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This work presents an algorithm for scene change detection from point clouds to enable
autonomous robotic caretaking in future space habitats. Autonomous robotic systems will
help maintain future deep-space habitats, such as the Gateway space station, which will be
uncrewed for extended periods. Existing scene analysis software used on the International
Space Station (ISS) relies on manually-labeled images for detecting changes. In contrast, the
algorithm presented in this work uses raw, unlabeled point clouds as inputs. The algorithm
first applies modified Expectation-Maximization Gaussian Mixture Model (GMM) clustering to
two input point clouds. It then performs change detection by comparing the GMMs using the
Earth Mover’s Distance. The algorithm is validated quantitatively and qualitatively using a test
dataset collected by an Astrobee robot in the NASA Ames Granite Lab comprising single frame
depth images taken directly by Astrobee and full-scene reconstructed maps built with RGB-D
and pose data from Astrobee. The runtimes of the approach are also analyzed in depth. The
source code is publicly released to promote further development.

I. Nomenclature
𝐷 = the dimensions of a point cloud
𝑃 = the number of parameters specifying each distribution
𝜏 = the log-likelihood convergence threshold
𝑡0, 𝑡 = the times at which the state of the scene is captured
𝑀 , 𝑁 = the number of points in a point cloud at 𝑡0 and 𝑡
𝐿 = the maximum number of EM iterations
S𝑡0
𝑀×𝐷 , S

𝑡
𝑁×𝐷 = the sets of points representing a scene at times 𝑡0 and 𝑡

𝜀𝑖, 𝑗 = the Euclidean distance between two points
𝐸 = the Earth Mover’s Distance (EMD) between two distributions
E𝐾∗𝑡0×𝐾∗𝑡 = the matrix representing the EMD between all cluster means in 𝚯𝑡0 and 𝚯𝑡

𝚯𝑡0
𝐾 𝑡0×𝐷 , 𝚯𝑡

𝐾 𝑡×𝐷 = the Gaussian Mixture Models (GMMs) representing the scene at 𝑡0 and 𝑡
𝐾, 𝐾𝑚𝑖𝑛 = the maximum and minimum, respectively, allowable number of distributions in a GMM
𝐾∗ = the optimal number of distributions in a GMM
𝚷 = the GMM representing the areas within the map of where changes occurred

II. Introduction

As humanity ventures to establish a sustainable presence in deep space, the autonomous maintenance of space
habitats will become paramount. Ensuring the safety, functionality, and longevity of these habitats—especially

when they are uncrewed for long periods of time—requires advanced technologies for monitoring and detecting changes
in environmental conditions. Previous work developed the first microgravity robotic assistants for space habitats [1, 2].
One of these robots is Astrobee [3], a free-flying robot currently operating on the International Space Station (ISS)
that acts as a platform for experiments and research. One current research initiative for Astrobee is anomaly detection,
using the robot as a mobile sensor platform. Anomaly detection with Astrobee could enable automatic detection of
critical safety issues, including blocked vents or loose cargo, and identification of target areas for remapping to improve
localization. These applications motivate an algorithm for autonomously detecting generalized changes over time within
a map.
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Fig. 1 The EM-EMD algorithm first clusters input point clouds S𝑡0 and S𝑡 into Gaussian distributions using
Expectation-Maximization (EM). Changes are detected using the Earth Mover’s Distance (EMD) to compare the
distributions.

Current anomaly detection work for Astrobee is semantic- and image-based. In semantic-based change detection,
changes can only be detected for items with known categories. Building detection models to categorize objects typically
requires a large amount of manually-labeled training data. This strategy relies on up-to-date labeling and is limited to
the number of object categories added manually [4, 5]. In image-based change detection, changes are detected through
pairwise image comparison and inconsistency filtering against a 3D model given the camera pose [6]. While this method
predicts change regions at near-real-time computation speeds, it is sensitive to the accuracy of the camera pose, the
accuracy of the 3D model, and environment configurations such as lighting and reflectivity.

This work performs 3D scene change detection directly from point clouds [7]. An unsupervised clustering strategy
using point cloud data from a depth sensor is a candidate method for generalizing existing research in anomaly detection
[8]. The Expectation-Maximization (EM) algorithm [9, 10] consolidates point clouds into Gaussian Mixture Model
(GMM) clusters with an unknown initial number of GMM clusters [11]. The Minimum Description Length (MDL)
stopping criterion is used to determine when the optimal number of GMM clusters is achieved [12]. Finally, the Earth
Mover’s Distance (EMD) [13] is computed between the GMM clusters at the initial and final times to select the clusters
contributing the highest degree of change. This results in a set of GMM clusters in the scene indicating likely locations
of change. The EM-EMD algorithm is summarized in Figure 1. This work contributes:

1) Detection of multiple appearing or disappearing changes within a map at one time using GMM clustering of 3D
depth data.

