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A major challenge in understanding differences in electric propulsion performance in ground
tests and in space operations concerns the pressure distribution within the test vacuum chamber.
The chamber backpressure is much higher than experienced in space, modifying thruster
performance and plume dynamics. Numerical simulation is a key element to determining the
background conditions in non-ideal vacuum chamber environments. An important parameter
for the accurate simulation of chamber backpressure is the probability that an atom will stick
to a cryogenic panel used to pump away the plume gases. This quantity can be used to model
vacuum pumps in particle-based kinetic numerical methods. In this work, a three-dimensional
direct simulation Monte Carlo code is used to model neutral xenon atoms flowing from the
anode of the H9 Hall Effect Thruster within the University of Michigan’s Large Vacuum Test
Facility. Simulated pressures are compared with ion gauge pressure measurements to infer the
effective sticking coefficient of the chamber’s vacuum pumps. A pressure predicting surrogate
model is developed for inference of pump sticking coefficients and for uncertainty quantification.
This information enables accurate and useful kinetic simulations of electric propulsion thruster
plasma plumes in vacuum chambers.

I. Nomenclature

𝐾𝑛 = Knudsen number
𝜆 = Mean free path (m)
𝐿𝐶 = Characteristic length of the system (m)
®𝐹 = Force (N)
®𝑣 = Particle velocity (m/s)
𝑁𝑝𝑎𝑖𝑟𝑠 = Total particle pairs to be assessed for collision
𝑁𝑃 = Number of macroparticles
𝑛 = Number density (m−3)
𝑑 = Collision diameter (m)
𝜎 = Collisional cross section (m2)
𝑔 = Relative speed (m/s)
Δ𝑡 = Simulation timestep (s)
𝑘𝐵 = Boltzmann constant (J/K)
𝑚 = Mass (kg)
𝜈 = Collision frequency (s−1)
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𝑟𝑒 𝑓 = Reference value
U = Uniform distribution
N = Normal distribution

II. Introduction
Electric propulsion (EP) thrusters have become widely used for station-keeping and orbit-raising due to their high

specific impulse, longevity, and reliability [1]. Hall effect thrusters (HETs) are particularly attractive due to the relative
simplicity of their design and their high thrust-to-power ratios [2]. The higher specific impulse of electric propulsion
over chemical propulsion allows mission designers to allocate less mass for on-board propellant, reducing launch costs
and/or increasing the payload mass allowance. The aerospace community is extending the application of EP systems
into the domain of orbital transfers. Opting to use electric propulsion for a transfer decreases the required mass of
propellant, but increases the time to complete the transfer. For some transfers, minimizing the duration is of critical
importance. During the common transfer from LEO to GEO, satellites enter the Van-Allen radiation belts. Prolonged
exposure to the radiation belts can cause mission threatening damage to solar arrays and payload electronics [3]. Short
transfer times are also essential for enabling human spaceflight.

High-power EP (∼100 kW) will enable expeditious and fuel efficient space travel. For the proliferation and flight of
high-power EP, thrusters must be tested in vacuum chambers on the surface of the Earth because testing in space is
prohibitively expensive. As the power of an EP system being tested in a vacuum chamber is increased, the mass flow
rate of the thruster also increases, and the ability of the vacuum chamber to emulate the space environment is decreased
[4] [5]. Since facility pumping capacity is inherently limited by chamber surface area constraints, a greater mass flow
rate will lead to an increase in facility backpressure. Elevated background pressures alter the amount of gas ingested by
the thruster, the production of charge-exchange ions, and the divergence of the plume. It is imperative that ground-based
tests be accompanied by predictive models to confidently extrapolate thruster performance and lifetime to in-space
operation.

An accurate model of facility vacuum pumps is needed to calculate the spatially varying chamber backpressure.
Vacuum pumps operate at extremely cold temperatures and remove gas by freezing it onto pump surfaces. Pumps can
be effectively modeled by assigning a sticking coefficient to pump surfaces. The sticking coefficient sets the fraction
of particle-pump interactions that result in sticking versus reflection. This work adopts an approach (similar to that
developed in [6]) for inferring the pump sticking coefficient by comparing simulated pressure distributions with pressure
measurements.

