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Abstract. Nitrogen dioxide (NO2) is an important trace-gas
pollutant and climate agent whose presence also leads to
spectral interference in ocean color retrievals. NO2 column
densities have been retrieved with satellite UV–Vis spectrom-
eters such as the Ozone Monitoring Instrument (OMI) and
the Tropospheric Monitoring Instrument (TROPOMI) that
typically have spectral resolutions of the order of 0.5 nm
or better and spatial footprints as small as 3.6 km× 5.6 km.
These NO2 observations are used to estimate emissions,
monitor pollution trends, and study effects on human health.
Here, we investigate whether it is possible to retrieve NO2
amounts with lower-spectral-resolution hyperspectral im-
agers such as the Ocean Color Instrument (OCI) that will fly
on the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)
satellite set for launch in early 2024. OCI will have a spectral
resolution of 5 nm and a spatial resolution of ∼ 1 km with
global coverage in 1–2 d. At this spectral resolution, small-
scale spectral structure from NO2 absorption is still present.
We use real spectra from the OMI to simulate OCI spectra
that are in turn used to estimate NO2 slant column densi-
ties (SCDs) with an artificial neural network (NN) trained on
target OMI retrievals. While we obtain good results with no
noise added to the OCI simulated spectra, we find that the
expected instrumental noise substantially degrades the OCI
NO2 retrievals. Nevertheless, the NO2 information from OCI
may be of value for ocean color retrievals. OCI retrievals

can also be temporally averaged over timescales of the or-
der of months to reduce noise and provide higher-spatial-
resolution maps that may be useful for downscaling lower-
spatial-resolution data provided by instruments such as OMI
and TROPOMI; this downscaling could potentially enable
higher-resolution emissions estimates and be useful for other
applications. In addition, we show that NNs that use coeffi-
cients of leading modes of a principal component analysis of
radiance spectra as inputs appear to enable noise reduction
in NO2 retrievals. Once trained, NNs can also substantially
speed up NO2 spectral fitting algorithms as applied to OMI,
TROPOMI, and similar instruments that are flying or will
soon fly in geostationary orbit.

1 Introduction

Nitrogen dioxide (NO2) is an important trace gas for both
air quality and climate. It is identified as a criteria pollutant
by the United States (US) Environmental Protection Agency
(EPA). As a climate agent, it is a precursor for tropospheric
ozone, a potent greenhouse gas in the upper troposphere.
NO2 also contributes to the formation of aerosols that can
cool the planet by reflecting incoming solar radiation back
to space (Shindell et al., 2009). Over non-polluted regions,
most of the atmospheric column of NO2 resides in the strato-
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sphere, where it participates in photochemical reactions that
can affect the ozone layer (see, e.g., van Geffen et al., 2020,
and references therein).

Much effort has been expended to develop sophisticated
physically based retrieval algorithms for spectrometers that
measure scattered solar radiation at ultraviolet (UV) and blue
wavelengths at the ground (e.g., Noxon, 1975; Platt and
Perner, 1983; Platt, 1994; Platt and Stutz, 2008) as well as
from satellite platforms (e.g., Burrows et al., 1999; Richter
and Burrows, 2002; Bucsela et al., 2006; Boersma et al.,
2007, 2011; Valks et al., 2011; Bucsela et al., 2013; Yang
et al., 2014; Marchenko et al., 2015; Boersma et al., 2018;
van Geffen et al., 2020; Lamsal et al., 2021). Retrievals
from satellite-based instruments such as the Global Ozone
Monitoring Experiment (GOME) (Burrows et al., 1999),
SCIAMACHY (Bovensmann et al., 1999), the Ozone Mon-
itoring Experiment (OMI) (Levelt et al., 2006), GOME-2
(Munro et al., 2016), the Ozone Mapping and Profiler Suite
Nadir Mapper (OMPS-NM) (Bak et al., 2017), and the TRO-
POspheric Monitoring Experiment (TROPOMI) (Veefkind
et al., 2012) have been used in numerous studies related to
top-down emissions estimates, air quality monitoring and
forecasting, pollution events, trends, and related health stud-
ies (see, e.g., Bovensmann et al., 2011; Lamsal et al., 2015;
Krotkov et al., 2016; Duncan et al., 2016; Levelt et al., 2018;
Goldberg et al., 2021; Kerr et al., 2021; Cooper et al., 2022,
and references therein).

NO2 absorption impacts satellite radiance measurements
that are used in ocean color algorithms. The affected spectral
ranges include those used for retrievals of colored dissolved
organic matter (CDOM) and chlorophyll a (e.g., Mannino
et al., 2008; Le and Hu, 2013). In particular, large varia-
tions in NO2 total columns near polluted coastlines can affect
ocean color measurements from sensors in both low-Earth
orbit (LEO) and geostationary Earth orbit (GEO) (Ahmad
et al., 2007; Tzortziou et al., 2014). For example, under high
NO2 loading (∼ 1× 1016 molec. cm−2), if not accounted for,
errors in water-leaving radiance could reach 10 %–20 % (Ah-
mad et al., 2007) and produce spectral structure that can in-
terfere with ocean color retrievals.

Two planned hyperspectral imagers, the Ocean Color In-
strument (OCI) on the Plankton, Aerosol, Cloud, ocean
Ecosystem (PACE) mission in LEO and the GEO Geosyn-
chronous Littoral Imaging and Monitoring Radiometer
(GLIMR) were designed for ocean color measurements. The
PACE OCI is scheduled to launch in the early 2024 time
frame (Werdell et al., 2019), and GLIMR will make diur-
nal measurements over the Gulf of Mexico and surrounding
coastlines later this decade (NASA, 2019). There are sev-
eral options for atmospheric NO2 correction algorithms for
ocean property retrievals: (1) use of a satellite-based NO2
climatology; (2) use of co-located satellite data from atmo-
spheric instruments, such as TROPOMI; (3) use of simulated
NO2 data from a chemistry transport model. However, all
of these have shortcomings. For example, NO2 derived from

atmospheric instruments may not be available at the spatial
or temporal scales of ocean color instruments. While a cli-
matology or model simulations can capture the basic fea-
tures of NO2, including high values around coastal cities,
they may miss important details of pollution plumes that can
extend over the ocean. It should also be noted that while
TROPOMI and PACE will be in similar orbits (the respec-
tive TROPOMI and PACE Equator crossing times are 13:30
and 13:00 LST, local solar timeCE1 ), TROPOMI will be near-
ing its end of primary mission by the time PACE launches;
its follow-on mission, Sentinel-5, will be in a morning orbit
(09:30 LST Equator crossing time) that will result in more
temporal mismatch with PACE. Therefore, it has been a
stated and challenging goal of these ocean color missions
to quantify NO2 spatiotemporal variations with their lower-
spectral-resolution measurements. NO2 retrievals have been
demonstrated with hyperspectral sensors on aircraft (Tack
et al., 2017; Kuhlmann et al., 2022) and the Russian Resurs-
P satellite (Postylyakov et al., 2017, 2019; Zakharova et al.,
2021); these sensors have somewhat higher spectral resolu-
tion than PACE and GLIMR.