2) Demonstration of change detection on real data collected using an Astrobee robot in the Granite Lab at NASA
Ames Research Center. The Granite Lab is a space habitat analog, enabling testing detection and mapping
algorithms under localization uncertainty, with 3-DOF microgravity simulation and imitated ISS visual features.

3) Evaluation of computational performance and accuracy impacts of two algorithm modifications, namely varying
𝐾, the initial number of GMM clusters, and using Principal Component Analysis as a pre-processing step to
reduce the data dimensionality.

4) Open release of the source code at https://github.com/nasa/isaac/tree/master/anomaly. To the best of our
knowledge, this is the first openly-available software that detects scene changes using GMM clustering on only
3D depth data.

III. Related Work
Various metrics have been suggested for identifying geometrical and appearance changes in the world. Typically, the

objective is to compare the data from different times and identify spatial regions in the data that have a distance exceeding
a specific threshold. The characterization of the environment is usually based on geometry, appearance, or semantics.
Geometry and appearance approaches are arguably the most common, detecting changes based on inconsistency in
maps from RGB or depth projections, without semantic labeling [6, 14–17]. The problem can be described as a 3D
object discovery technique, where an object represents anything that can be moved. Concerning unsupervised object
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discovery, some works focus on identifying parts of the input mesh as candidate objects [18]. The additions to the scene
can be also be analyzed in a hybrid approach by combining global geometry with local semantics to highlight changes
in the distribution of data [19].

The concept of semantic class segmentation can also be useful for change detection [20, 21]. The idea of using
semantics closely relates to that behind semantic instance detection [4]. The key difference involves assigning individual
voxels to classes within the scene, rather than to instances of objects. One algorithm splits voxelized data into segments
that do not necessarily correlate to complete object classes, but to segments that optimize the change detection output [20].
With a voxel-based approach, it follows that the change detection algorithm may be able to attain a higher specificity
than is afforded by the bounding box constraint of object detection. Nevertheless, the manual labeling of the data is still
a major barrier for semantic class segmentation.

A number of works have also targeted changed detection from unmanned aerial vehicles (UAVs) or remote
sensing [22, 23]. Targeting high-resolution UAV images, for example, the method outlined in [24] presents a pipeline
of comparing point cloud data from two different periods. Initially, point clouds are generated from image-based
3D reconstruction. After acquiring the point clouds, separate maps are generated and a coarse-to-fine registration
process is applied to overlay the two point clouds. Depth and grayscale difference maps are produced and random forest
classification and component connectivity analysis techniques are applied to discover changed buildings. This algorithm
was tuned and validated for a “2.5D” satellite image reconstruction, not to the 3D environment robots explore, which
made this method unsuitable.

In the context of robots detecting changes online within the ISS, maps of modules reconstructed from images have
historically been patchy in areas occluded by protruding objects. The quality of these maps precludes them from being
a top candidate for change detection [4]. For fast 3D localization, a method of comparing updated point clouds to a
base environment map has been proposed [25]. Point clouds produced from depth sensors are converted to Normal
Distribution (ND) voxels using a normal distribution transform. The voxels are categorized for comparisons between
the map and measured data. A similar method uses the Mahalanobis distance to compare local 3D point clouds to the
nearest voxels in occupancy maps of the environment [26]. A clustering algorithm generates a list of change candidates,
and outliers are removed with a random forest classifier. Classification scores and number of occurrences are used to
map and report changes in real time. Another lightweight change detection algorithm detects changes between current
image data and a previously constructed 3D model [6, 16]. Instead of relying on current environment maps online,
an image of the current scene is back-projected onto the 3D model, and projected to a viewpoint of another recent
image with an overlapping viewpoint. The projection from the model is compared to the other current image to identify
differences. A short sequence of keyframes is used to remove ambiguities and to locate changes in the 3D map. This
method suffers from robustness issues depending on the quality of the available 3D map, RGB camera localization, and
RGB camera intrinsic calibration.

While aforementioned localization techniques demonstrate real-time change detection for robotic applications, they
require high-quality and current 3D maps. This is difficult to generate in the ISS using current Astrobee and ISAAC
software given the complexity and density of the environment. Additionally, methods which rely on labeling lack
generalizability to new, unseen items entering space habitats. Change detection methods based on RGB images as
input may lack robustness when lighting changes. A recent scene change detection algorithm addresses these issues
by performing change detection directly from 3D point clouds [27]. This method summarizes the 3D point clouds as
GMMs and extracts changes between the two input GMMs as the distributions contributing the greatest EMD. Because
the method does not rely on RGB images, it is robust to changes in lighting. More recent work further improved the
robustness of this algorithm by using a split-and-merge variation of EM to autonomously settle on the optimal number
of distributions in the GMM to resolve algorithm initialization [8].