Since the employed gas dynamics model relies on uncertain inputs, the output of the model is also uncertain.
Uncertainty quantification applied to quantities like chamber backpressure is essential for confidently extrapolating
thruster performance and lifetime from vacuum chamber tests to in-space operation. The remainder of this manuscript
presents the experimental setup in Section III, the numerical methods in Section IV, the results in Section V, and the
conclusions in Section VI.

III. Experimental Overview

A. Vacuum Facility
All experiments are performed in the University of Michigan’s Large Vacuum Test Facility (LVTF). The cylindrical

chamber is 9 meters long and 6 meters in diameter. The LVTF is equipped with two types of vacuum pumps. The first
type of pump, referred to as a cryopump, is the PHPK-TM1200i re-entrant vacuum pump which has a reported pumping
speed of 35,000 l/s for xenon. The LVTF is populated by 13 cryopumps each of which is housed in a baffled, liquid
nitrogen cooled casing. The second type of pump, referred to as cryosails, were developed by the Plasmadynamics and
Electric Propulsion Laboratory (PEPL) at the University of Michigan. They are liquid nitrogen free cryogenic pumps
operating with a theoretical pumping speed of 39,600 l/s for xenon [7]. At the time of these experiments, there were a
total of five cryosails within the LVTF. Figure 1 shows a picture of the interior of the LVTF. The baffled structures in Fig.
1 are the cryopumps and the octagonal surfaces are the cryosails.

Two sets of experimental pressure measurements are collected in this work. One set comes from experiments using
a high pressure configuration and the other set uses a low pressure configuration. The high pressure configuration has
three cryopumps active along the top of the chamber as well as two inactive pumps with active liquid nitrogen shrouds.
The low pressure configuration uses 13 cryopumps and four cryosails. Figure 2 shows a rendering of each configuration.
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Figure 1. The interior of the LVTF equipped with octagonal, PEPL designed cryosails and baffled PHPK-TM1200i
cryopumps.

Figure 2. A computational representation of the LVTF (left), the high pressure configuration (center) with
cryopumps highlighted in green and inactive pumps with liquid nitrogen shrouds in pink, and the low pressure
configuration (right) with cryopumps highlighted in green and cryosails in orange.

B. Ionization Gauges
Two Granville-Phillips 370 hot-cathode Bayard-Alpert ionization gauges running on a 370 series vacuum gauge

controller are used for measuring chamber pressure. These gauges are capable of measuring pressures in the range of
10−10 to 103 Torr. The accuracy of the gauges is taken to be ±10% based on heritage data.

One ionization gauge, referred to as Gauge 1, faces downstream (the direction in which the thruster expels gas) and
is located 1 m away from the thruster in the thruster exit plane (as is recommended in [8]). The other ionization gauge,
referred to as Gauge 2, faces away from the thruster and is located 1 m behind the thruster (the front of the thruster being
defined as the side with the discharge channel which points towards the beam trap). Figure 3 shows the approximate
locations of the ionization gauges in the LVTF. Pressure measurements from both gauges are calibrated for nitrogen gas
by the manufacturer and are corrected to xenon.

3



Figure 3. Top-down view of the LVTF showing ionization gauge locations with Gauge 1’s location being indicated
by the orange star and Gauge 2’s by the red star. Thruster and beam trap locations are pointed to with arrows to
provide orienting information.

C. Hall Thruster
The thruster used in all experiments is the magnetically shielded 9-kW H9 HET. The centrally mounted lanthanum

hexaboride cathode, the anode/gas distributor, and the discharge chamber geometry of the H9 were all inherited from
the unshielded 6-kW H6 HET. More information about the H9 may be found in [9]. In all experiments, neutral xenon
atoms flow through the anode of the H9 without a plasma discharge. Mass flow rates and the corresponding pressure
measurements from both ionization gauges are reported in Tables 1 and 2 for the high and low pressure configurations,
respectively.

