←U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of target 𝑗 

       𝑝𝑗 ← 𝑢           : Initialize apparent priority of each target 

 Δ𝑗 ← N(𝑢, 𝜎) : Generate normally distributed distorted urgency values for each target 

 𝑝𝑗
𝑡 ← Δ𝑗          : Initialize true priority of each target 

 For each agent 𝑖 in 𝚨: 

       𝑥𝑖 ← U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of agent 𝑖 
Do until 𝑡𝑖 = 𝑡 
 For each agent 𝑖 in 𝚨: 

  For each target 𝑗 in 𝚻: 

   𝑖. 𝑏𝑖𝑑𝑠[𝑗] ← Bid(𝑖, 𝑗) 
  𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡 ← max⁡(𝑖. 𝑏𝑖𝑑𝑠) 
 EvolveTargets(T, A) 

 For each agent 𝑖 in 𝐀: 

  𝑥𝑖
+ ← ConvergeToTarget(𝑥𝑖 , 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡)    

End Do 

 

 Algorithm 4 is both greedy and noncooperative. Lack of coordination and commitment is likely to severely harm 

its mission efficacy. Furthermore, due to its total lack of cooperation with other agents, Algorithm 4 is most 

susceptible to changes in environmental layout and starting positions. Thus, we predict Algorithm 4 to have similar 

or worse reliability than Algorithm 1, and the worst performance out of the four. 

 

Algorithm 5: APIS Task Assignment 

 

Given: 
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 𝚨: Set of all agents in mission area 

 𝚻: Set of all targets in mission area 

 𝐁: Bounds of the mission area 

 𝑢: Baseline urgency of all targets in mission area 

 𝜎: Standard deviation from baseline urgency of all targets in mission area 

 𝑡: Timespan of mission 

 𝑡𝑟𝑒𝑠𝑒𝑡: Time before target priority reset 

Initialize:  

 𝑡𝑖 = 0              : Initialize current time 

 For each target 𝑗 in 𝚻: 

       𝑥𝑗 ←U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of target 𝑗 

       𝑝𝑗 ← 𝑢           : Initialize apparent priority of each target 

 For each agent 𝑖 in 𝚨: 

       𝑥𝑖 ← U(𝐁)     : Generate uniformly distributed, random, non-overlapping starting positional state of agent 𝑖 
 For each agent 𝑖 in 𝚨: 

       𝑖. 𝑎𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐀 

         𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐓 

 For each target 𝑗 in 𝚻 

 Δ𝑗 ← N(0, 𝜎) : Generate normally distributed distorted urgency values for each target 

 𝑝𝑗
𝑡 ← Δ𝑗 + 𝑢          : Initialize true priority of each target 

Do until 𝑡𝑖 = 𝑡 
 For each agent 𝑖 in 𝚨: 

  For each other agent 𝑖𝑜𝑡ℎ𝑒𝑟  in 𝐀: 

   ReconcileModels(𝑖, 𝑖𝑜𝑡ℎ𝑒𝑟) 
 EvolveTargetDiagnostics(T, A) 

 For each agent 𝑖 in 𝚨: 

  For each target 𝑗 in 𝚻: 

   UpdateTargetModel(𝑖, 𝑗) 
  For each agent model 𝑖𝑚𝑜𝑑𝑒𝑙 in {𝑖, 𝑖. 𝑎𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙𝑠}: 
   UpdateAgentModel(𝑖, 𝑖𝑚𝑜𝑑𝑒𝑙 , 𝑡𝑖) 
 EvolveTargetReset(T)  

 For each agent 𝑖 in 𝚨: 

  EvolveTargetReset(𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠) 
End Do 

 

 Algorithm 5, APIS, incorporates the strongest aspects of Algorithms 1-4. While APIS coordinates with other 

agents as do Algorithms 1 and 2, it resolves the largest weakness of coordination―communication disruption―by 

iteratively generating and improving upon models of the surrounding environment and fellow agents, for use during 

communication disruptions. This enables APIS to retain the gains in efficiency brought through coordination, while 

avoiding the pitfalls of increased variability due to communication breakdowns. Furthermore, the ability of APIS to 

record and disseminate distortion factors of targets in the mission space is likely to improve both the efficiency of 

the algorithm, as agents are more frequently tasked to targets in need of servicing, and the resistance of the system to 

distortions and disturbances. Finally, the model convergence based on model reconciliation logic is likely to reduce 

variability further, as agent performance becomes more dependent on mission runtime than on mission area layout. 

