

Modeling and Visualization of Geomagnetic Storms at the CCMC

Lutz Rastaetter, Mostafa El Alaoui, Maksym Petrenko, Darren DeZeeuw, Min-Yang Chou, Jia Yue, Jack Wang, Maria Kuznetsova

Community Coordinated Modeling Center, NASA Goddard Space Flight Center, Greenbelt Maryland, USA

SM53B-07, 2023 AGU Fall Meeting, Dec. 15, 2023

Covering 20+ Years of Geomagnetic Activity

Motivation: Strong need in community for quality-curated library of pre-made runs of geomagnetic storms. Such library could advance science by providing standardized and repeatable simulations.

Started by identifying strongest storms in each year:

- Dst: Minimum <= -150
- weaker storms to follow: -150 to -100, >= -100
- Event categorization by maximum Kp: >=7, 6, 5 possible as well

Runs prepared with comparisons automatically performed:

- Magnetic Perturbations deltaB (deltaB/dt) on the ground (SuperMag stations),
- Kp, Dst, (AU, AL, AE)
- Satellites tracked and observations compared with in-situ MHD results:
 - GOES, THEMIS, MMS, ...
- Run configuration designed so the model captures required parameters

Building a Storm Event Simulation Library

- Started by covering strongest storms (1-2 per year)
- Defined naming convention for storm event runs:

PRESET-YYYY-MM_TP-NN_REQUEST-DATE_M

- **PRESET**: model name and setting number, e.g. SWMF-01
- **YYYY-MM:** year and month of start day of time period
- **TP:** short for Time Period a few days of storm activity each month
- **NN**: ID of time period selected in each month
- **REQUEST-DATE:** 6-digit mmddyy date when request was submitted
- M: run repetition number (usually 1; 2, ..., 9 if rerun(s) were done)
- Growing event coverage exposing issues:
 - Low Mach solar wind occurs often, requiring grid extension upstream

Redesigned Run Submission

2023 version of SWMF framework

- BATSRUS+RCM magnetosphere
- New conductance models in lonosphere Electrodynamics Solver:
 - Conductance Model for Extreme Events (CMEE, A. Mukhopadhyay 2020)
 - Conductance Model based on PFISR And SWARM Satellite (COMPASS, Wang and Zou, 2022)
 - Asymmetric Pedersen Conductance (ASYM) set SigmaP differently for North and South
 - AMPERE-Derived Electrodynamic
 Parameters of the High Latitude Ionosphere
 (ADELPHI, Robinson et al., 2020)

Redesigned submission interface

- 4 run configurations
 - 2 based on SWPC version 2 real time configuration
 - 2 with higher resolution grid

equest an SWMF Model Run Step 6: Select Preset		
Step 0. Select Treset		
Select your preset	SWMF-01	
	SWMF-02	
	SWMF-03	
rid: 2M-01	SWMF-04	
Number of cells is 1,905,9	004 as in swrc v.z	
 Dimensions of the simulat Maximum grid resolution 		inward direction, 224 RE along the tail and 128 RE in each transverse direction. E and 3.5 RE.
grid:		
 Ionospheric grids: 91 x 18 	81	

IE Conductance Model: CMEE (5B)

• CMEE - Conductance Model for Extreme Events

Bx: Time-Varying Bx

• Full time dependent IMF is used, including time varying IMF Bx, to drive the simulation

SWMF 2023 presets

real time resolution	higher resolution
 SWMF-01: Grid 2M-01: Number of cells is 1,905,904 as in version 2 real time simulation used by NOAA SWPC Dimensions of the simulation box are 32 R_Ein the sunward direction, 224 R_E along the tail and 128 R_E in each transverse direction. Maximum grid resolution 1/8 in shell between 2.5 R_E and 3.5 R_E. IE grid: Ionospheric grids: 91 x 181 Conductance Model: CMEE - Conductance Model for Extreme Events Bx: Time-Varying Bx Full time dependent IMF is used, including time varying IMF Bx, to drive the simulation 	 SWMF-02: Grid: 5M-01 Number of cells 4,873,456 storm setting optimized by University of Michigan Dimensions of the simulation box are 32 R_E in the sunward direction, 224 R_E along the tail and 128 R_E in each transverse direction. Maximum grid resolution 1/8 in shell between 2.5 R_E and 8.0 R_E. IE grid: Ionospheric grids: 91 x 181 Conductance Model: CMEE - Conductance Model for Extreme Events Bx: Time-Varying Bx Full time dependent IMF is used, including time varying IMF Bx, to drive the simulation'
SWMF-03 differs from SWMF-01 by: Bx: Constant Bx set to 0	SWMF-04 differs from SWMF-02 by: Bx: Constant Bx set to 0