Table 1 Data from high pressure experiments of cold flow through the H9 HET.

Mass Flow Rate (sccm) Gauge 1 Pressure (µTorr) Gauge 2 Pressure (µTorr)
100 11.6 10.6
200 19.9 18.9
300 25.9 26.5
400 31.6 33.9

Table 2 Data from low pressure experiments of cold flow through the H9 HET.

Mass Flow Rate (sccm) Gauge 1 Pressure (µTorr) Gauge 2 Pressure (µTorr)
250 5.2 4.0
300 6.1 4.6
350 6.9 5.3
400 7.6 6.0
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IV. Numerical Methods

A. Physics Based Modeling
The modeling approach to simulate dilute gas flow ejected from the thruster within the vacuum chamber is to use a

direct simulation Monte Carlo (DSMC) code. The code, known as MONACO, is a parallelized 3D DSMC code that
accommodates unstructured meshes. MONACO is provided with static boundary conditions and returns time-averaged
steady state results. Kinetic descriptions of gases, the DSMC method, and the boundary conditions used in this model
are discussed in the following three subsections.

1. Kinetic Modeling of Gas Dynamics
The extent of rarefaction of a gas flow may be quantified by the following non-dimensional parameter known as the

Knudsen number:
𝐾𝑛 =

𝜆

𝐿𝐶
(1)

where 𝜆 is the mean free path of the gas and 𝐿𝐶 is a characteristic length of the system. When 𝐾𝑛 < 0.01, the continuum
assumption is valid and fluid conservation equations accurately describe the system. The case when 𝐾𝑛 > 1 is known
as free molecular flow. In this regime, a kinetic description of the flow that accounts for the molecular behavior of
the gas is needed. A kinetic description is necessary for large Knusden number, nonequilibrium flows in which the
lack of collisions allows for the presence of non-Maxwellian velocity distribution functions. The transitional regime,
where typical EP plumes reside [10], is characterized by 0.01 < 𝐾𝑛 < 1. In this regime, collisions are important, but
insufficient for bringing the system into equilibrium. When modeling transitional gases, it is necessary to use a kinetic
approach.

To accurately resolve the distribution functions within a rarefied gas, kinetic methods that capture the physics of the
Boltzmann equation are required [11]. This work employs a particle-based kinetic approach in which the motion of
individual macroparticles which represent a much larger number of real particles are tracked through the computational
domain. The transport of neutrals and the collision dynamics thereof are simulated using the DSMC method [12].

2. Direct Simulation Monte Carlo
The DSMC method takes advantage of three physical properties of a dilute gas [11]:
1) Molecules move in free flight without interaction for time scales on the order of the local mean collision time.
2) The impact parameters and initial orientations of colliding molecules are random.
3) There are an enormous number of real molecules per cubic mean free path but only a small fraction of model

particles need to be simulated to obtain an accurate molecular description of the flow.
The first property allows for the separation of particle translation and particle-particle collisions which reduces
computational cost and simplifies the modeling of both processes. Assuming random orientations of colliding molecules
reaps significant savings over deterministic collisional algorithms such as those used in molecular dynamics simulations.
This is an excellent assumption in most circumstances as there is no physical mechanism to cause an inherent bias in
the parameters that define the initial conditions of a molecular collision. The assumption that only a small fraction of
molecules need to be simulated to accurately describe a dilute gas is statistically justified. Highly accurate distribution
functions can be obtained with relatively low computational expense with this method.

Leveraging the properties listed above is what allows the DSMC method to model dilute gases using feasible
computational resources. To further decrease the wall clock simulation duration, MONACO is highly parallelized,
allowing it to be run in a distributed sense across many CPUs on a supercomputer. MONACO is equipped to simulate
flows on unstructured computational grids, enabling the simulation of gas flows within complicated geometries.