IV. Computational Algorithm  

Given the initial values of urgency, position of all targets, and locations of all agents, each agent 𝑖 will calculate 

a bid for each target 𝑗 based on its priority 𝑃 and relative distance 𝑑. In our example of aerial agents surveilling and 

inspecting various platforms in an area, this is based on both the ease of inspecting a given platform (as a function of 

distance and other variables) and the need of that platform to be inspected. 

Function 1: Bidding function Bid() 

  Agent⁡𝑖⁡ ∶ argument⁡1 

  Target⁡𝑗 ∶ argument⁡2 

 𝐵𝑖
𝑗
← 𝑃𝑖

𝑗
− 𝑑(𝑥𝑖 , 𝑥𝑗)  
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 return 𝐵𝑖
𝑗
 

End Function 

 

Where: 

• 𝑃𝑖
𝑗
 is the priority of target 𝑗 as known by agent 𝑖 

• 𝑑(𝑥𝑖 , 𝑥𝑗) is the distance between target 𝑗 and agent 𝑖 

 

At every timestep 𝑡, each agent 𝑖 will move towards position 𝑥 of its goal target 𝑔. Agent movement ceases once 

it has converged on its target and recommences once a new target has been chosen. In our simulation, the area is 

represented by a grid, and agents converge according to Manhattan (straight line-segment) iterative paths. In a 

higher-fidelity simulation and in a real-world environment, this function would also include obstacle avoidance. 

Function 2: State evolution function ConvergeToTarget() 
 Agent state 𝑥𝑖          : argument 1 

 Target state 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 : argument 2 

 Δ = 𝑥𝑖 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 

 If Δ. x = ⁡Δ. y and Δ ≠ 0⁡: 
  If Δ. y > 0: 

   𝑥𝑖
+. 𝑦 ← 𝑥𝑖 . 𝑦 − 1 

  Else: 

   𝑥𝑖
+. 𝑦 ← 𝑥𝑖 . 𝑦 + 1 

 Else If Δ. x > ⁡Δ. y : 

  If Δ. x > 0: 

   𝑥𝑖
+. 𝑥 ← 𝑥𝑖 . 𝑥 − 1 

  Else: 

   𝑥𝑖
+. 𝑥 ← 𝑥𝑖 . 𝑥 + 1 

 Else If Δ. x < ⁡Δ. y : 

  If Δ. y > 0: 

   𝑥𝑖
+. 𝑦 ← 𝑥𝑖 . 𝑦 − 1 

  Else: 

   𝑥𝑖
+. 𝑦 ← 𝑥𝑖 . 𝑦 + 1 

 𝑥𝑖 ← 𝑥𝑖
+ 

End Function 

 

Where: 

• 𝑥𝑖 is the positional state of agent 𝑖 
• 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 is the positional state of agent 𝑖’s target 

 

At every timestep t, the apparent and actual priorities of each target 𝑗 will evolve according to whether it is being 

serviced by any agent i. Servicing agents, defined as agents in the same grid square as the target, will be made aware 

of the true priority and, thus, the distortion factor of the target. Non-servicing agents will only be made aware of the 

apparent priority of the target. This mimics realistic situations, as the condition of targets degrades and their relevant 

diagnostic signals change to reflect that. 

 Function 3: Priority evolution function EvolveTargets() 
  Set of all targets T: argument 1 

  Set of all agents A: argument 2 

  For each target 𝑗 in 𝚻: 

   𝑜𝑙𝑑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑃𝑗
𝑡  

   𝑏𝑒𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 

   For each agent i in A: 

    If 𝑥𝑖 − 𝑥𝑗 = 𝟎: 

     𝑏𝑒𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑑 ← 𝑇𝑟𝑢𝑒 

   If 𝑏𝑒𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑑: 

    𝑃𝑗
+ ← max⁡(𝑃𝑗 − 1, 0) 
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    𝑃𝑗
𝑡+ ← max⁡(𝑃𝑗

𝑡 − 1, 0) 

   Else: 

    𝑃𝑗
+ ← 𝑃𝑗 + 1 

    𝑃𝑗
𝑡+ ← 𝑃𝑗

𝑡 + 1 

   If 𝑜𝑙𝑑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦⁡ = 𝑃𝑗
𝑡+: 

    𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒⁡ ← 𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 + ⁡1⁡ 
   If 𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 = ⁡ 𝑡𝑟𝑒𝑠𝑒𝑡: 
    𝑃𝑗

+ ← 𝑢 

    𝑃𝑗
𝑡+ ← Δ𝑗 + 𝑢 

 End Function 

 

Where: 

• 𝑃𝑗
𝑡 is the actual priority of target 𝑗 

• 𝑃𝑗  is the apparent priority of target 𝑗 

• 𝑢 is the baseline urgency assigned to all targets in the mission area 

• Δ𝑗 is the distortion bias applied to the urgency of target 𝑗 to yield the true urgency 

 

In APIS, Function 3 is broken up into two parts: first, each target’s priority is updated. After agents evolve, the 

targets check for reset status. 