This paper attempts to answer two questions: (1) Can NO2
slant columns be accurately estimated with planned ocean
sensors such as PACE OCI and GLIMR using a machine
learning algorithm?; (2) Can the machine learning techniques
developed for retrieving NO2 from the ocean color instru-
ments be harnessed to improve existing algorithms applied
to atmospheric instruments, both in terms of quality and ef-
ficiency? If the answer to question 1 is affirmative and re-
trievals from PACE OCI and GLIMR are successful, they
could provide improved spatial resolution of NO2 total col-
umn amounts compared with existing instruments, a benefit
for land and ocean retrievals as well as for atmospheric sci-
ence. Regarding question 2, state-of-the-art spectral fitting
algorithms can be computationally burdensome. Algorithm
efficiency is particularly important for current and future at-
mospheric composition instruments, including those in geo-
stationary orbit, that have very large data volumes. Machine
learning has been shown to be an efficient means of estimat-
ing NO2 vertical columns from satellite spectra (Li et al.,
2022) as well as for other applications in remote sensing and
geoscience (Maxwell et al., 2018; Lary et al., 2016). In addi-
tion, machine learning combined with principal component
analysis may be able to reduce noise in the spectral fitting
compared with the more traditional approaches.

2 Data and methods

2.1 OMI, PACE, and GLIMR satellite instrument
characteristics

Table 1 gives a summary of the approximate relevant char-
acteristics of the satellite instruments used in this study and
other relevant sensors used for NO2 retrievals. OMI is a
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push-broom spectrometer that measures backscattered sun-
light and solar irradiance (Levelt et al., 2006, 2018). There
are three separate detectors on OMI. We ran experiments
with Level 1B (L1B) Global Geolocated Earthshine Radi-
ances from the OMI collection 3 for the visible (Vis) (Dob-
ber, 2007b)TS1 and UV-2 detectors (Dobber, 2007a) that
cover wavelengths from 349 to 504 and from 307 to 383 nm,
respectively. OMI employs a two-dimensional (2D) charged-
coupled device (CCD) that provides spectral information in
one dimension and spatial information in the other. This re-
sults in 60 rows of spectra in the cross-track direction. Space-
craft motion provides observations along the satellite swath.
Therefore, each cross-track row of OMI can be considered as
a distinct instrument with its own characteristics (e.g., wave-
lengths, response functions, and calibration) and biases. The
wavelengths vary slightly across the swath resulting in a so-
called spectral smile. We use data from early in the mission
(2005) for this study. Later in the mission, some of the rows
were affected by an anomaly presumably outside the instru-
ment that caused blockage and scattering of light into some
of OMI’s rows (Levelt et al., 2018) resulting in a decrease in
spatial coverage. OMI’s spatial resolution is approximately
13 km in the along-track direction by 24 km in the cross-
track direction at nadir with larger pixels towards the swath
edges. The total swath width is ∼ 2600 km. The TROPOMI
instrument has similar spectral characteristics for NO2 re-
trievals but with higher spatial resolution. PACE OCI will
cover wavelengths from UV (∼ 340 nm) through the short-
wave infrared wavelengths. It will provide daily global cov-
erage from LEO at a spatial resolution of approximately 1 km
(Werdell et al., 2019). GLIMR will have a spatial resolution
of about 300 m.

Figure 1a shows the specified signal-to-noise ratio (SNR)
for GLIMR provided by the instrument team (Antonio Man-
nino, personal communication, 2022); we assume these val-
ues are independent of radiance value. Figure 1b shows an
SNR model for PACE OCI based on measurements, where
the SNR varies with radiance, also provided by the instru-
ment team (Brain Cairns, Bryan Franz, Gerhard Meister, and
Shihyan Lee, personal communication, 2022). Typical ra-
diance distributions for different wavelengths are shown in
Appendix A. Note that, for the determination of NO2 tro-
pospheric vertical columns, cloudy observations are used to
help estimate stratospheric column amounts, so that the full
range of radiance values is needed, not just clear-sky obser-
vations (Bucsela et al., 2013).

2.2 NO2 absorption cross sections and differential
optical absorption spectroscopy (DOAS) retrievals

NO2 absorption covers a broad range of wavelengths from
the UV to the near-infrared (NIR) with a peak near 400 nm.
Figure 2 shows NO2 absorption cross sections from the UV
through to the red wavelengths (Vandaele et al., 1998), where
the blue and green curves have been convolved and resam-

pled to approximate effective cross sections for OMI and
OMPS, respectively. The red and black curves show the NO2
cross sections convolved with boxcar functions of widths 5
and 10 nm and two samples per box, similar to the expected
spectral resolution and sampling of OCI and GLIMR, re-
spectively. Particularly at the OCI spectral resolution, there
is still marked high-frequency structure throughout the visi-
ble wavelength range.

Most NO2 spectral fitting algorithms are based on the dif-
ferential optical absorption spectroscopy (DOAS) methodol-
ogy (e.g., Platt and Stutz, 2008). In a DOAS-type spectral
fit, the retrieved quantity is the slant column density (SCD)
of a weakly absorbing trace gas, defined as the integrated
number of molecules per unit area to produce an observed
amount of absorption at a particular wavelength along the
total atmospheric photon path. DOAS generally works by fit-
ting appropriately convolved absorption cross sections (ef-
fective cross sections) to the logarithm of Sun-normalized
radiance spectra for a given fitting window. A DOAS slant
column retrieval for NO2 involves fitting the high-frequency
structure in the NO2 absorption cross sections generally in
the range of 400–497 nm (see Fig. 2) while accounting for
the low-frequency envelope of NO2 absorption, e.g., using a
polynomial function (e.g., Richter and Burrows, 2002; Lerot
et al., 2010; Richter et al., 2011; Marchenko et al., 2015; van
Geffen et al., 2015, 2020). At the GLIMR spectral resolution,
a retrieval would likely need to make use of the broad NO2
absorption feature peaking at around 400 nm rather than the
finer spectral features used in DOAS retrievals. While this
type of approach has been achieved for ozone (Fleig et al.,
1986) whose stratospheric column amount is typically quite
large, it has not be demonstrated for gases with weaker ab-
sorption (owing in part to lower column amounts) such as
NO2.

Within any type of spectral fit, other known absorbers or
pseudo-absorbers, such as rotational-Raman scattering (also
known as the Ring effect), should be accounted for. In typ-
ical NO2 fitting windows, the interfering absorbers include
ozone (O3), water vapor (H2O), the oxygen dimer (O2−O2),
and glyoxal (CHO−CHO). The spectral signature of the
Earth’s surface must also be accounted for along with other
instrumental effects such as spectral alignment of the radi-
ance spectra and proper characterization of the instrument
response function.

A secondary retrieval step involves estimation of the ver-
tical column density (VCD) of NO2 using the SCD, Sun–
satellite geometry, and information about clouds, aerosols,
the Earth’s surface, and the NO2 profile shape. The SCD and
VCD are related through the concept of an air mass factor
(AMF), i.e., VCD=SCD /AMF. Both the SCD and AMF
are formally wavelength dependent, so that typical DOAS re-
trievals using a range of wavelengths to fit a single value SCD
or compute an AMF refer to an average over the fitting win-
dow. Richter et al. (2014) have accounted for this wavelength
dependence, but this type of approach is typically not used in
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Table 1. Summary of the instruments discussed in this work and their spectral and spatial specifications.