Collisions in the DSMC method are performed stochastically. The No-Time-Counter scheme [12] is used to calculate
the total number of potential collision pairs within each computational cell:

𝑁𝑝𝑎𝑖𝑟𝑠 =
1
2
𝑁𝑃𝑛(𝜎𝑔)𝑚𝑎𝑥Δ𝑡 (2)

where 𝑁𝑝 is the total number of macroparticles, 𝑛 is the number density, (𝜎𝑔)𝑚𝑎𝑥 is an estimate of the maximum value
of the product of the collisional cross section with the relative speed of the colliding particles, and Δ𝑡 is the timestep.
Whether or not a given pair collides is decided by comparing the collision probability with a random number. The
collision probability is calculated as the ratio of 𝜎𝑔 to (𝜎𝑔)𝑚𝑎𝑥 . Various collision models yield different values of 𝜎.
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MONACO utilizes the variable hard-sphere model [13] to obtain momentum exchange collision cross sections. In this
model, the cross section is a function of relative speed:

𝜎 = 𝜎𝑟𝑒 𝑓

(
𝑔𝑟𝑒 𝑓

𝑔

)−2𝜔
(3)

where 𝑔 is the relative speed and the power law exponent, 𝜔, is a fitting parameter related to the gas viscosity.

3. Boundary Conditions
At the thruster exit plane, the number density, velocity, and temperature of xenon atoms are prescribed. The atoms

are assumed to be moving at the speed of sound with a temperature of 300K. The number density is obtained from the
following mass flow rate equation:

¤𝑚 = 𝐴𝑚𝑛𝑣 (4)

where ¤𝑚 is the mass flow rate, 𝑚 is the propellant molecular mass, 𝐴 is the area of the thruster exit plane, 𝑛 is the
number density, and 𝑣 is the velocity. For the number density calculation, the plume is assumed to be unidirectional.
Particle-surface interactions are modeled with an accommodation coefficient that sets the probability that a particle
interacting with a solid wall will reflect diffusely rather than specularly. An accommodation coefficient of 0.9 means
that 90% of particle reflections will be diffuse and 10% will be specular. Walls are set to 300K in the simulations. The
vacuum pumps are modeled using a sticking coefficient that sets the fraction of pump interactions that result in removal
of an incident atom. Cryopumps are nominally set to 85K and cryosails are set to 40K.

B. Uncertainty quantification
Uncertainty arises in the DSMC evaluation of vacuum chamber pressure due to imprecise knowledge of the

experimental conditions, the model fit coefficients, and natural variability in the system (i.e. measurement uncertainty,
numerical tolerance, etc.). Uncertainty in the model inputs confounds understanding of the model outputs, and so this
work seeks to quantify output uncertainty by propagating input uncertainty through the DSMC code. Input uncertainty
is represented by assigning a probability distribution function (PDF) to each input that encodes a prior belief in their
value and degree of variability (i.e. wider distributions encode a greater degree of uncertainty in the value of the inputs).

Table 3 summarizes the model input uncertainties for the DSMC pressure predictions. Each input is assigned a
uniform prior distribution between conservative upper and lower bounds. The uncertainty in the collision diameter
comes from low temperature, low pressure xenon viscosity data [14]. The mass flow rate is controlled by a mass flow
controller with ±1% accuracy. The wall accommodation coefficient uncertainty is reported in [15]. Appropriate bounds
for the pump sticking coefficients are informed by [6]. The baffled cryopumps are enshrouded by a liquid nitrogen
(LN2) casing at 77K. While the inner, helium gas-cooled sticking surface is at about 15K, the outer casing will be much
closer to the temperature of the LN2. Particles that pass within the baffle system are extremely likely to stick to the
inner surface. Therefore, any particles that contact the pump and return to the chamber will likely be thermalized to the
temperature of the LN2 casing. A range of 75–95K is chosen in the absence of temperature data on the outer casing.
Two types of pumps are involved in this analysis. DT-670 temperature diodes measure the surface temperature of the
cryosails which have no casing. Since these pumps account for much less surface area than the cryopumps and their
temperatures are known within 1K, the uncertainty in their surface temperature is ignored in this analysis.

Table 3 Summary of input uncertainty for the DSMC pressure model.