 Function 4: Priority evolution without reset function EvolveTargetDiagnostics() 

  Set of all targets T: argument 1 

  Set of all agents A: argument 2 

  For each target 𝑗 in 𝚻: 

   𝑜𝑙𝑑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑃𝑗
𝑡  

   𝑏𝑒𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 

   For each agent i in A: 

    If 𝑥𝑖 − 𝑥𝑗 = 𝟎: 

     𝑏𝑒𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑑 ← 𝑇𝑟𝑢𝑒 

   If 𝑏𝑒𝑖𝑛𝑔𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑑: 

    𝑃𝑗
+ ← max⁡(𝑃𝑗 − 1, 0) 

    𝑃𝑗
𝑡+ ← max⁡(𝑃𝑗

𝑡 − 1, 0) 

   Else: 

    𝑃𝑗
+ ← 𝑃𝑗 + 1 

    𝑃𝑗
𝑡+ ← 𝑃𝑗

𝑡 + 1 

End Function 

 

 Function 5: Target reset function EvolveTargetReset() 
  Set of all targets T: argument 1 

 For each target 𝑗 in 𝚻: 

   If 𝑜𝑙𝑑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦⁡ = 𝑃𝑗
𝑡+: 

    𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒⁡ ← 𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 + ⁡1⁡ 
   If 𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 = ⁡ 𝑡𝑟𝑒𝑠𝑒𝑡: 
    𝑃𝑗

+ ← 𝑢 

    𝑃𝑗
𝑡+ ← Δ𝑗 + 𝑢 

End function 

 

Where: 

• 𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 is the number of timesteps in a resettable state (i.e., with no priority change) 

 

When two agents are within communications range, their APIS algorithms exchange information on respective 

models, with each model updating to form a consensus. In a real-world scenario, the reconciliation would occur 
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using each agent’s onboard communication subsystems and may be subject to additional sources of error; for 

example, if the message is lost in transmission. For the purposes of simulation, the error is compressed simply into a 

communication range metric. However, future simulations with higher-fidelity scenarios will, in addition, simulate 

this uncertainty to demonstrate the capability of the algorithms under study to adapt to communication error. 

 

 Function 6: Reconcile sets of models function ReconcileModels() 

  Agent 𝑖                 : Argument 1 

  Other agent 𝑖𝑜𝑡ℎ𝑒𝑟 : Argument 2 

  If |𝑥𝑖 − 𝑥𝑜𝑡ℎ𝑒𝑟| > 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒 : Return 

  For each agent model 𝑚 in 𝑖. 𝑎𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙𝑠: 

   If 𝑚. 𝑖𝑑 = 𝑖𝑜𝑡ℎ𝑒𝑟 . 𝑖𝑑 : 

    𝑚𝑖 ← 𝑖𝑜𝑡ℎ𝑒𝑟  

   Else: 

    If 𝑚𝑖 . 𝑎𝑔𝑒 > ⁡𝑚𝑜𝑡ℎ𝑒𝑟 . 𝑎𝑔𝑒: 

     𝑚𝑖 ←⁡𝑚𝑜𝑡ℎ𝑒𝑟  

  For each target model 𝑚 in 𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠: 

   If Δ𝑚𝑜𝑡ℎ𝑒𝑟
≠ 0 : 

    Δ𝑚 ← Δ𝑚𝑜𝑡ℎ𝑒𝑟
 

   If 𝑚𝑖 . 𝑎𝑔𝑒 > ⁡𝑚𝑜𝑡ℎ𝑒𝑟 . 𝑎𝑔𝑒: 

    𝑚𝑖 ←⁡𝑚𝑜𝑡ℎ𝑒𝑟  

 End Function 

  

 Where: 

• 𝑚. 𝑖𝑑 is a unique identifying tag associated with 𝑚 

• 𝑖𝑜𝑡ℎ𝑒𝑟 . 𝑖𝑑 is a unique identifying tag associated with 𝑖𝑜𝑡ℎ𝑒𝑟  

• 𝑚𝑖 . 𝑎𝑔𝑒 is the time since 𝑚𝑖 has been directly updated from the model source of truth, i.e., the modeled 

agent or modeled target 

• Δ𝑚 is the distortion factor accounted for in target model 𝑚, defined to be zero until the agent can 

retrieve its value from another agent or from the target itself during servicing. 

 

The model governing each agent is updated by that agent’s APIS algorithm, to maintain models of other agents 

and targets despite periods of communication breakdown. This persistence allows for asynchronous and distributed 

decision making in situations where agents are isolated or possess unreliable communication systems. Because all 

agents are controlled by identical decision-making algorithms, the model update logic applies to all agents’ task 

assignment. 

