INCUS

Ground Validation (Cal/Val)

Vertical transport of water & air in convective clouds as manifested in dZ_e/dt

Walt Petersen¹, Courtney Schumacher², and Patrick Gatlin¹

¹NASA Marshall Space Flight Center; ²Texas A&M University

Vertical transport of water & air in convective clouds as manifested in dZ_e/dt

Profiles^{*}: Z_e , $\Delta Z_e / \Delta t$, $W_c(w_{air}, V_t)$, **CMF**, q_i Important ancillary: hydrometeor types (i), precip rates

Working GV Measurement Foci:

- Updraft vertical profile^{*} evolution, for a variety of convective cores (intensity, lifecycle, type) @ high space/time resolution
- Updrafts > 2 m/s @mid/upper levels (e.g., T < 0°C) with estimation uncertainty in CMF of <1.8 kg/m².
- Microphysics: hydrometeor types/contents

S

Vertical transport of water & air in convective clouds as manifested in dZ_e/dt

Profiles: $W_{C}(w_{air}V_{t})$, CMF, q_{i} Also important: precip rates, phase changes/process

INCUS Validation Concepts

Approach:

- One-three field sites leveraging existing multi-radar + profiler facilities to collect a breadth of profile measurements
- Mine/leverage pre-existing datasets (e.g., profiler, multi-Doppler radar, airborne etc.) for case/statistical analysis
- Secondary focus, satellite coincidence collections f(inclination, sites, cooperation of "nature")

profilers, [augment with other measurements as available]

Baseline Cal/Val Approach	Outcomes
 1. Pre-Launch: a) Pre-existing Dataset analysis (non-INCUS field campaigns) b) Site/platform evaluation & testing for field architecture/ops c) Data processing tools d) Convective Mode Scorecard (CMS) 	 Targeted statistical analysis – specific datasets <i>under survey</i>) Optimized site target recon (CMS), radar ops, and automated target selection (MAAS) Functional multi-Doppler and hydrometeor retrievals from field obs Ka-Band Z_e transfer functions from field radar wavelengths
 2. Post-Launch: Field Measurements a) Multi-field Sites/"regimes"-SE U.S., S. Plains, possibly Front Range; extended observations b) Rapid scan X-S-band dual-pol/Doppler radars, wind 	 Optimized convective core sampling @ <120 s, < 1km between radars and over profilers; updraft (CMF, q_i), f(storm character, CMS) Combined with AUX/PoR variables (GOES, lightning, environment].

Validation to target underlying algorithms and utility for science objectives

Multiple INCUS GV Field Sites Under Study

Pre-Launch Site Evaluation and Testing All TBC

Location	Radar Assets
Huntsville, Alabama DOE/NOAA/UAH collaboration	DOE CSAPR2: C-band, polarimetric, Doppler, MAAS DOE XSAPR: X-band scanning radars, polarimetric, Doppler DOE AMF3 RWP (2): 915-MHz profiler, Doppler MAX: X-band polarimetric, Doppler, <i>MAAS</i> , mobile ARMOR: C-band polarimetric, Doppler, <i>MAAS</i> XPR: X-band radar profiler, Doppler, mobile RADAPS/MIPS: 915-MHz profiler, Doppler, mobile NOAA Profilers: 449-MHz profiler, Doppler
Greely, Colorado CSU	CHIVO: C-band polarimetric, Doppler, MAAS CHILL: S-band + X-band polarimetric, Doppler NOAA Snow-level Radar: S-band profiler, Doppler
Norman, Oklahoma OU	RaxPol: X-band polarimetric, Doppler, rapid scan, mobile PAIR: C-band phased array (PAR), polarimetric, mobile HORUS: S-band PAR, polarimetric, mobile

Note: Complementary aux observations/instrumentation incl. Lightning Mapping Arrays exist at all sites

Notional Schedule for INCUS Ground Validation

Roles and Responsibilities

NASA MSFC and Texas A&M Univ. overall responsibility for providing reference datasets to the INCUS Science Team for ground validation activities.

• GV Team: MSFC/TAMU/CSU/SBU: Pre/Post launch planning and execution of field measurements, dataset production/delivery, exploration and analysis of existing datasets for pre-launch validation

Preliminary Cal/Val plan

Timeline: Prelim version due 30 days before CDR (Jun 2024), final version due 30 days before ORR (2026)

Goal: Describe approach for i) validating INCUS instrument data (L1, Simone Tanelli), ii) characterizing the performance of the retrieval algorithms and data-product accuracy (L2, Walt/Courtney/Patrick)

- Regular meet-ups every three weeks, next meeting is December 19th at 11 am MT
- Please feel free to join in our calls or contribute material and ideas

Preliminary Cal/Val plan

Minimum requirements for plan (draft in progress):

- 1. Description of planned validation activities including what is being analyzed and how it relates to instrument performance to produce specific data products
 - Emphasis on high-quality w and dz measurements above 0°C at high delta t (splinter group to focus on equivalent Ka calculations)
 - Priority is CMF and validation of 2B-fluxes, but other algorithms and their components will be assessed
- 2. Plan for coordination with available or ongoing ground data collection and field campaigns
 - Existing datasets e.g., ESCAPE, NARL profilers
 - Pre-launch opportunities (2024-26) e.g., mini-campaigns in CO and OK, DOE/NOAA/UAH collaboration in AL
 - Creation of field operations "blueprint" with suggested instrumentation and MAAS scanning strategy
- 3. Plan for conducting field studies during INCUS operations
 - Extend pre-launch operations for longer record and enhanced statistics, and to other locations (including outside of CONUS) using "blueprint"
 - Ensure sufficient sampling of convective modes (current action item is to mine satellite climatologies)
- 4. Schedule for release and archiving of the validating data products
- 5. Timeline and annual budget with milestones

Challenge: Observe and "measure" rapidly evolving physics at fine scales

ARMOR RHI Scans 07/05/2007 multi-az. RHI volumes

All within a typical 88D volume scan

Isolated deep storm, rain/hail mix