Satellite and instrument Spectral Spectral Spectral Spatial Coverage
range resolution sampling resolution
(nm) (nm) (nm) (nadir, km)

Aura OMI Vis detectora 349–504 0.63 0.21 13× 24 Global, 1–2 d
Sentinel-5P TROPOMI Vis detectorb 400–496 0.54 0.20 3.6× 5.6 Global, 1 d
PACE OCIc 340–890 5 2.5 1× 1 Global, 1 to more than 2 d
GLIMRd 340–1040 10 5 0.3× 0.3 Regional coastlines, sub-daily

a Schenkeveld et al. (2017). b van Geffen et al. (2022). c Werdell et al. (2019). d Antonio Mannino, personal communication (2022).

Figure 1. (a) The specified GLIMR SNR, which is assumed to be constant with radiance, and (b) the PACE OCI SNR as a function of
wavelength and radiance based on measurements provided by the instrument team.

Figure 2. NO2 cross sections from Vandaele et al. (1998) convolved
with boxcar functions of different widths: blue – similar spectral
characteristics to OMI (although the OMI range is limited to wave-
lengths < 500 nm; green – similar to OMPS-NM; red – similar to
OCI; black – similar to GLIMR.

operational algorithms. A direct VCD spectral fitting algo-
rithm was also applied to UV wavelengths to retrieve NO2
from the OMPS-NM (Yang et al., 2014).

2.3 Data flow and retrieval

Figure 3 shows a flow diagram of the data processing that
we use here to train and evaluate results from a neural net-
work (NN) that predicts NO2 SCDs using simulated data
from imagers, such as OCI and GLIMR, with lower spec-
tral resolution compared with spectrometers, such as OMI
and TROPOMI, designed for atmospheric measurements. We
simulate OCI and GLIMR observations by reducing noise
and then spectrally averaging and resampling OMI radi-
ances and adding noise according to instrument specifica-
tions and measurements (see Fig. 1). A machine learning ap-
proach is then employed to estimate the OMI-derived NO2
slant columns with simulated data from the lower-spectral-
resolution instruments. As explained in more detail below,
we focus on NO2 SCD retrievals. The conversion of SCD to
total or tropospheric VCD can be accomplished in a straight-
forward and computationally efficient manner as in current
algorithms and is not addressed further here. Information
about the surface, aerosol, and clouds, such as cloud/aerosol
radiance fraction and effective pressure (e.g., from the O2 A
band), needed for the calculation of the AMF, will be avail-
able from OCI itself (Werdell et al., 2019). Details of the in-
put features, target outputs, and architecture of the machine
learning algorithm are provided in the following subsections.
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Figure 3. Data flow diagram showing the simulation of radiance for a low-spectral-resolution hyperspectral instrument (PACE OCI) using
observations from a higher-spectral-resolution instrument (OMI) as well as training and evaluation of a neural network (NN) to estimate
NO2 slant column densities (SCDs).CE2

2.3.1 OMI NO2 data

We use the destriped SCDs (parameter name SlantColum-
nAmountNO2Destriped) from the collection 3 version 4.0
OMNO2 NO2 product (Lamsal et al., 2021; Krotkov et al.,
2019) as the NN training target. The NO2 spectral fitting
algorithm is based on Marchenko et al. (2015), who use
an iterative approach in which the 402–465 nm range is
broken up into seven smaller overlapping micro-windows.
This method leads to flexible determination of wavelength-
dependent shifts between radiance and irradiance spectra as
well as the rotational Raman scattering or so-called Ring
spectrum. The overall OMI standard NO2 product has under-
gone substantial changes over the years after being evaluated
in numerous studies with respect to other model-, ground-,
air-, and satellite-based data sets (e.g., Lamsal et al., 2014;
Choi et al., 2020, and references therein).

2.3.2 Simulated OCI and GLIMR data

We start with the OMI Level 1B (L1B) radiances. Unlike
in standard OMI retrieval algorithms, we do not perform
any normalization with respect to either an observed or re-
constructed (laboratory) solar reference spectrum. While this
normalization could be done and there may be advantages,
such as for processing long time series in which instrument
degradation occurs, here we elected to keep the approach as
simple as possible.

The next step is to optionally reduce noise in the OMI data
using a principal component analysis (PCA) approach, where
spectra are reconstructed using coefficients of leading prin-
cipal components (PCs) constructed from a large sample of

data. Here, as in standard DOAS fits, we use the natural log-
arithm of the radiances, although without normalization, as
discussed above. The goal of the noise reduction is to pro-
vide a relatively clean, although not necessarily perfect, set
of spectra to simulate data for different instrument configu-
rations. Our aim is to produce a realistic simulation of satel-
lite observations. While we could have used simulated spec-
tra instead of OMI data, it would be difficult to capture all
of the complexities present in real satellite-observed spectra,
including instrumental artifacts, and other complex interac-
tions involving scattering and absorption in the atmosphere
and at the surface.

The data sample used in the initial PCA starts with all ob-
servations from 1 d in every month (the 15th day) in 2005
supplemented with additional days in winter when the NO2
lifetime is long and pollution can build up in the boundary
layer to give very high SCDs. The added high-pollution days
are 29 January through 4 February of 2005. The same data
sample is used for training and evaluating the NN models,
as described below. Use of a large sample spanning different
seasons ensures that we cover a wide range of Sun–satellite
geometries as well as pollution, cloud, and surface conditions
in the training data.

We found, by trial and error, that use of 60 PCs suffi-
ciently reconstructs the OMI spectra in the range of 349–
503 nm (742 spectral samples) for the purposes of NO2 spec-
tral fitting, while removing spurious features that can occur
for example within the South Atlantic Anomaly region, as
described by Gorkavyi et al. (2021). In other words, beyond
this number, there is not significant correlation between PCs
and NO2 absorption cross sections. The cleaned OMI L1B
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data are then averaged over different spectral band passes
to simulate data from lower-spectral-resolution instruments.
Here, we used a simple boxcar function with widths of 5
and 10 nm and resampled at 2.5 and 5 nm to simulate OCI-
and GLIMR-like instruments, respectively. This produces 59
samples for the OCI-like instrument for a spectral range of
355–502.5 nm. Finally, noise following a Gaussian distribu-
tion is optionally added to the simulated spectra at the same
wavelength grid for all rows according to instrument speci-
fications and measurements. Here, we assume that errors are
not correlated with wavelength, as information on correlated
errors was not provided. Correlated errors could possibly de-
grade the performance of the retrieval if the NN is not able to
effectively account for them.

2.3.3 Machine learning architecture

The machine learning algorithm was constructed within the
Interactive Data Language (IDL) software package. It con-
sists of a three-layer feed-forward artificial NN with two hid-
den layers and 1.3N nodes in each layer, whereN is the num-
ber of inputs (Schmidhuber, 2015). Details regarding the in-
puts are given below. The output layer has OMI NO2 SCD
as a single node. We use a soft-sign activation function for
the first layer, a logistic (sigmoid) for the second layer, and a
bent identity for the third layer. An adaptive moment estima-
tion optimizer minimizes the error function with a learning
rate of 0.1. We scale all inputs and outputs such that means
are zero and standard deviations are equal to unity.