 

Each target in the mission space updates its own priority, communicates the updated apparent priority to all 

agents in range, and communicates its distortion factor to all servicing agents. This process simulates the constant 

flow of information about task targets to their servicing agents in the mission area. 

 

 Function 7: Evolve models of targets function UpdateTargetModel() 
  Agent⁡𝑖⁡ ∶ argument⁡1 

  Target⁡𝑗 ∶ argument⁡2 

  If |𝑥𝑖 − 𝑥𝑗| > 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒 :  

   𝑖. 𝑚𝑗 . 𝑎𝑔𝑒 ← ⁡𝑖.𝑚𝑗. 𝑎𝑔𝑒 + 1 

   EvolveTargets(𝑖. 𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠, 𝑖. 𝑎𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙𝑠) 
  Else: 

   𝑖. 𝑚𝑗 . 𝑎𝑔𝑒 ← ⁡0 

   𝑖. 𝑚𝑗 . 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 ← ⁡𝑗. 𝑟𝑒𝑠𝑒𝑡𝑇𝑖𝑚𝑒 

   𝑃𝑖.𝑚𝑗
← 𝑃𝑗 . 

   If |𝑥𝑖 − 𝑥𝑗| = 0: 

    𝑖. 𝑚𝑗 . Δ𝑗 ← Δ𝑗   

 End Function 
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Each agent in the mission space is modeled by all other agents in APIS. Each agent updates its current job based 

on its current job completion status and random parameters. Agents then choose a new target to service. Finally, 

each agent updates its own state to proceed to its chosen target. 

 

 Function 8: Evolve models of agents function UpdateAgentModel() 
  Agent 𝑖                     : Argument 1 

  Agent model 𝑖𝑚𝑜𝑑𝑒𝑙  : Argument 2 

  Current timestep 𝑡   : Argument 3 

  𝑗𝑜𝑏𝐷𝑜𝑛𝑒⁡ ← 𝐹𝑎𝑙𝑠𝑒 

  If 𝑡 = 0: 

   𝑗𝑜𝑏𝐷𝑜𝑛𝑒 ← 𝑇𝑟𝑢𝑒 

   𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 ← 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 
   𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑁𝑜𝑛𝑒 

  Else: 

   If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 = 𝐻𝑎𝑟𝑣𝑒𝑠𝑡⁡OR⁡𝑆𝑐𝑜𝑢𝑡: 
    𝑗𝑜𝑏𝐷𝑜𝑛𝑒 ← (𝑃𝑖𝑚𝑜𝑑𝑒𝑙.𝑡𝑎𝑟𝑔𝑒𝑡

𝑡 = ⁡0) 

   Else If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 = 𝐷𝑎𝑛𝑐𝑒: 

    If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑑𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒 = 𝑔𝑜𝑎𝑙𝐷𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒: 

     𝑗𝑜𝑏𝐷𝑜𝑛𝑒 ← 𝑇𝑟𝑢𝑒 

     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑑𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒 ← 0 

    Else: 

     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑑𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒 ← 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑑𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒 + 1 

   If 𝑗𝑜𝑏𝐷𝑜𝑛𝑒: 

    𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 ← choose({𝐻𝑎𝑟𝑣𝑒𝑠𝑡, 𝑆𝑐𝑜𝑢𝑡, 𝐷𝑎𝑛𝑐𝑒}) 
    If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 = 𝑆𝑐𝑜𝑢𝑡: 
     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 ← choose(𝑖. 𝑓𝑟𝑒𝑒𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠) 
    Else If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 = 𝐷𝑎𝑛𝑐𝑒: 

     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑑𝑎𝑛𝑐𝑒𝑅𝑎𝑙𝑙𝑦𝑃𝑜𝑖𝑛𝑡 
     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑑𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒 ← 0  

   If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 = 𝐻𝑎𝑟𝑣𝑒𝑠𝑡: 
    𝑠𝑤𝑖𝑡𝑐ℎ𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝐹𝑎𝑙𝑠𝑒 

    If 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑁𝑜𝑛𝑒: 

     𝑠𝑤𝑖𝑡𝑐ℎ𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝑇𝑟𝑢𝑒 

    Else: 

     If (𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 ∈ {𝑖. 𝑜𝑡ℎ𝑒𝑟𝐴𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙𝑠. 𝑡𝑎𝑟𝑔𝑒𝑡})⁡OR⁡(𝑃𝑖𝑚𝑜𝑑𝑒𝑙.𝑡𝑎𝑟𝑔𝑒𝑡
𝑡 = ⁡0): 