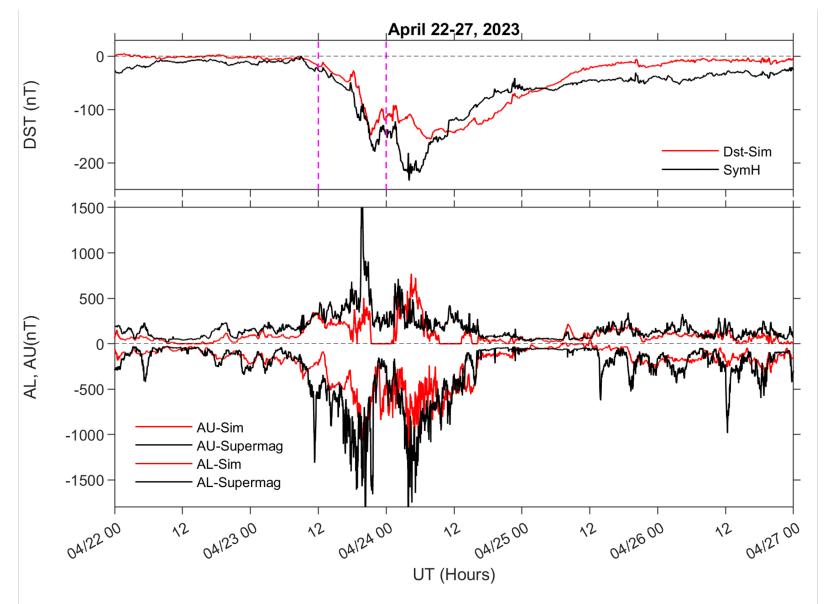
Current Event Coverage

https://kauai.ccmc.gsfc.nasa.gov/CMR/TimeInterval/viewAllTI

- About 40 of the strongest storms covered so far
- 2000 2023
- About 50 runs using SWMF-01 and SWMF-02

New runs added:

- About 6 new runs are executed at a time
- 3 weeks from start to publication for each run
- Time Periods added soon after storms occur


Commu Coordi Modelin Center	NATED	IC Metada	ta Registry	(CMR	k)			
Go to:	List of all Tin	ne Periods:						
<u>CMR Home</u> <u>View Metadata</u> <u>Login</u>	TPID	StartTime	EndTime	Max Kp	Min Dst	GM Run Series	ITM Run Series	Publications
	<u>2021-10-TP-</u> <u>01</u>	2021-10- 11T00:00:00Z	2021-10- 15T00:00:00Z	6.333	-65.0	SWMF-01_2000_04_TP- SWMF-01_2021-10-TP- 01_091823_1	SAMI3-TIEGCM-01_2021-10-TP- 01_091823_IT_1 SAMI3-HWM-01_2021-10-TP-01_082823_IT_1 WACCMX-Weimer-01_2021-10-TP- 01_082823_IT_1	
	<u>2021-11-TP-</u> 01	2021-11- 02T00:00:00Z	2021-11- 07T00:00:00Z	7.667	-105.0	SWMF-01 2021-11-TP- 01 060323 1 SWMF-01 2021-11-TP- 01 080423 2 SWMF-02 2021-11-TP- 01 080423 1		10.1029/2023SW003480
	<u>2022-01-TP-</u> <u>01</u>	2022-01- 13T00:00:00Z	2022-01- 17T00:00:00Z	5.667	-91.0	SWMF-01 2022-01-TP- 01 080423 2 SWMF-02 2022-01-TP- 01 080323 1 SWMF-01 2022-01-TP- 01 082523 1	SAM13-HWM-01_2022-01-TP-01_081823_IT_1 WACCMX-Weimer-01_2022-01-TP- 01_082823_IT_1 SAM13-TIEGCM-01_2022-01-TP- 01_081823_IT_1	
	<u>2022-02-TP-</u> 01	2022-02- 02T00:00:00Z	2022-02- 07T00:00:00Z	5.333	-66.0	• <u>SWMF-01_2022-02-TP-</u> <u>01_080423_2</u>	SAMI3-TIEGCM-01_2022-02-TP- 01_082823_IT_1 SAMI3-HWM-01_2022-02-TP-01_082823_IT_1 WACCMX-Weimer-01_2022-02-TP- 01_082823_IT_1	
	<u>2023-03-TP-</u> <u>01</u>	2023-03- 21T00:00:00Z	2023-03- 28T00:00:00Z	8.0	-184.0	SWMF-01 2023-03-TP- 01 052423 1 SWMF-01 2023-03-TP- 01 080123 2 SWMF-02 2023-03-TP- 01 08023 1	• <u>SAMI3-TIEGCM-01</u> 2023-03-TP- 01 081823 IT 1 • <u>SAMI3-HWM-01</u> 2023-03-TP-01 081823 IT 1	
	2023-04-TP- 01	2023-04- 22T00:00:00Z	2023-04- 27T00:00:00Z	8.333	-187.0	SWMF-01 2023-04-TP- 01 080123 2 SWMF-02 2023-04-TP- 01 080223 1		
Curator: Chiu Wiegand NASA Official: Dr. Masha Kuznetsova Privacy and Security Notices CCMC Data Collection Consent Agreement								