The EM-EMD algorithm in this work reliably extracts high-level representations of scene changes from 3D point
clouds. It iterates between the E-step and a modified M-step in EM to delete distributions to autonomously select the
final number of distributions in the GMM [28]. This algorithm is demonstrated to detect both object appearances and
object disappearances. In contrast to many of the previous methods, this method can detect multiple scene changes
of never-before-seen objects using only depth data, which makes it a candidate for general change detection on space
habitats.

IV. Method
This section describes the new unsupervised method for change detection from 3D point clouds and data on which it

was tested. First, the components of an algorithm that solves for 𝚯𝑡 and 𝚯𝑡0 through Expectation-Maximization (EM) is
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presented, where 𝚯𝑡 is the GMM representing the map at time 𝑡 (Section IV.A). Next, the procedure solving for the
detected change regions, 𝚷, by iteratively removing clusters using the Earth Mover’s Distance (EMD) is presented
(Section IV.B) [29]. As a pre-processing step, the algorithm applies the statistical outlier removal filter to the point
clouds S𝑡0 and S𝑡 , and the voxel grid downsampling filter to reduce the number of point cloud points [30]. The data
collected to test the algorithm were collected in a ground laboratory environment with an Astrobee robot (Section IV.C).

A. Gaussian Mixture Modeling with Expectation-Maximization
GMM clustering summarizes each point cloud with 𝐾 initial Gaussian distributions. The 𝐾 distributions are each

initialized with a random mean, covariance, and weight, and the EM algorithm fits the data to the clusters most likely to
produce them. Given 𝐾 distributions and assuming each point has equal membership probability, the probability a
sample point s𝑡

𝑖
∈ S𝑡 = {s𝑡

𝑖
}𝑖=1,...,𝑁 is drawn from a distribution 𝜽 𝑡

𝑘
∈ 𝚯𝑡 = {𝛼𝑘 , 𝝁𝑘 ,𝚺𝑘}𝑘=1,...,𝐾 is given by

𝑝(s𝑡𝑖 | 𝚯𝑡 ) =
𝐾∑︁
𝑘=1

𝛼𝑘 𝑝(s𝑡𝑖 | 𝜽 𝑡𝑘). (1)

The prior model weights, 𝛼𝑘 , require

𝛼𝑘 ≥ 0, 𝑘 = 1, . . . , 𝐾, and
∑𝐾
𝑘=1 𝛼𝑘 = 1. (2)

Using Bayes’ theorem, the posterior probability 𝑝
(
𝑘 | s𝑡

𝑖

)
is

𝑝
(
𝑘 | s𝑡𝑖

)
=

𝑝
(
s𝑡
𝑖
| 𝚯𝑡

)∑𝐾
𝑘=1 𝑝

(
s𝑡
𝑖
| 𝜽 𝑡

𝑘

) . (3)

The likelihood for a given mixture model, L(S𝑡 | 𝚯𝑡 ), is given by

L
(
S𝑡 | 𝚯𝑡

)
= log

𝑁∏
𝑖=1

𝑝
(
s𝑡𝑖 | 𝚯𝑡

)
=

𝑁∑︁
𝑖=1

log
𝐾∑︁
𝑘=1

𝛼𝑘 𝑝
(
s𝑡𝑖 | 𝜽 𝑡𝑘

)
(4)

and the probabilities in Eq. (1) and Eq. (3) are optimized by maximizing the log-likelihood function to solve for the set
of distributions according to

�̂� = arg max
𝚯𝑡

{
logL

(
S𝑡 | 𝚯𝑡

)}
. (5)

Because the maximum likelihood estimate in Eq. (5) cannot be computed analytically, EM is used to fit the data to
these distributions iteratively until convergence. The modified EM algorithm interprets S𝑡 as incomplete data missing a
set of 𝑧𝑖,𝑘 ∈ Z𝑁×𝐾 binary labels indicating which distribution produced which sample point [28]. The EM algorithm
estimates (the E-step) the conditional expectation of the log-likelihood at optimization iteration 𝑙 < 𝐿 according to

𝑄

(
𝚯𝑡 , �̂�𝑙

)
≡ E

[
log 𝑝

(
S𝑡 ,Z | 𝚯𝑡

)
| S𝑡 , �̂�𝑙

]
= log 𝑝

(
S𝑡 ,𝑊 | 𝚯𝑡

)
, (6)

where 𝑤𝑖,𝑘 ∈ 𝑊𝑁×𝐾 ≡ E
[
Z | S𝑡 , �̂�𝑙

]
are the posterior model weights. These weights are the conditional expectation

that each distribution produces each sample point. Bayes’ theorem can be used to solve for 𝑤𝑖,𝑘 at iteration 𝑙 as

