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Introduction

|sotope ratio mass spectrometry (IRMS) can be used to detect
biosignatures' and seawater chemistry, but there can be overlap between
fractionations caused by biotic and abiotic processes —there is potential for
abiotic mimicry of biosignatures.

Machine learning (ML) can use complex effects (multiple main effects and
interactions) to disentangle abiotic mimicry and make accurate predictions.

ML predictions of extraterrestrial biosignatures require strong
evidence and interpretable models with physically and mathematically
meaningful feature spaces and false prediction diagnostics.

Isotope ratio measurements of volatile CO, can be used
for ML detections of ocean world (OW) biosignatures
and seawater chemistry
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Automated Quality Control (QC), Data Processing,
and Feature Construction

Features (variables) from IRMS Features: IRMS output + time-series

Machine Learning FEeature Selection

How can we determine the important predictors for
biosignatures and salt detection?

NPDR-LURF feature selection = LASSO-penalized® Nearest-Neighbors
Projected Distance Regression (NPDR’) using Unsupervised Random
Forest® (URF) proximity distance
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= changes in correlation based on class
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NPDR feature selection finds
Interactions by using nearest-
neighbors (hits/misses) in a
high dimensional feature
(variable) space.
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Prediction of Biosignatures and Seawater Chemistry.

Random Forest classification and regression are used to predict the presence of biosignatures,
MgSO,, NaHCO,, pH and ionic strength using NPDR-LURF selected features.
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Diagnosing False Positives and Negatives

Local variable importance scores of globally-
iImportant variables (selected from all samples) are
discordant in false prediction samples.

Local (single-sample) feature importance
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