Parameter Symbol Units Distribution Domain

Collision diameter 𝑑 nm U(0.564, 0.584) [0.564, 0.584]
Mass flow rate ¤𝑚 sccm U(±1%) [100, 400]
Wall accommodation coefficient 𝛼 - U(0.9, 1) [0.9, 1]
Cryopump surface temperature 𝑇𝑝 K U(75, 95) [75, 95]
Cryopump sticking coefficient 𝜃𝑐𝑝 - U(0.2, 0.6) [0.2, 0.6]
Cryosail sticking coefficient 𝜃𝑐𝑠 - U(0.2, 1) [0.2, 1]
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The goal of this work is two-fold: to infer the value of the pump sticking coefficients from experimental pressure
data and to understand the effects of the input uncertainty on the model outputs. These tasks are respectively referred to
as Bayesian inference and forward uncertainty quantification (UQ). Since both require many forward evaluations of
the model (on the order of thousands to millions), it is infeasible to use the full DSMC code directly. Each DSMC
run takes approximately 5 hours on 72 processors. Instead, a surrogate model is constructed to learn the input-output
behavior of the DSMC pressure model. Once constructed during an offline training phase (using a total of 312 DSMC
simulations evenly distributed over the input domain in Table 3), the surrogate model can then be used in place of the
full DSMC model for UQ at comparatively negligible computational cost. A simple linear surrogate model with 3rd
order polynomial features is used in this work to map the inputs in Table 3 to the DSMC pressure predictions at two ion
gauge locations in the chamber. The coefficients of the linear model are learned by linear least squares regression with
𝐿2 regularization.

Bayesian inference: This work seeks to estimate the value of a pump sticking coefficient 𝜃 given experimental ion
gauge measurements at two locations in the chamber. In light of the uncertainties present in the system, the experimental
data is used to update the prior belief in the distribution of the sticking coefficient. In terms of Bayesian inference, we
determine a posterior distribution 𝑝(𝜃 |𝑦) given the experimental data 𝑦. The posterior distribution is given by Baye’s
rule:

𝑝(𝜃 |𝑦) = 𝑝(𝑦 |𝜃)𝑝(𝜃)
𝑝(𝑦) , (5)

where 𝑝(𝑦 |𝜃) is the likelihood of observing the experimental data for a given sticking coefficient, 𝑝(𝜃) is the prior
distribution on the sticking coefficient, and 𝑝(𝑦) is the evidence term. All other uncertainties present in the model
(Table 3) are grouped into a single term 𝜙 = [𝑑, ¤𝑚, 𝛼,𝑇𝑝], and 𝑝(𝜙) is the associated PDF. The data can be treated as
the result of a forward model prediction 𝑓 (𝜃, 𝜙) and additive Gaussian noise 𝜉:

𝑦 = 𝑓 (𝜃, 𝜙) + 𝜉, where 𝜉 ∼ N(0, 𝜓2), (6)

for which the likelihood is available as

𝑝(𝑦 |𝜃) =
∫

𝑝(𝑦 |𝜃, 𝜙)𝑝(𝜙)d𝜙, (7)

and the conditional likelihood can be evaluated directly as

𝑝(𝑦 |𝜃, 𝜙) = 1
𝜓
√

2𝜋
exp

[
−1

2

(
𝑦 − 𝑓 (𝜃, 𝜙)

𝜓

)2
]
. (8)

Eq. (8) is recognized as the Gaussian PDF centered at the model evaluation 𝑓 (𝜃, 𝜙) and scaled by the experimental
noise 𝜓 (this form results from the typically reasonable noise model in Eq. (6)). This work assumes a 10% experimental
noise for the ion gauge measurements, that is 2𝜓 = 0.1𝑦. The presence of uncertainty in 𝜙 necessitates the integration
in Eq. (7), since we are only interested in inferring the value of 𝜃. The integration is performed by the Monte Carlo
estimate with 𝑀 samples:

𝑝(𝑦 |𝜃) ≈ 1
𝑀

𝑀∑︁
𝑖=1

𝑝(𝑦 |𝜃, 𝜙𝑖), 𝜙𝑖 ∼ 𝑝(𝜙), (9)

where each 𝜙𝑖 is sampled from the distributions in Table 3. The evidence term 𝑝(𝑦) is similarly evaluated as a
marginalization over 𝜃:

𝑝(𝑦) =
∫

𝑝(𝑦 |𝜃)𝑝(𝜃)d𝜃. (10)

The sticking coefficient 𝜃 is a single variable of integration (whereas 𝜙 was a total of four), so this integration is easily
computed numerically over the bounds of 𝑝(𝜃) with Simpson’s rule. It is evident from Eq. (9) that many evaluations of
the model 𝑓 (𝜃, 𝜙) are necessary to obtain the posterior 𝑝(𝜃 |𝑦), so it is infeasible to use the DSMC code directly; instead
the surrogate linear model is used in place.
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Forward UQ: After inferring the posterior distribution of the sticking coefficient 𝑝(𝜃 |𝑦), this work then studies the
impact of the input uncertainties on the pressure predictions using the sampling-based Monte Carlo method. For a given
mass flow rate, a set of 𝑁 input samples are drawn: {𝜃𝑖}𝑁𝑖=1 ∼ 𝑝(𝜃 |𝑦) and {𝜙𝑖}𝑁𝑖=1 ∼ 𝑝(𝜙), and then propagated through
the surrogate model to obtain the pressure predictions 𝑦𝑖 = 𝑓 (𝜃𝑖 , 𝜙𝑖). Statistics of the output distribution 𝑝(𝑦) can then
be estimated using Monte Carlo estimators, e.g. the mean via �̄� ≈ 1

𝑁

∑𝑁
𝑖=1 𝑦𝑖 . This method allows plotting uncertainty

bounds when comparing model predictions to experimental data.
This work also employs the global, variance-based Sobol’ method for sensitivity analysis to quantify how uncertainty

in the output arises from uncertainty in the inputs [16, 17]. The Sobol’ method decomposes the output variance into
unique contributions from individual inputs, as well as contributions from interactions between inputs. The quantities of
interest in the Sobol’ method are the first-order Sobol’ indices: 𝑆𝑖 = 𝑉𝑖/𝑉 (𝑦), where 𝑉𝑖 is the partial variance due to the
𝑖-th input 𝑥𝑖 , and 𝑉 (𝑦) is the total observed variance in the output. The partial variances are computed by

𝑉𝑖 = 𝑉𝑥𝑖

(
E𝑥∼𝑖 [𝑦 |𝑥𝑖]

)
, (11)

where the inner expectation is taken of the output 𝑦 for a fixed input 𝑥𝑖 over all possible values of the other inputs 𝑥∼𝑖 .
The outer variance is then taken over all possible values of 𝑥𝑖 . This work also considers higher-order and total-order
indices using numerical estimators found in [18, 19]. The results of this global sensitivity analysis not only indicate
inputs with greater impact on output uncertainty, but also the relative magnitude of their importance compared to other
inputs.

V. Results and Discussion

A. Overview
A picture of the 3D unstructured grid used by MONACO is shown in the left panel of Fig. 2. The mesh is comprised

of approximately 130,000 cells and contains detailed information regarding the location and size of the thruster, the
chamber walls, the vacuum pumps, the beam trap, and the floor. Each DSMC simulation takes approximately 5 hours to
run on 72 processors. The DSMC simulations contain between 3 and 4 million particles at steady state. Simulations
take about 40,000 iterations to reach steady state with a timestep of 10−4 seconds. The mean collision time per particle
is on the order of 10−2 seconds. Once simulations reach steady state, samples are taken every timestep for 100,000
iterations to obtain meaningful statistical results [20]. The mean free path of the gas is on the order of 1 m and the
edges of the computational cells don’t exceed 0.3 m. The high pressure case is analyzed first in order to obtain the
sticking coefficient of the cryopumps which is subsequently applied to the low pressure case for inference of the sticking
coefficient of the cryosails.

B. High Pressure Pump Configuration
In this configuration only the cryopumps are operating, the cryosails are inactive. Representative simulated pressure

distributions for cold flow through the H9 HET operating in the LVTF using the high pressure configuration are presented
in Fig. 4. These results show how chamber pressure is reduced as the pump sticking coefficient is increased.