      𝑠𝑤𝑖𝑡𝑐ℎ𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝑇𝑟𝑢𝑒 

    If 𝑠𝑤𝑖𝑡𝑐ℎ𝑇𝑎𝑟𝑔𝑒𝑡: 
     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑁𝑜𝑛𝑒 

     For each model 𝑚 in 𝑖. 𝑓𝑟𝑒𝑒𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠: 

      𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑏𝑖𝑑𝑠[𝑚] = Bid(𝑖𝑚𝑜𝑑𝑒𝑙 , 𝑚) 
     𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡 = max⁡(𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑏𝑖𝑑𝑠) 
   ConvergeToTarget(𝑖𝑚𝑜𝑑𝑒𝑙 , 𝑖𝑚𝑜𝑑𝑒𝑙 . 𝑡𝑎𝑟𝑔𝑒𝑡) 
  𝑖 ← 𝑖. 𝑎𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑙𝑠[𝑖. 𝑖𝑑] 
 End Function 

 

 Where: 

• 𝑖. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐽𝑜𝑏 denotes the current job of agent 𝑖, which can take one of three values: 

o 𝐻𝑎𝑟𝑣𝑒𝑠𝑡: The agent will seek out targets to service based on their priority. 

o 𝑆𝑐𝑜𝑢𝑡: The agent will randomly select a target. 

o 𝐷𝑎𝑛𝑐𝑒: The agent will congregate around a common rally point for a predefined stretch of 

time. 

• 𝑖. 𝑑𝑎𝑛𝑐𝑒𝑇𝑖𝑚𝑒 denotes the number of timesteps the agent has spent at the predetermined dancing rally 

point. 

• choose() chooses one element from a set of elements, each with its own probability weight. 
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• 𝑃𝑖𝑚𝑜𝑑𝑒𝑙.𝑡𝑎𝑟𝑔𝑒𝑡
𝑡  denotes the modeled true priority of the target selected by 𝑖𝑚𝑜𝑑𝑒𝑙 . 

• 𝑖. 𝑓𝑟𝑒𝑒𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑜𝑑𝑒𝑙𝑠 is the set of all targets modeled by agent 𝑖 not assigned to any agents modeled 

by agent 𝑖. 

V. Preliminary Proof of Concept  

For the purposes of comparison among algorithms, the DRM is the operation of a swarm of agents in an 

environment, performing a service. In our simulation, the agents perform service tasks by occupying the same cell as 

the target, and when not servicing, move according to their next job.  When using auction algorithms, agents move 

towards the next task, but under APIS, agents may move towards a common rally point instead. This DRM is 

representative of a broad variety of missions. An immediate example is a fleet of flying inspection agents, managing 

the condition of deployed platforms or ground infrastructure, which may degrade over time. The concept is not 

limited to flying vehicles. For instance, it applies to swarms of ground and climbing robotic agents inspecting and 

maintaining facilities on Earth and in space and planetary environments.  

In our tests, for each algorithm, we perform a series of 100 trials and record the sum of all targets’ priorities at 

each timestep, and then average the priorities to yield a trial score. We calculate effectiveness as the average trial 

score across all trials and algorithm variability as the standard deviation of the trial score across all trials. 

 

A. Computational Setup 

 We compare the performance of the auction algorithms 1 through 4 with that of APIS, Algorithm 5. The 

simplified simulation environment has the following characteristics: 

• Simulation world: A 10 by 10 square grid of cells, with each cell representing a potential target position. 

Agents can move horizontally and vertically on the grid; distances are calculated via Manhattan Distance. 

• Distribution: All targets and agents are randomly distributed throughout the simulation world, with each 

target or agent occupying a different cell. 

• Agents: A variable number of agents, each governed by an instance of a shared algorithm. 

• Targets: A variable number of static targets, with starting priority normally distributed around a common 

starting value. 

• Timing: Each agent can move 1 square per time step. Each serviced target reduces its priority by 1 point 

per time step. Each non-serviced target increases its priority by 1 point per timestep. 

• Priority: Each target priority is randomly distributed around a common score of 30, using standard 

deviation. 

B. Computational Results and Analysis 

To compare behavior across algorithms, we test each one under a range of conditions: 

• Environmental variability: We vary the standard deviation used to generate random distortions for true 

target priorities from 0 (resulting in no difference between actual and apparent priority) and one third of the 

common priority of all platforms in the simulation area (resulting in significant differences between actual 

and apparent priorities). The purpose is to assess performance under informational uncertainty. 

• Number of agents and targets: We vary the number of active agents and targets from a small group (2 

agents and 4 targets) to a larger group (10 agents and 20 targets). This evaluates the capability of the 

algorithm to function cohesively in large groups, without wasteful double-tasking. 

