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ABSTRACT 26 

Effective management of water resources requires reliable estimates of land surface states 27 

and fluxes, including water balance components. But most land surface models run in 28 

uncoupled mode and do not produce river discharge at catchment scales to be useful for water 29 

resources management applications. Such integrated systems are also rare over India where 30 

hydrometeorological extremes have wreaked havoc on the economy and people. So, an 31 

Indian Land Data Assimilation System (ILDAS) with a coupled land surface and a 32 

hydrodynamic model has been developed and driven by multiple meteorological forcings 33 

(0.1°, daily) to estimate land surface states, channel discharge, and floodplain inundation. 34 

ILDAS benefits from an integrated framework as well as the largest suite of observation 35 

records collected over India and has been used to produce a reanalysis product for 1981-2021 36 

using four forcing datasets, namely, Modern-Era Retrospective Analysis for Research and 37 

Applications, Version 2 (MERRA-2), Climate Hazards Group InfraRed Precipitation with 38 

Station data (CHIRPS), ECMWF’s ERA-5, and Indian Meteorological Department (IMD) 39 

gridded precipitation. We assessed the uncertainty and bias in these precipitation datasets and 40 

validated all major components of the terrestrial water balance, i.e., surface runoff, soil 41 

moisture, terrestrial water storage anomalies, evapotranspiration, and streamflow, against a 42 

combination of satellite and in situ observation datasets. Our assessment shows that ILDAS 43 

can represent the hydrological processes reasonably well over the Indian landmass with IMD 44 

precipitation showing the best relative performance. Evaluation against ESA-CCI soil 45 

moisture shows that MERRA-2 based estimates outperform the others, whereas ERA-5 46 

performs best in simulating evapotranspiration when evaluated against MODIS ET. 47 

Evaluations against observed records show that CHIRPS-based estimates have the highest 48 

performance in reconstructing surface runoff and streamflow. Once operational, this system 49 

will be useful for supporting transboundary water management decision making in the region. 50 
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1. Introduction 53 

Effective water resources management requires consistent and long-term estimates of 54 

the terrestrial water balance, usually derived from computational models driven by accurate 55 

meteorological forcings and observational inputs. Land surface models (LSMs) are used to 56 

mathematically model the various land surface processes critical in transferring energy fluxes 57 

and moisture between the land surface and the atmosphere. The primary purpose of an LSM 58 

is to simulate the dynamics of water storage, energy, and water fluxes on the surface and 59 

subsurface, by using physically based equations (Kirchner, 2006). While LSMs have been 60 

used in multiple studies to simulate water balance at a continental scale across the world and 61 

over India, an integrated hydrologic-hydraulic system over the Indian subcontinent has not 62 

been developed. 63 

The Indian mainland consists of complex terrain with a surface elevation ranging from 64 

approximately 10 to 8000 meters above mean sea level while having distinct topography that 65 

includes eastern and western coastal regions, northern and northeastern mountain ranges, 66 

central flood plains, southern peninsula, and western arid regions. Moreover, the Indian 67 

climate is quite diverse, with annual mean temperature and precipitation ranging from 68 

approximately 7 to 27 ºC and 500 to 4900 mm, respectively. Being primarily an agrarian 69 

economy, India relies heavily on the long-term and seasonal availability of freshwater. 70 

Additionally, many regions of India are often exposed to natural hazards such as floods and 71 

droughts, which are associated with intense precipitation during the southwest monsoon and 72 

hot and dry summers, respectively (Saharia et al., 2021; Zhang et al., 2017). Moreover, the 73 

warming climate has increased the uncertainty in precipitation, further exaggerating the risks 74 

associated with short-term and long-term variations in the natural water balance (Ali and 75 

Mishra, 2018). Therefore, accurate estimates of land surface states, streamflow, and flood 76 

plain inundation are critical in the decision-making process to ensure national food security, 77 

natural hazards mitigation, and water resources planning and management. However, to 78 



generate these estimates, two primary challenges need to be addressed: (a) the  representation 79 

of the spatial variability of various land surface processes and the initial states in LSMs for 80 

such a complex landmass is difficult (Zhao & Li, 2015), and (b) the models run in a non-81 

operational setting where the LSMs are generally not coupled  with a routing model, and 82 

thus, lack the ability to provide near real-time estimates of streamflow at catchment scales. 83 

To address this, we set up an Indian Land Data Assimilation System (ILDAS), which is based 84 

on a land surface and hydrodynamic model coupled in an offline mode (i.e., no feedback 85 

between LSM and hydrodynamic model) and is driven by multiple meteorological forcings to 86 

generate spatially consistent and high-resolution estimates of land surface states, water 87 

balance, and energy fluxes over the Indian mainland. 88 

A Land Data Assimilation System (LDAS) facilitates the assimilation of in situ observations 89 

and remotely sensed data to improve the accuracy of LSMs through various data assimilation 90 

techniques and the use of observation-based atmospheric forcing data (Kumar et al., 2014). 91 