2.3.4 NN inputs

We perform a PCA (or eigen-decomposition) of the simu-
lated spectra using the same data sample as described above
for the noise reduction. The coefficients of a leading num-
ber of PCs are used as inputs to the NN. We find that the
NN training converges faster when coefficients of the PCs
are used rather than the measured radiances themselves, even
when coefficients of all modes are used as inputs. The PCA
concentrates on the spectral features corresponding to in-
formation about the atmosphere and surface in the leading
modes while projecting the random instrument noise onto the
trailing modes. This may make it easier for the NN to reject
those coefficients with little information content pertaining
to the target. We found, by trial and error, that maintaining a
number of PCs equal to half the number of spectral elements
was sufficient to capture the spectral information associated
with NO2 while providing some noise reduction. As the trail-
ing PCs typically express random spectral noise, eliminating
these modes can lead to noise reduction.

We then perform quality control on the spectra. We re-
move all data with slant columns less than zero or greater
than 1× 1017 molec. cm−2. We also remove any pixels where
the solar zenith angle (SZA) is greater than 75◦. Finally, we

check that the quality flag on the OMI SCD data indicates a
good fit.

The NN training is performed separately for each OMI
CCD detector row, because each row has unique spectral
characteristics. While it is possible to perform NN training
on all rows at once, as the data are spectrally averaged to a
uniform wavelength grid as in Fasnacht et al. (2022), we find
that slightly better performance is achieved by training on
each row individually.

The inputs to the NN are then the coefficients of the lead-
ing PCs and other optional parameters that may aid the NN
in trying to match the target OMI NO2 SCD output vari-
able. An important consideration for the selection of input
parameters is that we are training a NN to estimate SCDs
produced by a DOAS-like algorithm that used a more narrow
fitting window weighted towards the blue spectral region, as
noted in Fig. 2. SCDs, because they depend upon the atmo-
spheric photon path, are by definition wavelength dependent.
UV wavelengths have less sensitivity to lower-tropospheric
NO2 than blue wavelengths owing to the effects of Rayleigh
scattering that increase towards the UV and generally reduce
the amount of light reflected from the surface (Richter et al.,
2014).

We tested several parameters that can help to determine
how much of the OMI-derived SCD originates from the
lower troposphere, where UV wavelengths have less sensitiv-
ity. These include the cosine of the solar and view zenith an-
gles, the cosine of the scattering angle, the stratospheric NO2
column from the Global Modeling Initiative (GMI) chem-
ical transport model, the geometry-dependent Lambertian-
equivalent reflectivity (GLER) of the surface (Vasilkov et al.,
2017, 2018; Qin et al., 2019; Fasnacht et al., 2019), the sur-
face pressure, and the effective scene pressure that is related
to both the cloud pressure and optical thickness. Over ocean,
the GLER accounts for the anisotropy of solar reflection from
the ocean surface and backscatter from the bulk of ocean wa-
ter; over land, it accounts for the bi-directionality of scat-
tered sunlight from shadowing in vegetation. We also tried
to use the stratospheric column provided by the Global Mod-
eling Initiative (GMI) model multiplied by the stratospheric
air mass factor, i.e., the expected stratospheric SCD based on
the model estimate.

The parameters that were ultimately selected as input fea-
tures are shown in Fig. 3. We find that the combination of
stratospheric column NO2 and the cosines of solar zenith and
scattering angles slightly improve the estimates of the target
OMI NO2 SCDs, as discussed in more detail below. The co-
sine of the view zenith angle is nearly constant for a given
row and does not provide significant improvement. The other
inputs tested similarly did not substantially improve the fit-
ting. The spectra themselves contain information about these
variables, although the training of the NN may require more
iterations if these variables are not included as predictors.
For example, information about the cloud optical thickness
and underlying surface is present in the radiances and can be
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disentangled using machine learning (Joiner et al., 2022; Fas-
nacht et al., 2022). Information about cloud pressure is con-
tained within the oxygen dimer absorption band near 477 nm
(Acarreta et al., 2004) as well as from the infilling of solar
Fraunhofer lines by rotational-Raman scattering (e.g., Joiner
and Bhartia, 1995). We take a minimalist approach here with
respect to the predictors and only include stratospheric col-
umn amount and the cosines of solar zenith and scattering
angles in addition to coefficients of leading PCs as features
in the results shown below.

2.3.5 NN outputs

We also tested a variety of different target outputs. We tested
both NO2 SCD and the natural logarithm of the NO2 SCD as
target outputs. We find that slightly better results are obtained
using the natural logarithm of the NO2 SCD, likely because
SCDs are more normally distributed in log space, which is
desirable for NN training. Box–Cox transformations (Box
and Cox, 1964) may produce slightly better results again, but
this will depend upon the sample used. As the distributions
of NO2 have undergone changes with time, particularly in
polluted regions, results obtained by training on a single dis-
tribution may not be optimal for a given time period.

We also tried training directly on the total VCD. More iter-
ations for training may be needed owing to complex relation-
ships with atmospheric constituents and the Earth’s surface
that impact the photon pathlength and that are needed to es-
timate the VCD, including dependencies on clouds, aerosol,
and the surface bi-directionality. Without detailed knowledge
of the NO2 profile (only estimates of the stratospheric and
tropospheric columns from the GMI were used), we did not
obtain a satisfactory result; thus, for simplicity, we focus on
SCD exclusively as the target parameter below. The conver-
sion from SCD to VCD can be achieved efficiently using ex-
isting algorithms.

2.3.6 NN training and evaluation

For the training, we used every third data point from
the sample described above (i.e., using data from at
least 1 d in every month), providing more than 100 000
samples for each row. We then compare statistical re-
sults including variance explained (r2); bias, defined
as the mean of SCDtrue−SCDest, where SCDtrue and
SCDest are the true (from OMNO2) and estimated NO2
SCDs, respectively; and root-mean-square difference(

RMSD=
√(∑N

n=1
[
SCDn,true−SCDn,est

]2)
/N

)
based

on independent samples (i.e., not used in the training set).
We did not find evidence of overtraining. We also use a
completely independent day (28 January 2005) for visual
evaluation below.

2.4 Addressing instrumental noise in the training
process

There are several possible ways of dealing with the effects
of instrumental noise in the training and application of NNs.
One method is to train a NN using noiseless data and then
apply the trained network to noisy data. Another method is
to train a NN using noisy data. The latter approach is likely
to provide the best result, as the NN learns how to prop-
erly weight the different wavelengths based on a large sam-
ple that provides information about the wavelength depen-
dence of the SNR. The former approach may work well if
the SNR is relatively constant with wavelength. Another ad-
vantage to the former approach is that only one trained net-
work is needed for either simulations or application to real
data where the inputs could have a variety of different SNRs.

