Reference Intercalibration for the Climate Observing System

Yolanda Shea¹, Rajendra Bhatt¹, Wan Wu¹, Qiguang Yang², Daniel Goldin², Xu Liu¹, Matthew Little², Peter Pilewskie³, Paul Smith³, Greg Kopp³ ¹NASA Langley Research Center, Hampton, VA: ²ADNET Systems Inc., Greenbelt, MD: ³Laboratory for Atmospheric and Space Physics, Boulder, CO

Corresponding Author: volanda.shea@nasa.gov

Climate Benchmark Measurements for Intercalibration

Characterization Support Team. The MCST/VCST is currently reprocessing N21 VIIRS data.

Sampling Rate

Differences in radiometric calibration uncertainties from multiple sensors such as MODIS and VIIRS (see figure on left) have been found to propagate into the longterm climate data records constructed with measurements from different sensors and must be carefully accounted for (e.g. Meyer et al., 2020; Sayer et al., 2017).

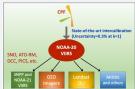
Climate Benchmark Measurements have characteristics (Goody et al., 1998) that can make them ideal candidates to serve as intercalibration references (among plenty of other applications!), particularly their requirements to be global (or nearly so) and regularly calibrated to global absolute standards.

SITSats (SI-Traceable Satellite Sensors), such as CLARREO Pathfinder (CPF) have the needed measurement characteristics to take climate benchmark and intercalibration reference measurements

HyperSpectral Imager for Instrument Climate Science (HvSICS) Spectral 350 nm - 2260 nm (3 nm) Range/Sampling Uncertainty 0.3% (spatial/spectral avg) Swath Width 10° (~70 km at nadir) Spatial Sampling

ded by the MODIS/VIIRS

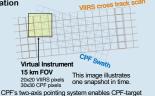
CPF Science Objectives


	Spectral Reflectance	
Objective	Take spectral reflectance measurements with unprecedented uncertainty	Illustrate high accuracy calibration transfer to other RS satellite sensors by inter- calibrating with CERES & VIIRS.
	Spectrally-resolved & broadband reflectance: ≤0.3% (1σ)	Intercalibration methodology uncertainty: ≤0.3% (1σ)
	Level 1A: Highest accuracy, best for intercalibration, lunar observations. Level 1B: Approx. consistent spectral & spatial sampling, best for most science studies using nadir spectra.	Level 4: One each for CPF- VIIRS & CPF-CERES intercal. Merged data products that include all required info for intercal analysis.

Key Reference Measurement Characteristics contributing to low intercal methodology uncertainty

- Low polarization sensitivity (<1%, 350-1400 nm)
- Consistent spectral sampling (3 nm across spectral range)
- Moderate spatial sampling (~0.5 km)
- Two-axis pointing capability
- Low radiometric calibration uncertainty

Intercalibration: A multidimensional data matching challenge

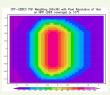


- CLARREO Pathfinder will take concurrent measurements with CERES & VIIRS on NOAA-20 and at least one GEO (although initially L4 data products will only be generated for CPF-CERES &
- CPF-VIIRS intercalibration).
 CPF will also take measurements of pseudo-invariant calibration targets (the Moon, key land sites, DCCs) to improve hyperspectral characterization of these PICTs GSICS has identified N20 VIIRS as its on-orbit reference for reflected solar bands.
- Radiometrically tying N20 VIIRS calibration to CPE calibration in turn can support sensors that use N20

CPF-VIIRS Intercalibration

Spatial Integration

- · CPF pixels are ~0.5 km at nadir
- VIIRS pixels are 375 m and 750 m for the Imager & Moderate Resolution bands, respectively
- CPF-VIIRS intercalibration samples are defined by an arbitrary "virtual instrument" defined to have a 15 km FOV at nadir
- Intercalibration sample centroids are defined such that the samples overlap 50% in "along-track" and "cross-track" directions to obtain sufficient samples with low polarization sensitivity.

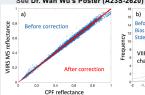


sensor angular matching throughout intercal events

CPF-CERES Intercalibration

Spatial Convolution

- · CPF spectra are spatially convolved using CERES Point Spread Function.
- CERES has a footprint size at nadir of about 20 km2 so about 40x40 CPF nixels are snatially convolved over the CERES Point Spread Function to create CPF intercalibration samples
- This reduces the spatial matching noise between CPF & CERES and enables CPF to more closely emulate CERES measurements.
- We have done studies (lunar) that show that the pre-launch CERES PSEs are stable at less then 0.1% level


Angular Correction

See Dr. Wan Wu's Poster (A23S-2620) in this session for more on the Angular Correction algorithm

within 0.1% (at least within 0.65 um band) Principal Components-Based Radiative Transfer Model (PCRTM)-based correction leverages spectral correlations in CPF spectra to estimate the adjustment that needs to be made to each spatially

Goal to reduce angular difference uncertainty to

convolved CPF spectrum such that it emulates what CPF would have measured if it had the same sunview geometry (SZA, VZA, and RAA) as the target instrument.