𝑤𝑖,𝑘 ≡ E
[
𝑧𝑖,𝑘 | S𝑡 , �̂�𝑙

]
=

�̂�𝑘,𝑙 𝑝

(
s𝑡
𝑖
| �̂�𝑡𝑙

)
∑𝐾
𝑘=1 �̂�𝑘,𝑙 𝑝

(
s𝑡
𝑖
| �̂�𝑙

) . (7)

The EM algorithm then maximizes (the M-step) these conditional expectations to update model parameters according to

�̂�𝑙+1 = arg max
𝚯𝑡

{
𝑄

(
𝚯𝑡 , �̂�𝑙

)}
, (8)

where the parameters of �̂�𝑙+1 are updated as
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�̂�𝑘,𝑙+1 =

(
𝑁∑︁
𝑖=1

𝑤𝑖,𝑘

)−1
𝑁∑︁
𝑖=1

s𝑡𝑖𝑤𝑖,𝑘 (9)

�̂�𝑘,𝑙+1 =

(
𝑁∑︁
𝑖=1

𝑤𝑖,𝑘

)−1
𝑁∑︁
𝑖=1

(
s𝑡𝑖 − �̂�𝑘,𝑙

) (
s𝑡𝑖 − �̂�𝑘,𝑙+1

)⊺
𝑤𝑘,𝑙 . (10)

The EM algorithm is initialized with 𝐾, which must be carefully selected to guarantee adequate performance.
By modifying the M-step of the EM algorithm to remove unused distributions, the algorithm can be more efficiently
initialized with an overestimated 𝐾 to avoid expensive tuning [28]. In the modified M-Step, distributions assigned too
few sample points are removed. The estimated weights of the prior distributions, �̂�𝑘 , are driven to 0 if there are fewer
than 𝑃

2 points represented by 𝜽𝑘 according to∗

�̂�𝑘,𝑙 =

max
{
0,

(∑𝑁
𝑖=1 𝑤𝑖,𝑘

)
− 𝑃

2

}
∑𝐾
𝑘=1 max

{
0,

(∑𝑁
𝑖=1 𝑤𝑖,𝑘

)
− 𝑃

2

} for 𝑘 = 1, . . . , 𝐾 (11)

�̂�𝑙+1 = arg max
𝚯𝑡

𝑄

(
𝚯𝑡 , �̂�𝑙

)
, for 𝑘 : �̂�𝑘,𝑙+1 > 0, (12)

where 𝑃 is the number of parameters specifying a distribution according to

𝑃 = 𝐷 + 𝐷 (𝐷 + 1)
2

, (13)

and 𝐷 = 3 is the dimensionality of the input point clouds. The EM loop iterates until the difference in values of the cost
function between iterations is less than a threshold, 𝜏, defined as

L
(
S𝑡 | 𝚯𝑡𝑙+1

)
− L

(
S𝑡 | 𝚯𝑡𝑙

)
< 𝜏. (14)

The log-likelihood, Eq. (5), is the basis for the EM cost function. This work modifies this cost function to add a
penalty term, 𝑝 (𝑘), to penalize a large number of distributions in 𝚯𝑡 and reduce the overfitting introduced by initializing
with a large 𝐾. The objective is transformed from maximization to minimization by negating the log-likelihood cost
used to fit the data and adding the new penalty term to minimize the total number of distributions to become

𝚯∗ = arg min
𝚯𝑡
{− logL(S𝑡 | 𝚯𝑡 ) + 𝑝 (𝑘)}. (15)

The Minimum Description Length (MDL) criterion measures the number of parameters in 𝚯𝑡 and is used as a stopping
criterion to determine when the optimal number of GMM clusters, 𝐾∗, is achieved [8, 28]. The MDL criterion was used
to generate the penalty term, 𝑝(𝑘), as

𝑝 (𝑘) = 𝑃

2

𝐾∑︁
𝑘=1

log
(
𝑁𝛼𝑘

12

)
+ 𝑘

2
log

(
𝑁

2

)
+ 𝐾 (𝑃 + 1)

2
. (16)

The overall cost function becomes

L(𝚯𝑡 , S𝑡 ) = 𝑃

2

∑︁
𝑘:𝛼𝑘>0

log
(
𝑁𝛼𝑘

12

)
+ 𝑘𝑛𝑧

2
log

(
𝑁

2

)
+ 𝑘𝑛𝑧 (𝑃 + 1)

2
− log 𝑝(S𝑡 | 𝚯𝑡 ). (17)

Optimization returns 𝚯𝑡 (𝑤, 𝝁𝑡 ,𝚺𝑡 ). The EM algorithm is run on both S𝑡0 and S𝑡 to produce 𝚯𝑡0 and 𝚯𝑡 . These two
GMMs are used to detect changes.