To mitigate the impact of instrumental random noise, one
may either spatially average the noisy SCD retrievals or spec-
trally average radiance observations from adjacent fields of
view (FoV) and use the coefficients computed with averaged
spectra as inputs to the trained NN. If there are spatially de-
pendent biases in the SCD results obtained with noisy data,
these biases will not be eliminated by averaging together
noisy retrievals. Therefore, it may be more advantageous to
average spectra together and present the averaged data as
inputs to a NN. The disadvantage of this approach, as de-
scribed above, is that for optimal results, one may need to
train a separate NN for each SNR scenario. We tested all of
these approaches and found that the best results were ob-
tained by averaging spectra together and training separate
NNs for each SNR scenario. In practice, spatial averaging
of pixels would be employed to increase the SNR, thereby
degrading the spatial resolution of the resulting retrievals.
This is the approach taken by studies such as Tack et al.
(2017) with the Airborne Prism EXperiment (APEX) hyper-
spectral sensor, where spectra were averaged over an array
of 20× 20 pixels (a ground sample distance of 60× 80 m2)
to increase the SNR to 2500. This SNR value gave SCD un-
certainties of 3.4–4.4× 1015 molec. cm−2 with their limited
fitting window of 470–510 nm and full width at half max-
imum (FWHM) values of 2.4–3.4 nm at the center wave-
length of 490 nm. This relatively small fitting window was
used to estimate NO2 SCDs owing to interference from in-
strumental artifacts and/or other atmospheric spectral con-
taminants at other wavelengths where there is strong NO2 ab-
sorption. Postylyakov et al. (2017) similarly averaged spec-
tra from a hyperspectral sensor on the Resurs-P 2 satellite
to a spatial resolution of 2.4 km to provide precision of about
2.5× 1015 molec. cm−2 for SCD. They used a fitting window
covering 420–490 nm for their retrieval with a spectral reso-
lution that varies from 2.5 to 4 nm over this range.
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3 Results

3.1 Results with simulated PACE OCI spectra

We tested approaches initially using spectra from the OMI
UV-2 and Vis channels with a range of 325–502.5 nm. We
concatenated spectra from the two channels using UV-2 for
wavelengths < 355 nm and Vis for the remaining range.
There was only a slight discontinuity in the joined spectra
at the overlap wavelength. However, we found that use of
the UV-2 wavelengths did not significantly improve results
compared with those using the Vis channel alone. There-
fore, all results shown below are obtained using a range or
subset of the range from 355 to 502.5 nm obtained with the
OMI Vis channel only. We note that there is a slight spa-
tial mismatch between the OMI UV-2 and Vis channels that
may have contributed to the overall lack of improvement
using UV-2 wavelengths. In addition, there is limited high-
frequency spectral structure in the convolved NO2 absorption
cross sections in the UV-2 range (see Fig. 2). When PACE
OCI data become available, we encourage testing again using
all available wavelengths including those with wavelengths
> 502.5 nm that are not available from OMI.

Table 2 shows the results of testing with different wave-
length ranges and inputs on a single OMI row (row 1, zero
based) and with and without noise using the SNR models
(Fig. 1). The use of the SNR models assuming no spatial
binning results in significant degradation for both OCI and
GLIMR. For OCI, we find that the use of more restricted
wavelength ranges results in little or no significant degra-
dation in the results compared with the full range of 355–
500 nm. Note that, in all cases, the training target is SCD
from the OMNO2 algorithm that corresponds to the OMNO2
fitting window, and all statistics are computed with respect to
the OMNO2 SCDs. Our results are consistent with the full-
spectral-resolution results of Li et al. (2022), who found an
optimal retrieval window of 390–495 nm for estimating NO2
vertical columns from TROPOMI radiances. Our results in-
dicate that most of the information for NO2 at the OCI spec-
tral resolution is provided by the high-frequency structure of
the radiances produced by NO2 absorption within the fitting
window currently used in the OMNO2 product. Little addi-
tional information is provided by UV wavelengths that de-
fine the more broad NO2 absorption feature. In addition, we
show that removing the geometrical information (cosines of
the solar zenith and relative azimuth angles) results in only a
very small degradation. The use of an estimate of the strato-
spheric column NO2 does appear to aid the estimation of the
NO2 SCD.

Most results in Table 2 are shown for 28 January 2005, a
day not used in the training. For comparison, we also show
results for a model with all predictors where we withheld data
from 15 June 2005 from the training and instead used it for
evaluation. On this day, the correlation is significantly lower
compared with 28 January 2005 and the root-mean-square

difference (RMSD) is slightly higher. In the Northern Hemi-
sphere, there are generally high anthropogenic NOx emis-
sions in populated regions. These emissions lead to higher
NO2 column amounts in the winter when lifetimes are gen-
erally longer. The solar zenith angles are also higher in win-
ter than in summer. These factors lead to higher SCDs in
winter in the Northern Hemisphere populated regions than in
summer. The higher NO2 SCDs and variability in the North-
ern Hemisphere winter result in higher sensitivities and im-
proved global statistics.

The results for GLIMR, shown in Table 2, were not satis-
factory even without adding noise. GLIMR results were sub-
stantially worse with added noise, even after increasing the
nominal SNR by factors of 3 and 6 that would be equiva-
lent to averaging the spectra of 9 and 36 pixels together, re-
spectively. One reason for the poor performance is the lack
of higher-frequency spectral structure of the NO2 effective
cross sections at the GLIMR resolution, particularly at blue
wavelengths (> 400 nm). Another factor is that there are far
fewer available spectral samples for GLIMR; therefore, the
impact of instrumental noise is substantial. No additional re-
sults will be shown for GLIMR.

Table 3 shows the results of the trained NN applied to data
from all rows on 28 January 2005. Here, we report statistics
for SCDs normalized by the stratospheric AMF (essentially
assuming that all NO2 is in the stratosphere) to give a rough
estimate of the VCD. Simulations without noise produced
quite reasonable results, capturing about 94 % of the variabil-
ity with little overall bias. Results degrade noticeably when
the SNR from Fig. 1b is applied to the simulated spectra; the
variability captured drops to about 91 %, and the RMSD in-
creases from about 0.30× 1015 to 0.36× 1015 molec. cm−2.
More than half of the degradation that results from adding
noise is recovered when the SNR is increased by a factor of
4. Such an increase in the SNR could be achieved by averag-
ing together spectra from a 4×4 array of OCI pixels to give
an area of approximately 16 km2, which is still an improve-
ment over TROPOMI or averaging over 16 d of good obser-
vations. We computed statistics for a sample of data with less
pollution (NO2< 4× 1015 molec. cm−2). Here, we see a sig-
nificant decrease in correlation, likely due to lower variability
within the sample and decreased sensitivity, consistent with
results shown for a summer month in Table 2. The RMSD
was also a bit smaller for this cleaner sample.

We also looked at how the performance varies across the
OMI swath. We found better performance at the OMI swath
edges where the SCD values are largest, owing to larger view
angles, leading to deeper absorption features (last two lines
of Table 3; swath edges are the rows with both the highest and
lowest values). Even when normalized by the stratospheric
AMF, the performance enhancement at the swath edges re-
mains.