Figure 5 shows how pressure at the two gauge locations changes with mass flow rate. The plots present measurements
and simulation results at each gauge location. The simulations are run using sticking coefficients of 0.2, 0.4, and 0.6.
From the two plots, the sticking coefficient of the cryopumps is inferred to lie between 0.2 and 0.4. Experimental
uncertainties are shown in Fig. 5. To quantify the uncertainty in simulation results, a surrogate model is developed. The
surrogate model will also narrow down a best fit value for the sticking coefficient using a thorough Bayesian calibration.

The high pressure surrogate model is used to numerically obtain the posterior distribution 𝑝(𝜃𝑐𝑝 |𝑦) as given by
Baye’s rule in Eq. (5). A Gaussian distribution is fit to the numerical PDF and is shown in Fig. 6. The mean and
standard deviation of the Gaussian are 0.258 and 0.008, respectively (that is, 𝑝(𝜃𝑐𝑝 |𝑦) ≈ N (0.258, 0.008)). The most
likely value of 𝜃𝑐𝑝 = 0.258 matches the intuition from Fig. 5 that the best-fit sticking coefficient is between 0.2 and 0.4.
The relatively small standard deviation indicates high confidence in this value.
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Figure 4. Pressure (Torr) contours throughout a vertical slice of the 3D solution in the LVTF from cold flow
simulations using a pump sticking coefficient of 0.2 (upper left), 0.4 (upper right), and 0.6 (bottom middle).

Figure 5. Pressure versus mass flow rate including simulation and experimental results at the location of Gauge 1
(left) and Gauge 2 (right).

Figure 6 also shows a comparison of the model predictions against experimental data for various mass flow rates (for
both ion gauges). The shaded regions indicate 5th and 95th percentiles of model predictions over 𝑁 = 1000 Monte
Carlo samples of the uncertain inputs. The solid line is the median (50th percentile) model prediction. The increase in
model uncertainty for increasing mass flow rates is consistent with the increasing experimental uncertainty (as indicated
by the errorbars on the experimental data points). Overall, the model predictions quantitatively agree well with the
experimental data given all uncertainties present in the system.
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Figure 6. Posterior distribution of the cryopump sticking coefficient (left) and model pressure predictions against
experimental data for both ion gauges (right). The markers with error bars indicate the experimental data and
noise. The solid lines indicate 50th percentile model predictions over 𝑁 = 1000 samples, with the shaded regions
indicating 5th and 95th percentiles.

C. Low Pressure Pump Configuration
For the low pressure configuration, the sticking coefficient of the cryopumps is set using the high pressure inference

described above; this allows the sticking coefficient of the cryosails to be inferred separately using the low pressure
data. The posterior distribution 𝑝(𝜃𝑐𝑠 |𝑦) and the resulting model predictions are shown in Fig. 7. A skew-normal (SN)
distribution is fit to the numerical PDF and has a parameterization of 𝑝(𝜃𝑐𝑠 |𝑦) ≈ 𝑆𝑁 (𝜉 = 0.228, 𝜔 = 0.169, 𝛼 = 3.29),
with a most likely value occurring at 𝜃𝑐𝑠 = 0.305.

Figure 7. Posterior distribution of the cryosail sticking coefficient (left) and model pressure predictions against
experimental data for both ion gauges (right). The markers with error bars indicate the experimental data and
noise. The solid lines indicate 50th percentile model predictions over 𝑁 = 1000 samples, with the shaded regions
indicating 5th and 95th percentiles.