• APIS behavioral characteristics: APIS incorporates random chance in transitioning between jobs. An 

instance of a job concludes for harvesting and scouting when the target has been fully serviced. A job 

concludes for a dancing agent when the agent has remained at the rally point for the prescribed amount of 

time. At the conclusion of a job, the agent will transition to harvesting, scouting, or dancing, based on a 

weighted random chance. By changing the weights assigned to each job, we can the strengths and 

weaknesses of various behavioral strategies. 

We compare: CC (Committed and Coordinated Auctioning), CN (Committed and Not Coordinated Auctioning), 

NC (Not Coordinated and Committed Auctioning), NN (Not Committed and Not Coordinated Auctioning), and 

APIS. 
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Table 1: Algorithm Effectiveness (Trial Priority Mean) 

Standard APIS settings of 80% chance for harvest, 10% chance for scout, 10% chance for dance 

Trial CC CN NC NN APIS 

𝜎 = 0, 2 agents, 4 targets 1059.667 1477.988 2451.295 3545.324 520.066 

𝜎 = 4, 2 agents, 4 targets 1133.942 1646.819 2710.702 3884.058 550.199 

𝜎 = 10, 2 agents, 4 targets 1089.404 1530.468 2553.710 3701.541 535.719 

𝜎 = 0, 10 agents, 20 targets 6253.692 6972.121 11768.047 19732.141 3448.477 

𝜎 = 4, 10 agents, 20 targets 6214.143 6948.015 11719.990 19528.225 3471.483 

𝜎 = 10, 10 agents, 20 targets 6322.831 7059.089 11833.616 19724.153 3373.418 

 

Table 2: Algorithm Variability (Standard Deviation) 

Standard APIS settings of 80% chance for harvest, 10% chance for scout, 10% chance for dance 

Trial CC CN NC NN APIS 

𝜎 = 0, 2 agents, 4 targets 487.595 678.301 851.527 991.106 218.478 

𝜎 = 4, 2 agents, 4 targets 557.374 774.681 952.250 1101.224 248.056 

𝜎 = 10, 2 agents, 4 targets 565.056 809.849 1048.445 1193.280 234.622 

𝜎 = 0, 10 agents, 20 targets 1717.756 1735.272 1842.847 1977.284 859.093 

𝜎 = 4, 10 agents, 20 targets 1904.007 1861.644 1872.522 1937.558 874.616 

𝜎 = 10, 10 agents, 20 targets 2000.557 1956.513 1971.477 2063.461 933.994 

 

Table 3: APIS Tuning Effectiveness (Trial Priority Mean) 

Where H = Harvest % Chance, S = Scout % Chance, and D = Dance % Chance 

Trial 80H, 10S, 

10D 

40H, 30S, 

30D 

100H 100S 80H, 20S 80H, 20D 

𝜎 = 4, 10 agents, 20 targets 3471.483 3730.266 3126.123 3474.689 3353.603 3176.460 

𝜎 = 10, 10 agents, 20 targets 3373.418 3769.991 3046.632 3430.168 3451.245 3251.597 

 

Table 4: APIS Tuning Variability (Standard Deviation) 

Where H = Harvest % Chance, S = Scout % Chance, and D = Dance % Chance 

Trial 80H, 10S, 

10D 

40H, 30S, 

30D 

100H 100S 80H, 20S 80H, 20D 

𝜎 = 4, 10 agents, 20 targets 874.616 597.441 1069.471 435.743 994.257 848.346 

𝜎 = 10, 10 agents, 20 targets 933.994 1060.595 1086.235 411.931 924.536 859.197 

 

From the results shown in Table 1 and Table 2, we observe that APIS with a standard (8-% harvest, 10% scout, 

10% dance) behavioral set consistently attains approximately half of the Trial Priority Mean as the next best auction 

algorithm and attains approximately half of the standard deviation as the next best auction algorithm. Consequently, 

independent of the number of agents, targets, or level of environmental uncertainty, APIS is both more effective 

(with a lower Trial Priority Mean) and more reliable (with a lower Algorithm Variability) than the auction 

algorithms we tested it against.  

From the data in Table 3 and Table 4, we observe the effect of varying APIS behavioral parameters on the 

performance of APIS in the DRM. Comparing across effectiveness levels, the standard blend of APIS behaviors 

(80% harvest, 10% scout, 10% dance) has one of the best effectiveness scores across both a small variability regime 

and a large variability regime, with a couple of notable exceptions. At 100% harvesting, APIS algorithm carries 

better effectiveness in both regimes, as expected, because harvesting is the primary method for reducing priority in 

the area, due to prioritization of high-priority targets. At 100% scouting, APIS algorithm appears to carry 

effectiveness scores very similar to the standard APIS algorithm. This is surprising given that scouting―a random 

task selection with model-based deconfliction of target assignment―is used primarily to gather new data about 

platforms, with a large discrepancy between reported and actual results.  