Figure 4 shows normalized SCD results obtained with data
from 28 January 2005 using the PACE OCI SNR× 2 sce-
nario. The bulk of the normalized SCDs are in the approx-
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Table 2. Statistical comparison of SCD retrievals for row 1 simulated with the SNR models from Fig. 1 for OCI and GLIMR, using 17 390
independent data points on 28 January 2005 (day not used in training, unless otherwise noted) and simulated OCI and GLIMR NO2 SCDs.
“All” refers to the use of all spectral data from the fitting window along with cosines of the solar zenith and relative azimuth angles (angs.)
as well as the stratospheric column (strat. col.); statistics include the root-mean-square difference (RMSD), bias, and variance explained (r2)
of the SCD. The bias and RMSD are given in units of 1015 molec. cm−2. Unless indicated under the noise column, all results with noise
(indicated by “Y”) use the SNR with no assumed spatial binning, as discussed in the text.

Instrument Noise NN inputs Fitting window r2 Bias RMSD
(nm)

OCI N All 355–500 0.964 −0.131 0.805
OCI Y All 355–500 0.933 −0.227 1.096
OCI Y All 400–500 0.937 −0.141 1.040
OCI Y All 400–470 0.932 −0.177 1.084
OCI∗ Y All 355–500 0.876 −0.140 1.176
OCI Y No angs. 355–500 0.933 −0.264 1.117
OCI Y No angs., no strat. col. 355–500 0.911 −0.200 1.248
OCI Y No strat. col. 355–500 0.918 −0.145 1.186
GLIMR N All 355–500 0.913 −0.228 1.237
GLIMR Y All 355–500 0.885 −0.283 1.435
GLIMR Y, SNR× 3 All 355–500 0.890 −0.306 1.429
GLIMR Y, SNR× 6 All 355–500 0.912 −0.242 1.254

∗ Data from 15 June 2005 withheld from training and used as evaluation (16 286 samples).

Table 3. Statistics computed on 28 January 2005 (day not used in training) for simulated PACE OCI SCD normalized by stratospheric air mass
factor with the SNR model from Fig. 1b. Statistics include the root-mean-square difference (RMSD), bias, and variance explained (r2) of the
normalized SCD (normalized by the stratospheric air mass factor). The bias, RMSD, and thresholds are given in units of 1015 molec. cm−2.
The number of samples was 1 113 061 except for the experiment labeled NO2< 4 that used 831 815 samples.

Instrument Noise r2 Bias RMSD Area
(km2)

OCI no noise N 0.941 −0.022 0.295 1
OCI noise Y 0.911 −0.045 0.363 1
OCI SNR× 2 Y 0.925 −0.037 0.333 4
OCI SNR× 4 Y 0.933 −0.029 0.315 16
OCI SNR× 4, NO2< 4 Y 0.821 −0.013 0.306 16
OCI SNR× 4, rows 10–50 Y 0.923 −0.033 0.338 16
OCI SNR× 4, rows 0–10, 50–59 Y 0.953 −0.022 0.262 16

imate range of 1× 1015–4× 1015 molec. cm−2. Figure 4b
shows that there is little evidence of striping (systematic row-
dependent errors) in the NN results. Note that there was no
attempt to destripe the SCDs on this day of independent
data as is done on a daily basis in the OMNO2 data used
to train the NN. Striping can occur on an orbital or daily ba-
sis which is why OMNO2 initial SCDs undergo a destriping
process. Figure 4c shows that there are some systematic dif-
ferences between OMNO2 and the NN normalized SCDs as
a function of latitude. For example, the NN-derived SCDs are
lower than OMNO2 at low southern latitudes (over Antarc-
tica) and also at middle northern latitudes that tend to occur
for higher values of SCD (see Fig. 4a, d), likely over polluted
regions. The NN values are somewhat higher near the Equa-
tor. These systematic differences are not understood and may
result from errors in either OMNO2 or the NN.

Figure 5 shows an example of how the NO2 SCD errors
may be spatially correlated. Because we use OMI data as the
“truth” or target for training, simulated PACE OCI results are
shown at the OMI spatial resolution rather than at the OCI
resolution. The reader must imagine that real OCI results can
be obtained at a spatial resolution as high as 1 km× 1 km,
rather than at the OMI resolution (12 km× 24 km at nadir)
shown here. Judd et al. (2020) provided examples of fine-
resolution NO2 over an urban area as measured from an air-
craft instrument.

Here, we display retrieved SCDs based on simulations at
various SNR levels on 28 January 2005, a day with high pol-
lution over the northeastern and midwestern portions of the
United States. Figure 5a shows the original OMNO2 SCDs
normalized by the stratospheric AMFs to provide values sim-
ilar to the total VCDs. These are considered as the true val-
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Figure 4. Global data from 28 February 2005 from a training where each point represents the result that would be obtained using the OCI
spectral characteristics and SNR from Fig. 1b multiplied by 2 with a fitting window of 355–500 nm; (a) density distribution (numbers along
the top) of NO2 target OMNO2 SCD (all results here are normalized, as indicated by the norm subscript, with respect to the stratospheric
air mass factor) versus those from the NN training with statistics including the standard deviation of the difference (SD), fraction of variance
explained (r2), and mean of difference between the NN and target (bias); (b–d) density distribution of the NO2 SCD difference (NN
SCD−OMNO2 SCD) as a function of OMI row number, latitude, and NO2 SCD, respectively.

ues used for comparisons with those from simulated OCI re-
trievals. Figure 5b shows the estimated fraction of radiance
coming from cloudy portions of a pixel (cloud radiance frac-
tion). In areas that have cloud radiance fractions approach-
ing unity, most of the observed NO2 SCD would result from
NO2 in the stratosphere or upper troposphere owing to clouds
that screen the polluted atmosphere below them from satellite
view. Note that pixels with snow cover that is not reported in
the input snow/ice data set will be reported as cloud cover.

Results obtained using the simulated PACE OCI spectra
with no noise added (Fig. 5c, d) show relatively small re-
gional differences, with the largest differences occurring over
highly polluted areas with some spatial dependence. Differ-
ences over polluted regions may occur because wavelengths
in the UV, which the OCI retrieval uses, have less sensitiv-
ity to NO2 in the boundary layer where NO2 can accumu-
late under high-pollution conditions. It is also possible that
there are imperfections in the OMNO2 data. The “no noise”
case represents the best result (upper limit) that can be ex-
pected based on the OCI sampling and spectral resolution
for this particular training scenario. We tried alternate train-
ing scenarios such as training and applying NNs separately
over land and water, but this failed to remove all of the dif-
ferences.

The effects of the expected PACE OCI instrument noise,
shown in Fig. 5e and f, degrade the results with noticeably

larger differences in NO2 SCDs over the relatively clean
oceanic regions and spatially dependent differences over pol-
luted areas. The effect of adding random noise to the spectra
causes the NN to draw less closely to the input data, and the
ultimate effect may be to produce systematic or spatially de-
pendent errors as well as random errors. Figure 6a–d shows
results of simulations using the OCI SNR multiplied by 2
or 4. The effect of increasing the SNR reduces the spatially
dependent differences in polluted areas.