This PDF reveals a much higher degree of uncertainty in 𝜃𝑐𝑠 than is observed in 𝜃𝑐𝑝 , given the data at hand. When
viewing the comparison of model predictions to experimental data in Fig. 7, it can be seen that a better fit to Gauge 1
data could be obtained with a lower sticking coefficient, while the opposite is true for Gauge 2 data. The PDF intuitively
balances this interaction by choosing the middle ground and spreading the uncertainty over a wider area (while it is
still skewed towards lower sticking coefficients to obtain predictions more in line with Gauge 1 data). Overall, there is
quantitative agreement with the data within model and experimental uncertainties.
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This work also seeks to quantify the relative impact of each source of uncertainty on the model predictions of
pressure. For this, the first order (𝑆1) and total order (𝑆𝑇 ) Sobol’ indices are computed for the low pressure case over
varying mass flow rates, as shown in Fig. 8. The quantity of interest for this sensitivity analysis is the pressure at
Gauge 1’s location. The sensitivity results are very similar when using the pressure at Gauge 2’s location. The first
order indices exist on the domain [0, 1], with higher values indicating a greater contribution of a given input’s unique
contribution to the output uncertainty; the total order indices also account for interactions between parameters. The fact
that 𝑆1 and 𝑆𝑇 are nearly identical for each parameter indicates that the model is fairly well decoupled, i.e. the model
responds mostly to independent changes in each parameter.

An intuitive result from Fig. 8 is that the two pump sticking coefficients (𝜃𝑐𝑝 and 𝜃𝑐𝑠) dominate the output
uncertainty; this is indeed why their calibration to experimental data is targeted in this study. Together, they account for
over half of the output uncertainty at most flow rates. On the other hand, the 1% relative uncertainty in the mass flow
rate is shown to have negligible effect on the model predictions, although its importance increases slightly for higher
mass flow rates. This increase is the result of assigning a relative uncertainty to mass flow rate and plotting the indices
over increasing flow rates.

Figure 8. Sobol’ first order (left) and total order (right) indices versus mass flow rate for the low pressure
configuration.

The increase in the importance of the collision diameter, 𝑑, is expected because more collisions take place in gases
of greater density. A surprising result is the increasing importance of 𝛼 and 𝑇𝑝 for increasing flow rates. One possible
interpretation of this result is that higher flow rates magnify the importance of the accommodation coefficient and
pump temperature because higher flow rates cause higher incident fluxes to walls and pumps. This interpretation is in
agreement with the corresponding increase in total model uncertainty for increasing flow rates as seen in Fig. 7.

VI. Conclusions
Ground-based electric propulsion testing facilities interfere with thruster operation and with the dynamics of their

emitted plasma plumes. Elevated background pressures caused by the inherently limited pumping capabilities of these
facilities alter the amount of gas ingested by the thruster, the production of charge-exchange ions, and the divergence
of the plume. These effects and others undermine confidence in the ability of performance and lifetime test results
conducted in ground-based facilities to accurately reflect how thrusters will behave in space environments. High-power
electric propulsion thrusters will exacerbate these facility effects. Thruster and plume models that account for facility
effects must accompany ground-based tests to extrapolate from non-ideal chambers to space environments in predictive
fashion. This work is an initial step towards equipping thruster and plume models with a means of accurately recreating
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the elevated background pressure experienced by thrusters in ground-based facilities.
Posterior distributions of sticking coefficients have been obtained for the two types of pumps that populate the

University of Michigan’s Large Vacuum Test Facility. Surrogate models, trained on hundreds of high fidelity DSMC
simulations, enabled detailed Bayesian inference of pump sticking coefficients and thorough uncertainty quantification.
The Sobol’ method was employed for sensitivity analysis and showed that pump sticking coefficients are the largest
contributor to uncertainty in model pressure predictions. Results from simulations using the inferred sticking coefficients
contain ionization gauge measurements within error bounds. The agreement between backpressure measurements and
simulation predictions indicates the utility of this approach to modeling chamber vacuum pumps. Accurately modeling
facility backpressure within simulations of plasma flow experiments is a crucial capability for investigating the role
of this facility effect on electric propulsion thrusters and their plumes. Future work will involve the application of
these sticking coefficients within simulations of plasma flow experiments of the H9 HET in the LVTF to validate a
hybrid particle-fluid plasma plume model. The plasma plume modeling effort will focus on uncertainty quantification in
plasma properties and the detailed sticking coefficient uncertainty information obtained here will be invaluable.
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