Looking at the other job variants of 100% harvesting, we surmise that a contributing factor to the apparent 

competitiveness of these variants of APIS is the single-job aspect. This point to the need for further work in 

integrating different jobs in APIS, allowing the swarm to naturally function more cohesively.  
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Finally, we observe superiority over the standard behavior in the 80% harvest, 20% dance behavioral variation, 

in both uncertainty regimes. This is understandable: the preponderance of dancing agents, coupled with the crowded 

environment, dramatically increases the effectiveness of dancing agents in communicating information to other 

agents of the swarm. Comparing across variability, the 100% harvest behavioral variation demonstrated the largest 

variability in both regimes. Likewise, 100% scouting with its completely random (but deconflicted) task assignment 

showed by far the least variability in both regimes of uncertainty. 

Our findings indicate a tentative promise of APIS in solving the many-agent, many-target task assignment 

problem in uncertain environments, due to the preliminary demonstrated increased effectiveness and reliability over 

a group of standard auction algorithms.  

Examining APIS variant data, we also conclude that parametric tuning is key to mission success, both in the 

DRM and in real-life missions. Increased scouting and dancing generally appear to decrease algorithmic variability, 

while increased harvesting appears to increase algorithm effectiveness. However, depending on the scenario and 

environment, increased scouting can also increase effectiveness, while proper blends of harvesting, scouting, and 

dancing can simultaneously achieve improved reliability and effectiveness. 

We deem these results generally applicable to evaluating the trends of APIS performance relative to other 

algorithms. However, the sensitivity of APIS to behavioral variations implies the need for careful tuning of the 

algorithm in various domains. Moreover, the comparison of APIS with other algorithms was done for our own 

implementation of the algorithms under comparison, rather than potential existing commercial software. Future 

definitive comparison of APIS will have to conducted vs. established implementations of alternatives.   

VI. Concluding Remarks 

In summary, we are cautiously optimistic that APIS represents a promising solution to the problem of 

coordinating swarms of agents in an uncertain environment, while engaged in CPH team operations. We base this 

optimism on the apparent improvement in both effectiveness and reliability (represented by a decrease in variability) 

of APIS over fundamental varieties of a standard auction algorithm for task assignment. We expect this approach to 

show the most significant improvements in effectiveness and reliability in situations where information is unreliable 

but verifiable, as in our DRM, where the agents were able to collect accurate corrections to target priorities during 

servicing. However, we would expect these gains in effectiveness and reliability to erode as environmental 

conditions improve and scouting and dancing behaviors―useful for alleviating informational uncertainty, rather 

than direct improvement of effectiveness―become superfluous. Moving forward, we plan to test APIS against more 

specialized and state-of-the-art task assignment algorithms to begin tuning its parameters and identifying its most 

promising use cases, as well as testing it in a higher fidelity simulated environment, to yield data more directly 

applicable to real-world missions, such as aerial drones inspecting platforms spread throughout an environment. 

Finally, we intend to formulate more DRM examples, to evaluate the level of tuning required between different 

DRMs to reach algorithmic optimality of performance. 

Acknowledgments 

The authors would like to thank NASA’s ARMD/TACP/Convergent Aeronautics Solutions (CAS) project for 

supporting this work. 

References 

 

[1] S. K. Sowe, E. Simmon, K. Zettsu, F. de Vaulx and I. Bojanova, "Cyber-Physical-Human Systems: Putting 

People in the Loop," in IT Professional, vol. 18, no. 1, pp. 10-13, Jan.-Feb. 2016, doi: 10.1109/MITP.2016.14.  

 

[2] N. Nikolakis, V. Maratos, S. Makris, “A cyber physical system (CPS) approach for safe human-robot 

collaboration in a shared workplace,” in Robotics and Computer-Integrated Manufacturing, vol. 56, pp. 233-243, 

2019, ISSN 0736-5845, https://doi.org/10.1016/j.rcim.2018.10.003. 

 

[3] A. M. Madni, D. Erwin, A. Madni, E. Ordoukhanian, P. Pouya and S. Purohit, “Next Generation Adaptive Cyber 

Physical Human Systems” in Defense Technical Information Center, Sep. 2019, Technical Report SERC-2019-

TR-013. 

 

[4] N. Ali, M. Hussain and J. -E. Hong, "Analyzing Safety of Collaborative Cyber-Physical Systems Considering 

Variability," in IEEE Access, vol. 8, pp. 162701-162713, 2020, doi: 10.1109/ACCESS.2020.3021460. 