Figure 6e shows fitting uncertainties as given in the
OMNO2 data set. The SCD uncertainties generally corre-
spond to values of ∼ 0.12 to 0.6 molec. cm−2 in the nor-
malized SCD. For the case of no noise added to the sim-
ulated OCI spectra in Fig. 5c and d, most differences fall
within the range of fitting uncertainties. As noise is added to
the simulated OCI spectra, the differences start to fall more
outside the OMNO2 fitting uncertainties, particularly in the
polluted areas. Figure 6f shows a histogram of normalized
SCD for low values typical of cleaner regions (0× 1015–
4× 1015 molec. cm−2 CE3 ) for OMNO2 and for the case of
OCI spectra with noise added according to 2× the SNR
model. Here, we see a more peaked distribution of values
for the NN estimates. This may indicate that the NN with in-
puts of leading PCA coefficients may be reducing the effects
of random instrument noise. We further investigate potential
noise reduction for a cleaner region in Sect. 3.3.
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Figure 5. Data from 28 January 2005 (day not used in fitting) for NO2 SCDs normalized by the stratospheric air mass factor (normalized
SCD); (a) normalized SCDs from the OMI OMNO2 algorithm; (b) cloud radiance fraction for the NO2 fitting window from OMNO2;
(c, e) normalized SCDs from the NN algorithm evaluated at each OMI pixel using OCI spectral characteristics and a fitting window of 355–
500 nm with no noise and with the SNR model of Fig. 1b, respectively; (d, f) corresponding differences with respect to OMNO2 normalized
SCDs for the results shown in panels (c) and (e), respectively.

3.2 Practical implementation issues

We next address how our approach can be practically
implemented with a high-spatial-resolution, low-spectral-
resolution hyperspectral sensor such as PACE OCI and an
existing moderate-spectral-resolution spectrometer such as
TROPOMI. The desired retrieved quantity for atmospheric
correction in ocean color algorithms is not the NO2 SCD
for a particular fitting window but rather the VCD such that

the appropriate absorption can then be accurately computed
at any wavelength for atmospheric correction (Ahmad et al.,
2007). Once a NN is trained to produce NO2 SCD from input
spectra, the SCDs may be converted to VCD using a com-
puted AMF that will be a function of the Sun–satellite geom-
etry, surface and cloud conditions, and NO2 profile shape,
as described above and shown in Figs. 7–8. This is typically
accomplished with lookup tables and model-generated NO2
profiles. With the NO2 VCD, the spectral transmittance due
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Figure 6. Similar to Fig. 5 showing data from 28 January 2005 (day not used in fitting): (a, c) NO2 SCDs normalized by the stratospheric
air mass factor (normalized SCD) and for NN algorithms trained on data sets using OCI spectral characteristics and a fitting window of 355–
500 nm, evaluated at each OMI pixel using 2× and 4× the SNR from the model of Fig. 1b, respectively; (b, d) corresponding differences
with respect to OMNO2 normalized SCDs shown in Fig. 5a; (e) fitting uncertainties in normalized SCD from OMNO2; (f) histograms of the
lower end of normalized SCDs from OMNO2 and the NN model with 2× the OCI SNR.

to NO2 can then be computed with a radiative transfer model
that will be a function of wavelength, the surface albedo,
and other absorbers and scatters in the atmosphere. This last
step may be performed with either a lookup table or machine
learning.

To use NO2 SCDs from TROPOMI or a similar spectrom-
eter for the training of a NN with co-located spectra from
a higher-spatial-resolution hyperspectral instrument, such as

OCI, as inputs for the purpose of estimating SCDs from the
imager, it is necessary to use radiative transfer to transform
the SCDs from the spectrometer to the appropriate Sun–
satellite geometry of the imager, as shown in Fig. 7; the
overlap between these two instruments on different satellites
will not typically occur for the same Sun–satellite geome-
tries. One approach to prepare a training data set would be
to use the total VCD retrievals from the spectrometer (e.g.,
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Figure 7. Flow diagram showing the processes and data needed to estimate the NO2 VCD using TROPOMI data co-located with OCI. Data
sets are indicated by blue boxes, dynamic processes are shown using purple, and a static process is displayed in black. Components needed
to compute the VCD once the NN training process is complete are shown within the light purple overlay.

Figure 8. Similar to Fig. 7 but showing processes to estimate NO2 VCD using only OCI data. The dashed line shows an alternative flow that
does not require training a NN.

TROPOMI) to derive an estimated SCD for the imager (e.g.,
OCI) at its geometry. One can simply apply computed AMFs
at the appropriate geometries. This can be written as follows:

SCDimager =SCDspectrometer/AMFspectrometer

×AMFimager

=VCDspectrometer×AMFimager, (1)

where AMFimager is the AMF computed using the same in-
puts as for the spectrometer (e.g., cloud radiance fraction and
NO2 profile shape) but using the appropriate Sun–satellite
geometry, including its impact on surface bidirectional re-
flectance (currently accomplished using the GLER frame-
work), for the imager observation. This kind of approach
could be made to work relatively quickly with mature and
well-validated VCDs from a spectrometer without the need

to understand or make adjustments for instrumental artifacts
in the imager.

The imager spatial resolution will be higher than that of
the spectrometer. One way to prepare a co-located training
set would involve averaging the spectra from the imager to
match the footprints of the spectrometer. This averaging will
effectively change the SNR of the imager data compared with
that at its native spatial resolution. The resulting training will,
therefore, not be optimized for application at the native res-
olution. If the trained network is then applied at the native
resolution of the imager, the results will have to be carefully
validated and checked. Another possible approach would be
to spatially interpolate the spectrometer data to the locations
of the imager or to perhaps use a high-resolution model to
downscale the spectrometer data to the resolution of the im-
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ager. Addressing these details is beyond the scope of the
present work and will be dealt with in future studies.

One advantage of using co-located data from a spectrom-
eter is that a fitting algorithm would not have to be devel-
oped and tested for the imager. We have found that devel-
oping and validating such algorithm can require significant
human resources. However, our results suggest that it is pos-
sible to develop a fitting algorithm for the imager by exploit-
ing the high-frequency structure of NO2 absorption. Such an
approach, not requiring co-located data from another instru-
ment, can be considered as an alternative approach. Spec-
tral fitting algorithms can be computationally intensive, and
it may still be desirable to use machine learning to speed
up the processing of dense imager data, as shown in Fig. 8.
For example, Li et al. (2022) found that a NN implementa-
tion for NO2 vertical columns using TROPOMI spectra was
about 12 times faster than a full implementation using a pri-
ori profiles from a high-spatial-resolution chemistry trans-
port model.

Another consideration is how often a NN would need to
be retrained. If the instrument were spectrally stable, retrain-
ing might not be necessary or might be infrequent. However,
destriping may still be necessary to correct for transient spec-
tral artifacts. Retraining should be done whenever there is a
substantial change in the instrument spectral characteristics.
As the OMNO2 algorithm uses monthly averaged solar irra-
diances, it may be more optimal to similarly normalize with
respect to the same set of solar irradiances before training
than to use only the radiances (as we have done here), as the
solar data may help to account for instrumental changes.

3.3 Use of PCA and a NN for reducing noise in NO2
slant column retrievals

We next explore the use of PCA in conjunction with a NN
for noise reduction in SCD retrievals. In addition, a NN im-
plementation may have the benefit of significantly reducing
computation time of the spectral fitting algorithm. Machine
learning that uses leading PCA coefficients as inputs may be
adept at filtering out spectral interferences as well as random
instrument noise.