SWMF-02_2023-04-TP-01: April 22-27 2023

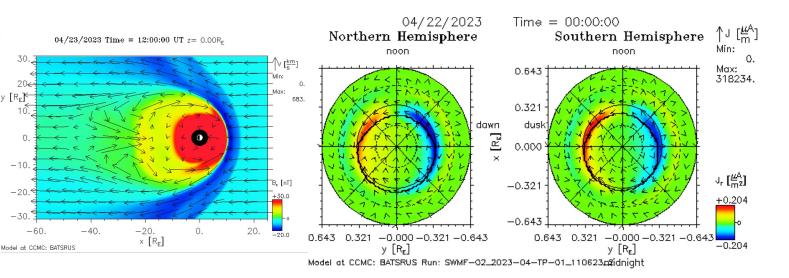
Storm run done with SWMF-02 (5M-01 (4.87 million cell grid, 1/8 R_E within 8 R_E)

- Top: SymH: Observed and simulated (with less dynamic range in this case)
- Bottom: AU, AL: Observed
 Supermag Auroral indices and simulated indices
 (mostly closer to zero and with fewer spikes)

SWMF-02_2023-04-TP-01_110623_2

Run Status: Run Complete (status updated at 2023-11-28T15:26:38+0000)

SWMF-02_2023-04-TP-01

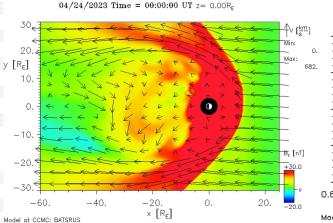


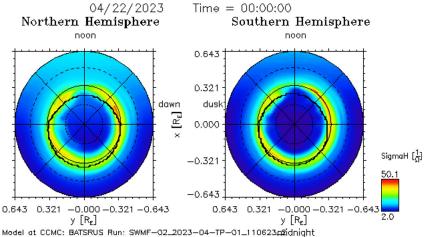
Run Metadata Metadata Becord:

Meladala Record.	view Full Run Metadata in the	CONC Metadata Registry (C
Metadata as JSON:	View Full Run Metadata as JS	SON
Model Domain:	GM	
Model Name:	SWMF	Pagiatarad
Model Version:	v20230424	Registered
Key Word:	Storm low Mach number	Metadata in
Run type:	Real event simulation	SPASE
Inflow Boundary Conditions:	Time-dependent	
Start Time:	2023/04/22 00:00	
End Time:	2023/04/27 00:00	
Dipole Tilt at Start in X-Z Plane:	10.26 °	
Dipole Tilt in Y-Z GSE Plane:	29.38 °	
Dipole Update With Time:	no	
Ionospheric Conductance:	auroral	
Radio Flux 10.7 cm:	-1	
Co-rotation:	No corotation velocity is appli	ed at the inner boundary.
Grid:	4,873,456 cells, 1/8 resolution	n at inner boundary
Coordinate System for the Output:	GSM	
Solar wind input source:	OMNI	
Ring current model:	RCM	

View Full Bun Metadata in the CCMC Metadata Begistry (CMB)

Sample Visualizations

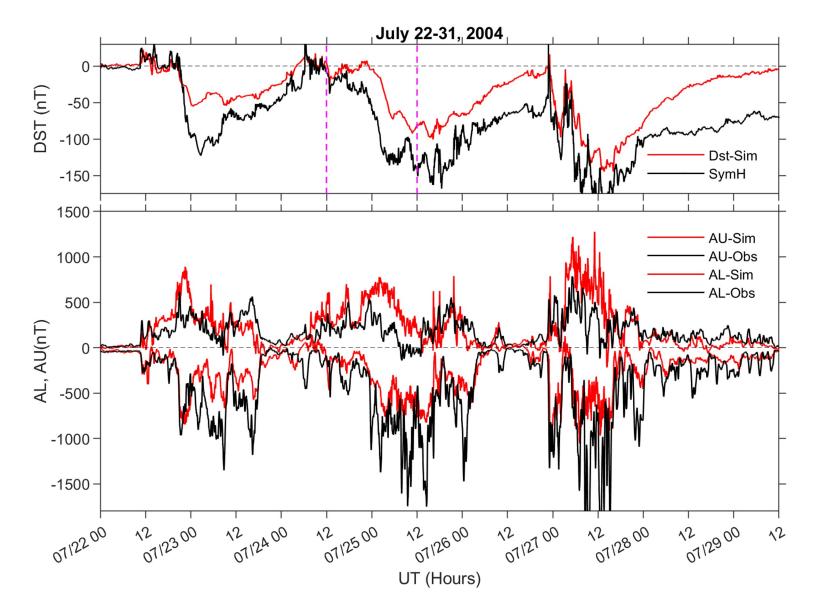



Initial Solar Wind (SW) Parameters in GSM Coordinates:

SW Density:	5.46000 n/cc
SW Temperature:	47839.00000 Kelvin
X Component of SW Velocity:	-368.80000 km/s
Y Component of SW Velocity:	14.30300 km/s
Z Component of SW Velocity:	-17.31600 km/s
IMF Bx:	0.90900 nT
IMF By:	1.74600 nT
IMF Bz:	-5.54500 nT
IMF IBI:	5.81000 nT
IMF Clock Angle:	162.52000 °

Magnetosphere Run Parameters:

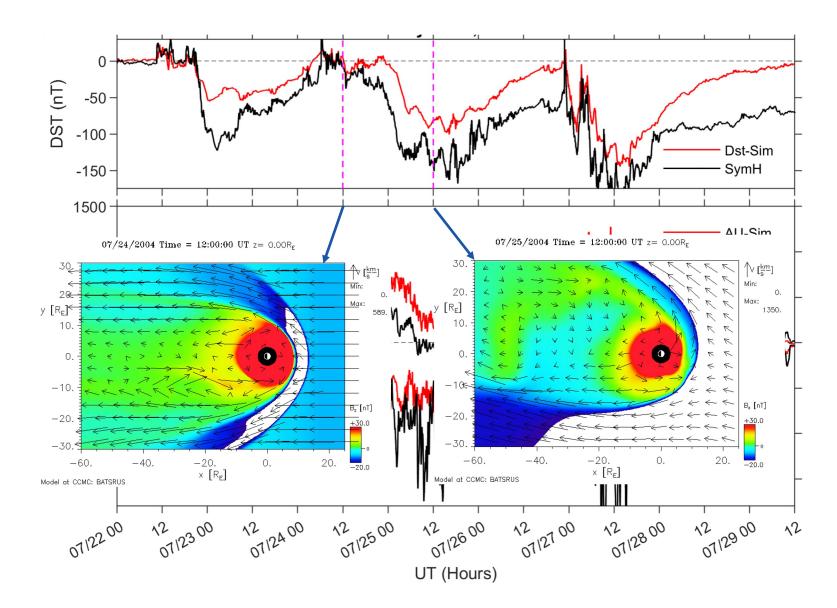
GM solver:	Rusanov
GM limiter name:	mc3
GM limiter beta:	1
GM implicit:	explicit
GM Boris clight factor:	0.01



SWMF-02_2004-07-TP-1: July 22-31, 2004

- SymH: Observed and simulated (tracking above observations in this case)
- AU, AL: Observed Supermag Auroral indices and simulated indices

(mostly higher AU and weaker AL)


SWMF-02_2004-07-TP-1 (in preparation)

Low Mach event

• Testing modification of grid setup

Multi-storm events:

 How to define Storm onset, Main Phase and Recovery Phase for targeted model-data evaluation and skill scoring

Comprehensive Analysis of Models and Events based on Library Tools (CAMEL)

- Standardize model-data comparison studies by building applications in CAMEL
- Make comparisons available for anyone to review
- Easily extend model-data comparisons:
 - o adding time periods using standardized simulation runs
 - o add simulation of other models using similar standardized settings

Data Acquisition

- Began work on acquiring SuperMag data:
 - o checking precision, value ranges, data errors
 - o calculate time derivatives

CAMEL User Experience:

- Workflows for **single-event analysis** and **multi-event skill scoring** are being developed and implemented
- DeltaB (North, East, Down components)
- Time derivative (d/dt) of each component, magnitude of horizontal d/dt

Plans

• Advanced visualization for model outputs:

- Present DeltaB results beyond lon-lat map of each component or time series for each separate station (-> CAMEL)
- Efficient quick look movies for large magnetosphere runs (1000s of output times)
- Kamodo (CCMC's Python data access and visualization library) support: RCM and Magnetometer outputs
- Model driving:
 - SWMF-IE -> GITM, (TIEGCM, WACCM-X, ...)
- More global magnetosphere models:
 - MAGE 0.75 = GAMERA+REMIX+RCM has been delivered to the CCMC.
 The modelers are continuing to make improvements and
 we are testing the ROR interface, as well as post-processing of the results.
 We expect the model to be available to the community soon.
 - GUMICS-5 install the MPI version of the model
- Extend computational resources