∗Consider a set s𝑡
𝑖
∈ S𝑡

𝑁×𝐷 represented by 𝜽𝑡
𝑘
∈ 𝚯𝑡

𝐾×𝐷 . Then ∀
(
s𝑡
𝑖
, 𝜽𝑡
𝑘

)
the probability each point belongs to each distribution 𝑝

(
s𝑡
𝑖
| 𝜽𝑡
𝑘

)
→ 1

and
∑𝑁
𝑖=1 𝑤𝑖,𝑘 <

𝑃
2 .
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B. Change Detection Using the Earth Mover’s Distance
Once the S𝑡0 and S𝑡 data are represented by 𝚯𝑡0 and 𝚯𝑡 , the scene differences can be efficiently calculated using the

EMD [8]. The EMD is a metric which measures the distance between two distributions. The EMD is the work needed
to move an object from a position at time 𝑡0 to a position at time 𝑡. In this context, the objects are the distributions
𝜽 𝑡
𝑘
∈ 𝚯𝑡 , and the sizes of the objects are their weights, 𝑤𝑡

𝑘
. The EMD is the minimum amount of work necessary to

make the two distributions 𝚯𝑡0 and 𝚯𝑡 equal. The minimum work is computed as the optimal flow F, the smallest total
weight moved. This optimal transport problem is solved through linear programming with the formulation

minimize
F

𝑊𝑜𝑟𝑘 (𝚯𝑡0 ,𝚯𝑡 ,F) =
𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝜀𝑖 𝑗 𝑓𝑖 𝑗

subject to
𝑓 𝑗𝑖 ≥ 0, 1 ≤ 𝑗 ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑁,
𝑀∑︁
𝑗=1

𝑓 𝑗𝑖 ≤ 𝑤𝑡0𝑗 , 1 ≤ 𝑗 ≤ 𝑀,

𝑁∑︁
𝑖=1

𝑓 𝑗𝑖 ≤ 𝑤𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑁,

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑓 𝑗𝑖 = min ©«
𝑀∑︁
𝑗=1
𝑤
𝑡0
𝑗

𝑁∑︁
𝑖=1

𝑤𝑡𝑖
ª®¬

(18)

The EMD, 𝐸 (𝚯𝑡0 ,𝚯𝑡 ), results from normalizing the work by the total flow according to

𝐸 (𝚯𝑡0 ,𝚯𝑡 ) = 𝑊𝑜𝑟𝑘 (𝚯𝑡0 ,𝚯𝑡 ,F)∑𝑀
𝑗

∑𝑁
𝑖 𝑓𝑖 𝑗

. (19)

The EMD is used in a greedy selection algorithm to extract the clusters from 𝚯𝑡 which contribute the highest amount of
change [8]. The distribution whose removal best decreases the EMD between 𝚯𝑡0 and 𝚯𝑡 is extracted. Extracted clusters
are transferred to the final model, 𝚷, which stores detected changes. This process iterates until the EMD between the
two distributions stops decreasing. The final model, 𝚷, is used to identify the points in S𝑡 where change occurred. This
process is summarized in Algorithm 1.

Algorithm 1 EM + EMD Algorithm for Change Detection

𝚯𝑡0 ,𝚯𝑡 ← EM(S𝑡0 , S𝑡 )
𝚷← 0
𝐸𝑜𝑙𝑑 ← 𝐸 (𝚯𝑡0 ,𝚯𝑡 )
𝚯∗ ← random initialization
while 𝐸𝑜𝑙𝑑 > 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 do

for 𝜽 𝑡
𝑘

in 𝚯𝑡 do
𝑘∗ ← 0
𝚯𝑡𝑒𝑚𝑝 ← 𝚯𝑡 − 𝜽 𝑡

𝑘

𝐸𝑛𝑒𝑤 ← 𝐸 (𝚯𝑡0 ,𝚯𝑡𝑒𝑚𝑝)
if 𝐸𝑛𝑒𝑤 < 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 then

𝐸𝑙𝑜𝑤𝑒𝑠𝑡 ← 𝐸𝑛𝑒𝑤
𝑘∗ ← 𝑘

𝚯∗ ← 𝚯𝑡𝑒𝑚𝑝
end if

end for
𝚯𝑡 ← 𝚯∗

𝚷← 𝚷 + 𝜽 𝑡
𝑘∗

end while
return 𝚷
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Fig. 2 The Granite Lab at NASA Ames Research Center simulates the visual environment of the ISS and mimics
3-DOF microgravity by mounting Astrobee on a near-frictionless air bearing carriage. This system is used for
testing Astrobee perception, motion planning, and control.