Before correction After correction Bias = -0.02% Stdov = 1 93% Stdev = 0.55% VIIRS M5 channel

-0.5 0 0.5 1 1.5 2

- · Figure shows the pre-correction and post-correction relative error for the VIIRS M5 moderate
- The differences were computed from PCRTM-simulated CPF/HySICS-like spectra for Jan 2017 CPF-VIIRS simulated intercalibration events
- · The only differences between the two sets of spectra were the sun-view geometries at which they were simulated.
- · The same algorithm is implemented for both CPF-CERES and CPF-VIIRS intercalibration because it is applied to spatially convolved CPF spectra prior to any spectral convolution/integration
- · We have estimated (using simulated spectra) that for both the CERES SW band and the VIIRS M-bands, that this adjustment can be done within an uncertainty of 0.1%

Spectral Convolution

- Unresolved spectral mismatches between reference and target sensors results in scene-dependent intercalibration comparisons.
- Hyperspectral measurements (3 nm sampling) from the reference sensor (CPF) substantially mitigates the spectral differences.
- The CPF 3 nm spectral sampling across its entire spectral range enables the simulation of moderate
- resolution spectral bands (like MODIS/VIIRS). As-built CPF spectral range does not include sufficient measurement coverage of M11 band

Data Filters Applied

Only include samples with

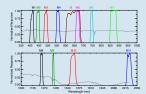
Solar Zenith Angles <60°

Viewing Zenith Angles <60°

least +/- 5° of forward or

Relative Azimuth Angles at

backward scattering regions

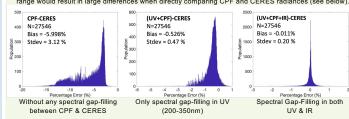

CPF & VIIRS pixel percent

coverage > 95% of sample

Degree of Polarization < 0.1

Homogeneity Factor (σ/μ) <0.2

At 4 nm spectral sampling, the impact is within 0.1% for MODIS bands (Wu et. al. 2015).



HySICS-like reflectance spectrum (grey) and Spectral Response Functions of VIIRS M1-M11 and I1 bands

Spectral Band Extension/Gap-Filling

See Dr. Qiguang Yang's Poster (A23S-2621) in this session for more on the algorithm

 Not accounting for the spectral range difference between the CERES SW band and the CPF spectral range would result in large differences when directly comparing CPF and CERES radiances (see below).

CPF-CERES N20 Intercalibration Sampling

pass filters listed on left.

sample counts needed

assuming spatio-temporal uncertainty of 6% (see

Matthew Little's Poster

(A23S-2622) next door).

Green line shows minimum

- Monthly Intercal Samples Figure shows current **Data Filters Applied** Filtered Samples estimate of CPF-VIIRS Only include samples with intercalibration samples that Solar Zenith Angles <60°
 - Viewing Zenith Angles <60° Relative Azimuth Angles at
 - least +/- 5° of forward or backward scattering regions CPF pixel percent coverage >=
 - 95% of CERES FOV Homogeneity Factor (σ/μ) < 0.2



Figure shows current estimate of CPF-CERES intercalibration samples that pass filters listed on

Green line shows minimum sample counts temporal uncertainty of 4% (supported by preliminary

CPF-VIIRS Intercalibration Summary

- Spatial-Temporal Matching uncertainty is largest individual uncertainty contribution - According to sample filter analysis (panel above), we have sufficient samples monthly to reduce the spatial & temporal matching uncertainty to <0.1%
- · CPF-VIIRS intercalibration algorithms & data analysis applicable to other multi-spectral imagers.
- · For target sensors with similar spatial sampling, a similar "virtual instrument" can be created for simple spatial convolution/averaging.

Combined Uncertainty Combined Uncertainty current best estimates Spatial & Temporal Matching 4/√N 6/√N UST Point Spread Function Centroid Knowledge Spectral Matching 0.1 USpec (0.022 + 0.552/N)0.5Angular Adjustment (0.062 + 0.152/N)0.5 Polarization Sensitivity Differences UPol n/a

Intercal Methodology Uncertainty Estimates

Random Variability Estimated Combined Uncertainty

CPF-CERES Intercalibration Summary

- Spatial-Temporal Matching uncertainty is largest individual uncertainty contribution - According to sample filter analysis (nanel above), we have sufficient samples monthly to reduce the spatial & temporal matching uncertainty to <0.1%
- Similar process could be used to intercalibrate with Libera (CERES follow-on).
- CPF can also be a resource to further validate other consistency studies comparing CERES & Libera measurements

CPF-VIIRS N20 Intercalibration Sampling

All Samples

- (2020): 4096.
 Sayer, A. M., et al., "Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes." Alt.
- Other CLARREO Pathfinder-related posters

 Clark Manual (PCRTM) for Hyperspectral SW and LW Satellite Sensors and Its Applications Xu Liu: A23S-2624 A Principal-Component-b
- Jeff Mast: A23S-2625 Towards optimal estimation retrieval of cirrus cloud optical and mic