16 

 

 

[5] E. N. Ceesay, K. Myers and P. A. Watters, “Human-centered strategies for cyber-physical systems security,” in 

EAI Endorsed Transactions on Security and Safety, April 2018, doi: 10.4108/eai.15-5-2018.154773. 

 

[6] Alexander, B.; Aircraft Density and Midair Collisions, Proceedings of the IEEE, 58(3):377-381, 1970. 

 

[7] Hamza Chakraa, François Guérin, Edouard Leclercq, Dimitri Lefebvre, “Optimization techniques for Multi-

Robot Task Allocation problems: Review on the state-of-the-art,” in Robotics and Autonomous Systems, vol. 

168, 2023, ISSN 0921-8890, https://doi.org/10.1016/j.robot.2023.104492. 

 

[8] Khamis, A., Hussein, A., Elmogy, A, “Multi-robot Task Allocation: A Review of the State-of-the-Art,” In: 

Koubâa, A., Martínez-de Dios, J. (eds) Cooperative Robots and Sensor Networks 2015. Studies in 

Computational Intelligence, vol 604. Springer, Cham. https://doi.org/10.1007/978-3-319-18299-5_2. 

 

[9] Y. Mulgaonkar, G. Cross and V. Kumar, "Design of small, safe and robust quadrotor swarms," 2015 IEEE 

International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, pp. 2208-2215, doi: 

10.1109/ICRA.2015.7139491. 

 

[10] A. Khan, E. Yanmaz and B. Rinner, "Information merging in multi-UAV cooperative search," 2014 IEEE 

International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 3122-3129, doi: 

10.1109/ICRA.2014.6907308.  

 

[11] Jamie Wubben, Francisco Fabra, Carlos T. Calafate, Juan-Carlos Cano, Pietro Manzoni, “A novel resilient and 

reconfigurable swarm management scheme,” in Computer Networks, vol. 194, 2021, ISSN 1389-1286, 

https://doi.org/10.1016/j.comnet.2021.108119. 

 

[12] Capitan, J., Merino, L. & Ollero, A., “Cooperative Decision-Making Under Uncertainties for Multi-Target 

Surveillance with Multiples UAVs,” in J Intell Robot Syst vol. 84, pp 371–386, 2016, 

https://doi.org/10.1007/s10846-015-0269-0. 

 

[13] Pourpanah, F., Wang, R., Lim, C.P. et al., “A review of artificial fish swarm algorithms: recent advances and 

applications,” in Artif Intell Rev vol. 56, pp. 1867–1903, 2023, https://doi.org/10.1007/s10462-022-10214-4. 

 

[14] Jun Li, Xiaoyu Wei, Bo Li, Zhigao Zeng, “A survey on firefly algorithms,” in Neurocomputing, vol. 500, 2022, 

pp. 662-678, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2022.05.100. 

 

[15] M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A. F. T. Winfield, “Ant Colony Optimization and 

Swarm Intelligence,” in Lecture Notes in Computer Science, https://doi.org/10.1007/978-3-540-87527-7. 

 

[16] S. Patnaik, Xin-She Yang, K. Nakamatsu, “Nature-Inspired Computing and Optimization,” in Modeling and 

Optimization in Science and Technologies, https://doi.org/10.1007/978-3-319-50920-4. 

 

[17] Tereshko, Valery & Loengarov, Andreas, “Collective Decision-Making in Honey Bee Foraging Dynamics,” in 

Computing Information Systems, vol. 9, 2004.  

 

[18] Karaboga, Dervis. “An Idea Based on Honey Bee Swarm for Numerical Optimization,” in Technical Report - 

TR06, 2005, Technical Report, Erciyes University. 

 

[19] Dervis Karaboga, Bahriye Akay, “A comparative study of Artificial Bee Colony algorithm,” in Applied 

Mathematics and Computation, vol. 214, Issue 1, 2009, pp. 108-132, ISSN 0096-3003, 

https://doi.org/10.1016/j.amc.2009.03.090. 

 

[20] Yi Xiang, Yuren Zhou, “A dynamic multi-colony artificial bee colony algorithm for multi-objective 

optimization,” in Applied Soft Computing, vol. 35, 2015, pp. 766-785, ISSN 1568-4946, 

https://doi.org/10.1016/j.asoc.2015.06.033. 

 



17 

 

[21] Matarić, M.J., Sukhatme, G.S. & Østergaard, E.H, “Multi-Robot Task Allocation in Uncertain Environments,” 

in Autonomous Robots, vol. 14, pp. 255–263, 2003, https://doi.org/10.1023/A:1022291921717. 

 