C. Data Collection with Astrobee
The data used to verify the EM-EMD algorithm were collected with an Astrobee robot in the Granite Lab at NASA

Ames Research Center, shown in Figure 2. The Granite Lab is a facility that imitates the visual features of the ISS.
The facility mimics 3-DOF microgravity by placing Astrobee on a near-frictionless air bearing, allowing it float freely
on a 2 × 2 m granite monolith. In this environment, Astrobee uses its own onboard sensors and actuators to detect
landmarks and complete maneuvers, replicating its behaviors on the ISS. A collocated ground station computer allows
for real-time tracking of Astrobee’s position and downlinking sensor data. The Navigation Camera (NavCam) on
Astrobee collects Bayer images at 1280 × 960 resolution at 5 Hz. It is a fixed-focus RGB camera with a wide field of
view [3, 31]. The Hazard Camera (HazCam) on Astrobee is a PMD Pico Flexx 2 time-of-flight sensor that collects
depth images at 224 × 172 resolution at 5 Hz. To create the full-scene 3D point cloud maps of the environment used
throughout this work, the NASA Ames Stereo Pipeline package uses Astrobee NavCam, HazCam, and localization
data [2, 32, 33]. It registers image data from the NavCam with depth information from the HazCam using Theia
structure-from-motion [34], and then fuses the depth point clouds into a mesh [35]. This work also uses single-frame
point clouds, which were taken directly from the Astrobee HazCam raw data stream.

Astrobee conducted surveys of five different scenes where up to three large objects were placed in, moved, or
removed from the scene. These objects include another Astrobee robot, a crate, and a cargo bag, as shown in Figure 3.
The first scene contained none of these objects and served as the basis for comparison for change detection from both
single frame point cloud and reconstructed map data. The second scene contained an added cargo bag used to test
change detection on single frame point cloud data. The third scene contained an added Astrobee also used to test change
detection on single frame point cloud data. The data from the second and third scenes is shown in Figure 5. The fourth
and fifth scenes were both processed into reconstructed maps. The fourth scene contained an added Astrobee and an
added cargo bag. The fifth scene contained an added Astrobee, an added cargo bag, and an added crate. The data from
the fourth and fifth scenes are shown in Figure 4. The two single frame point clouds containing change objects are also
referred to as one-object scenes and the reconstructed maps containing two and three changed objects are referred to as
two- and three-object scenes in Section V.E.

V. Results
The performance of the EM-EMD algorithm is demonstrated on both full-scene reconstructed maps (Section V.A)

and single-frame point cloud data collected by the HazCam on Astrobee (Section V.B). The impact on accuracy of two
algorithm variations, namely varying 𝐾 and pre-processing the input point clouds with PCA, is discussed (Section V.C),
and runtime is presented (Section V.D). Finally, performance of the algorithm on both single frame and full-scene
reconstructed maps is evaluated (Section V.E). For all experiments, 𝐾𝑚𝑖𝑛 = 1, 𝐾 = 25, 𝜏 = 10−5, and 𝐿 = 100 unless
otherwise stated. The notions of True Positive (TP), False Positive (FP), and False Negative (FN) detection are used
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Fig. 3 Three large objects were placed in, moved, or removed from each scene. These images are captured with
the NavCam on Astrobee for Scene 5. (Left) An Astrobee was placed near the edge of the scene. (Middle) A crate
was placed in one corner of the scene. (Right) A cargo bag was placed in one corner of the scene.

throughout the qualitative and quantitative discussion of results.

A. Reconstructed Maps
Detecting changes on full-scene reconstructed maps enables anomaly identification across large regions and allows

for correcting localization uncertainty. Figure 4 shows two different scene changes using reconstructed maps as input.
In the first scene, an Astrobee robot and a cargo bag were placed along the same wall. The Astrobee docking station is
also fixed along this wall and present in every scene. Despite the presence of the dock, which may be falsely detected as
a scene change along with the variable scene objects, the Astrobee robot and cargo bag are both correctly identified
scene changes. Figure 4 also shows a scene with three added objects. In this scene, a crate, cargo bag, and Astrobee
were placed along separate walls, with the Astrobee placed on its docking station. The location of the docking station at
the scene edge places the Astrobee next to significant background noise, shown in Figure 3. The Astrobee was not
directly detected (FN), however the region behind it was. The crate and cargo bag were both correctly identified.