For the following experiments with real OMI data, our
assumption is that, over a generally clean environment (Pa-
cific Ocean), variability in the NO2 SCD, due to clouds for
example, is relatively small. In this region, the majority of
the NO2 column resides in the stratosphere and upper tropo-
sphere, where UV wavelengths have good sensitivity. We use
the same training days as above and evaluate using data from
an independent day (28 January 2005).

Table 4 shows the standard deviation of normalized SCDs
computed over the region bounded by 10 ◦S to 20 ◦N latitude
and 110 to 173 ◦E longitude for OMNO2 and three separately
trained NNs. Here, we attempt to disentangle the impact of
three different factors on the retrieval noise: (1) use of a NN
with leading PCA coefficients as inputs and a spectral fitting

Table 4. Standard deviation for NO2 SCD normalized by the strato-
spheric air mass factor of the Pacific region shown in Fig. 9 (σPacific)
over 40 780 points on 28 January 2005 (day not used in training) in
units of 1015 molecules per square centimeter.

Data set Fitting window Spectral resolution σPacific
(nm) (nm)

OMNO2 402–465 0.63 0.43
NN trained 402–465 0.63 0.28
NN trained 355–500 0.63 0.30
NN trained 355–500 5.0 0.28

window mirroring that of OMNO2; (2) a NN trained simi-
lar to (1) but with an extended spectral range; and (3) a NN
similar to (2) but spectrally averaged to a coarser resolution.
The results of using the NN with a PCA approach with the
OMNO2 spectral fitting window (402–465 nm) and at the
OMI spectral resolution decrease the variability in the re-
gion by about 30 %. Nearly identical reductions are obtained
using the NN–PCA setup with either an increased spectral
fitting window (355–500 nm) or a reduced spectral resolu-
tion (using 5 nm compared with the OMI native resolution of
0.63 nm). The results of these experiments suggest that it is
the NN setup with leading coefficients of PCs that is leading
to the noise reduction. The NN approach combined with PCA
appears to be effective at isolating information about NO2 in
the spectra while rejecting interfering spectral features and
random noise.

Figure 9a and b show the noise reduction visually using
NN results obtained with the OMNO2 spectral fitting win-
dow (402–465 nm) for a day not used in the training. There
appears to be a noticeable reduction in random noise over
this clean region. The noise reduction is particularly appar-
ent over highly cloudy regions (see Fig. 9c) where the at-
mosphere below the clouds is shielded from satellite view
and the majority of the observed SCD is in the stratosphere.
The difference map in Fig. 9d shows mostly random patterns
with similar magnitudes to the OMNO2 fitting uncertainties
the OMNO2 fitting uncertainties shown in Fig. 9e. Figure 9f
shows a histogram of the retrieved normalized SCDs from
the target OMNO2 and the NN. OMNO2 has more pixels in
the tails of the distribution, particularly at the low end. Neg-
ative SCDs are reported in the OMNO2 data set. These are
retained for statistical purposes, although they are physically
unrealistic. The trained NN substantially reduces these low
values and also reduces the number of pixels at the high SCD
tail of the distribution. Similar results are obtained with the
other setups described above (lower spectral resolution and a
wider spectral fitting window).
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Figure 9. Normalized NO2 SCDs from 28 January 2005 over the tropical Pacific region from (a) OMNO2 and (b) a NN applied at the OMI
spectral resolution and with the OMNO2 fitting window of 402–465 nm; (c) cloud radiance fraction; (d) difference between the NN and
OMNO2 normalized SCDs; (e) normalized SCD fitting uncertainties from OMNO2; (f) histograms of the normalized SCDs corresponding
to the area shown in panel (a).

4 Conclusions

We have simulated data from the hyperspectral imagers
PACE OCI and GLIMR using OMI to demonstrate that it
is possible to retrieve the NO2 SCD with reasonable accu-
racy and precision using lower-spectral-resolution data from
the PACE OCI. Instrumental noise significantly impacts the
results as do the spectral resolution and sampling. Better
results are obtained in cases of NO2 pollution contained
in the boundary layer when the spectral resolution is high

enough (of the order of 5 nm or better) to capture the higher-
frequency spectral structures in the blue part of the NO2 ab-
sorption spectrum. The longest OMI wavelength is at about
500 nm; OCI spectral coverage will continue to longer wave-
lengths in the green and yellow parts of the spectrum where
NO2 has additional absorption features. The added spec-
tral range may improve results over those shown here, al-
though the magnitude of improvement is not expected to be
dramatic. Averaging spectra from several adjacent OCI pix-
els together will improve the performance of NO2 retrievals
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from PACE OCI that may be used for atmospheric correction
in ocean color retrievals.

There are other potential applications for PACE OCI NO2
retrievals. Currently, NO2 tropospheric column density re-
trievals from instruments such as OMI and TROPOMI are
averaged over various time periods to reduce the impacts of
retrieval noise and meteorology (e.g., Lamsal et al., 2015;
Duncan et al., 2016). Similar averaging of NO2 data from
imagers over time, e.g., of the order of a month or more, may
produce good-quality data at higher spatial resolution than
is available from TROPOMI. This higher-spatial-resolution
data could then be used to downscale TROPOMI and histor-
ical OMI retrievals or could be used for emissions estimates
based on averaged maps – for example, using recently de-
veloped methods for high-resolution data (Liu et al., 2022).
The use of high-resolution averages is also useful for studies
involving health impacts, including investigations involving
environmental inequities (e.g., Goldberg et al., 2021; Kerr
et al., 2021; Cooper et al., 2022).

We also show that our machine learning with PCA ap-
proach for OCI can be used to reduce noise in retrieved NO2
SCDs (at the least in unpolluted situations) for spectrome-
ters such as OMI and TROPOMI. An additional advantage
of using machine learning for noise reduction in spectral fit-
ting is that once trained, an applied NN is an extremely effi-
cient algorithm. The current OMNO2 spectral fit is the most
computationally intensive portion of the OMNO2 NO2 tro-
pospheric column retrieval algorithm. This may be an im-
portant consideration with the new generation of sensors in
geostationary orbit with very large data volumes (Zoogman
et al., 2017). These include the Korean Geostationary Envi-
ronment Monitoring Spectrometer (GEMS), NASA Tropo-
spheric emissions: Monitoring of pollution (TEMPO), and
Copernicus Sentinel-4. Training could be applied intermit-
tently throughout the data record to ensure that time-varying
instrumental artifacts are accounted for. We stress that a high-
quality physically based fitting algorithm is a necessary part
of any machine learning approach, as it produces the re-
trievals needed as the training target. Our machine learning
approach is not meant to replace these algorithms but rather
to enhance and speed them up.

Appendix A: Typical radiance distributions

Figure A1 shows typical radiance distributions for OMI
row 1 taken over the same orbits as used for the NN training
as described above. The radiance distribution depends upon
how the incoming solar irradiance is modified by gaseous
and particle scattering and absorption in the atmosphere as
well as surface reflectance properties.

Figure A1. Histograms of radiance at different wavelengths from
OMI row 1 (zero-based) data taken over a range of orbits as de-
scribed above.
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