B. Raw Point Cloud Data
The performance of the EM-EMD algorithm is demonstrated on raw point cloud data acquired by an Astrobee robot

for a mapping survey of the Granite Lab. The robot traverses the lab, capturing still depth images with its HazCam at
specific locations. The EM-EMD change detection is robust to robot localization uncertainty as shown in Figure 5. For
each of the four input point clouds shown in Figure 5, the EM algorithm converged to 𝐾∗ ∈ [20, 23] with 𝐾 = 25. In
both scenarios, the object was correctly identified as a change in the scene (TP), and no objects were falsely identified as
scene changes (FP).

C. Algorithm Variations
Two variations were applied to the algorithm to study their effect on performance: varying the initial number of

GMM clusters, 𝐾 , and PCA as a pre-processing step. Figure 6 demonstrates the impact of increasing 𝐾 . It shows that
when 𝐾 is too small, objects are clustered together with the surrounding walls and surfaces, reducing recall. This is
evident with 𝐾 = 10, where the cargo bag was clustered along with the wall and not detected as a change (FN). As
𝐾 increases, the resolution of the model increases. Objects are represented by an increasing number of distributions
and the total detected change area approximately decreases. For 𝐾 = 50, the objects begin to fragment. This could
be overcome by inferring distributions with centers close in space as a single scene change. However, increasing 𝐾
increases runtime significantly. For the reconstructed maps and single-frame point clouds used in this work, 𝐾 = 25
struck the best balance between accurately detecting appearances, accurately detecting disappearances, and runtime.

Data dimensionality reduction on the input point clouds was performed using PCA. The change objects protrude
from planar walls in the scene, so points belonging to the scene and points belonging to the change objects are distinct.
Applying PCA to this data removes the 𝑧-dimension of the point clouds. Changes are accurately identified when using
PCA for pre-processing as shown in Figure 7, however pre-processing with PCA led to a 10% speedup in total change
detection runtime for this test case. These results show pre-processing with PCA to reduce the complexity of the input
point clouds could reduce runtime while maintaining performance. However, in complex environments such as the ISS,
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Fig. 4 Scene change detection with the EM-EMD algorithm identifies changes on reconstructed maps of the
environment. (Left) Two objects, an Astrobee and cargo bag, are added along one wall of the scene, and this
region along the wall is identified as a change region. (Right) Three objects, an Astrobee, cargo bag, and crate,
are each placed along separate walls in the scene. The cargo bag and crate are correctly detected areas of change
(TP), while significant noise at the map boundary led to a shift in the change region. Astrobee was not correctly
identified as a scene change (FN).

Table 1 Change Detection Runtime [s]

𝐾 Data Loading PCA GMM Clustering (EM) Change Detection (EMD) Total
15 0.044 3.727 2043.113 0.677 2047.561
20 0.037 2.580 2804.327 1.491 2808.535
25 0.037 1.979 4496.449 3.070 4501.535
30 0.043 2.920 3307.551 2.708 3313.222
40 0.023 1.981 5209.999 5.254 5217.257
50 0.026 2.169 7714.528 9.415 7726.138

removing one spatial dimension may have more pronounced impacts on change detection performance and may require
further study.

D. Runtime
A runtime analysis was performed to verify the standalone performance of the change detection algorithm.

Computational timing data were collected for two-object change detection from reconstructed maps (see Figure 4) on a
computer with an 8-core, 3.2 GHz Apple M1 CPU with 8 GB RAM. Table 1 reports runtimes for four change detection
computational processes based on the number of Gaussian clusters, 𝐾, used to compute changes. Filtering was not
applied to the input point clouds and therefore all of the tunable parameters were solely in the GMM clustering portion
of the algorithm and left as their default values. Data are loaded as .ply point clouds. The EM portion of the algorithm
accounts for most of the runtime, increasing approximately linearly with 𝐾 . Runtime could be improved by increasing
𝐾𝑚𝑖𝑛 to a more reasonable lower-bound, downsampling the input point clouds, or decreasing 𝐽.

E. Performance Metrics
The standard performance metrics of accuracy, precision, recall, and 𝐹1 score are used to compare the performance

of the EM-EMD algorithm on the single frame point clouds with reconstructed maps. Accuracy measures the ratio
of predicted TP and TN to all true and false detections, precision measures the ratio of predicted TP to predicted FP
detections, recall measures the ratio of predicted TP to predicted FN detections, and the 𝐹1 score reflects the ratio of TP
to FP and FN detections. The TPs were counted as the number of distributions in 𝚷 overlapping with a real change in
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Fig. 5 A cargo bag and Astrobee robot are detected by comparing two single-frame depth images taken at the
same location at different times. (Top) Cargo bag detection (Bottom) Astrobee detection (1st Stage) Images and
input point clouds (2nd Stage) GMM clustering using EM (3rd Stage) Change detection using EMD

the scene. The FPs were counted as the number of distributions identified as changes in 𝚷 which were not real changes
in the scene. The FNs were counted as the number of distributions not marked as changes in 𝚷 which were real changes
in the scene. The scores of EM-EMD change detection on appearances in the single frame point clouds (one-object
scene) and reconstructed maps (two- and three-object scenes) are reported in Table 2. These metrics are defined as

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃 (20)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (21)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (22)

F1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 . (23)

The EM-EMD algorithm achieved the highest recall on single frame point cloud input data. This could be because
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Fig. 6 When varying the initial number of GMM clusters, 𝐾 , a wider area of the map is generally detected as a
change region when fewer clusters are used while a smaller area of the map is generally detected as a change
region when 𝐾 is larger. The parameter 𝐾 = 25 provided the best balance for this scene.

Fig. 7 Applying PCA as a pre-processing step reduces the dimensionality of the point clouds input to the
EM-EMD algorithm. The EM-EMD algorithm still accurately detects changes on the PCA-processed data. (Left)
Change detection result without pre-processing with PCA. (Right) Change detection result with pre-processing
with PCA.

the single frame point clouds have the largest object-to-search-boundary ratio, simplifying change detection. The
EM-EMD algorithm achieved the highest precision and 𝐹1 score on the reconstructed map data for the three-object
scene. Objects were more evenly spaced in this scene than in the two-object scene, and it was not subject to the
alignment error of the single frame point cloud data. However, the 𝐹1 score for the single frame point cloud data was
significantly higher than the 𝐹1 score for the reconstructed map of the two-object scene because of high recall for this
test case. The 𝐹1 scores provide the most complete understanding of expected behavior across the input data type and
number of scene object test cases presented in this work.

Table 2 only shows data for detected object appearances, however these scores are similar for detecting object
disappearances. This is because the algorithm treats object disappearances as object appearances by reversing the order
of the 𝑡 and 𝑡0 input point clouds. These data represent the case where the algorithm is either predicting appearances
when only appearances exist in the scene or predicting disappearances when only disappearances exist in the scene. No
test cases which mix predicting both appearances and disappearances were evaluated in this work.
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Table 2 Performance by Number of Appearance Objects

Metric One-Object Scene Two-Object Scene Three-Object Scene
Accuracy 0.953 0.929 0.952
Precision 0.600 0.617 0.933

Recall 1.000 0.667 0.750
F1 0.727 0.650 0.829

VI. Conclusions
This work presented a change detection algorithm for detecting multiple object appearances or disappearances in a

scene from point clouds. The algorithm does not depend on manually-labeled data and is able to detect changes where
new, previously unseen objects may be introduced. The system was demonstrated and validated in experiments on data
collected by an Astrobee robot at the Granite Lab facility at NASA Ames Research Center as a ground environment
simulating robotic caretaking of space habitats. The runtime of each step of the algorithm was also analyzed.

A. Limitations
One current limitation of the EM-EMD algorithm is that it cannot detect both object appearances and object

disappearances between 𝑡 and 𝑡0. This could be addressed by adding a semantic layer to identify objects by category
within each scene before applying change detection. The EM-EMD algorithm also predicts FP detections around scene
edges which may be noisy or misaligned between time steps. Single frame point clouds were extracted by manually
finding the times at which the Astrobee was looking at the same position in each scene, rather than by automatically
finding the two closest robot body poses, introducing human error and misalignment between S𝑡0 and S𝑡 . When
Astrobee scanned the scene to create the reconstructed maps, it scanned beyond the edge of the lab so manual cropping
is necessary to set the search boundary. When 𝚯𝑡0 contains more distributions than 𝚯𝑡 , whether due to a real scene
change (TP) or due to noise or spatial misalignment (FP), a change will be detected.

B. Future Work
One area of future work could analyze the trade-off between runtime and accuracy for the EM-EMD algorithm.

Future work could also build semantic understanding into the change detection architecture to enable detecting object
appearances and object disappearances within the same scene. Similarly, the impacts of data pre-processing methods
such as point cloud downsampling and filtering could be analyzed to improve change detection accuracy. Improving the
quality of map reconstruction from ISS data is ongoing. When ISS reconstructed maps become available, the EM-EMD
algorithm could be applied to this data. The ISS reconstructed maps are expected to present more complex scenes with
both appearing and disappearing objects, a wide range of object sizes and scales, more point cloud noise, and more
scene changes between time steps.

Finally, future robotic assistants will increasingly support deep space exploration through consistent caretaking
operations. NASA is developing an intermittently-crewed lunar Gateway as infrastructure for venturing to distant
locations. Future work could advance anomaly detection in these facilities, enabling advanced autonomous caretaking
for Astrobee and future robotic assistants.
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