The progress towards the development of various LDAS was led by the North American 92 

LDAS (NALDAS; Lohmann et al., 2004) and Global LDAS (GLDAS; Rodell et al., 2004), 93 

which were initially developed to provide optimal land surface states and fluxes to 94 

atmospheric models to improve weather and climate predictions (Xia et al., 2019). With the 95 

increasing availability of remotely sensed data, enhanced in situ observation gauge networks 96 

and affordable computational power, many regional LDAS have been developed, such as 97 

European LDAS (ELDAS; (Jacobs et al., 2008), South American LDAS (SALDAS; (de 98 

Goncalves et al., 2006), South Asia LDAS (Ghatak et al., 2018), and Canadian LDAS 99 

(CaLDAS; Carrera et al., 2015). The water and energy fluxes, along with other land surface 100 

states generated by regional and global LDAS, have found wide usability in various 101 

applications such as flood and drought monitoring, climate prediction models, water resource 102 

management, and agricultural crop management (Jin et al., 2018; McNally et al., 2017; 103 

Sawada and Koike, 2016; Yucel et al., 2015). The ILDAS is built on NASA's Land 104 



Information System Framework (LISF; lis.gsfc.nasa.gov), which is an open-source software 105 

that enables a multi-model, multi-data approach to land surface modeling (Kumar et al., 106 

2006). As part of a series of studies that will be carried out towards establishing ILDAS, this 107 

paper presents the results from the first study in which we used the Noah land surface model 108 

with multiparameterization options (Noah-MP; Niu et al., 2011) coupled with the 109 

Hydrological Modeling and Analysis Platform (HyMAP; Getirana et al., 2017, 2012) to 110 

simulate hydrological processes over the Indian landmass using multiple global 111 

meteorological forcing datasets, namely, Modern-Era Retrospective Analysis for Research 112 

and Applications, Version 2 (MERRA-2; Gelaro et al., 2017), Climate Hazards Group 113 

InfraRed Precipitation with Station data (CHIRPS; Funk et al., 2015), ECMWF's ERA-5 114 

(ERA-5; Hersbach et al., 2020), and IMD's gridded precipitation over India. The previous 115 

studies over India have mainly used LSMs without a coupled hydrodynamic model and are 116 

focused primarily on better representation and understanding of various processes involved in 117 

energy and water cycle (Attada et al., 2018; Ghodichore et al., 2022; Maity et al., 2017; Nair 118 

& Indu, 2019; Patil et al., 2011). In the study conducted using South Asia LDAS (Ghatak et 119 

al., 2018), the authors focus on effects of precipitation uncertainty on various hydrological 120 

simulations including streamflow over a similar spatial domain as that of ILDAS, but it is 121 

limited to a relatively short period of evaluation and fewer observed streamflow locations. 122 

Moreover, the study does not include streamflow evaluation over India's geographical 123 

domain. In this study, we present a comprehensive evaluation of surface runoff, soil moisture, 124 

terrestrial water storage anomalies, evapotranspiration, and streamflow. Besides evaluating 125 

major components of the water balance, we also assessed the uncertainty and bias due to 126 

spatiotemporal heterogeneity in the forcing precipitation by evaluating against the gauge-127 

based gridded precipitation provided by the Indian Meteorological Department (IMD).  128 

Overall, the objectives of this study are to: 129 



(a) set up ILDAS by coupling a land surface and hydrodynamic model to generate a high-130 

resolution reanalysis dataset over the Indian domain. 131 

(b) quantify the uncertainty and bias in precipitation provided by the global forcings over the 132 

Indian mainland. 133 

(c) evaluate ILDAS nationwide performance by evaluating simulated water balance 134 

variables against in situ and satellite-observed products. 135 

The paper is organized as follows: section 2 describes the study area and various datasets 136 

used in this study. It also briefly explains the Noah-MP model and the methodology involved 137 

in running the model and evaluation of results. In section 3, results are presented along with 138 

relevant discussion. Finally, section 4 provides the conclusions of the study and future work. 139 

2. Data and methods 140 

2.1 Study Area 141 

The modeling system is defined on a spatial domain spanning 68°E – 98°E and 5.5°N 142 

– 37.5°N, as shown in (Fig. 1). The landmass primarily consists of the geographical region of 143 

India along with some portions of neighboring countries. By taking a wider geographical 144 

extent than India's political boundary, we ensured that the LSM could process the necessary 145 

meteorological and geological information at the boundary of the Indian landmass. India has 146 

a diverse climate and geography that can be attributed to being the world's seventh largest 147 

country in terms of area. The Indian mainland includes mountain ranges in the north and 148 

north-east, the western and eastern coastal regions, the Indo-Gangetic plains, the desert in 149 

western Rajasthan, the peninsular plateau and the islands of Lakshadweep and Andaman and 150 

Nicobar. The overall climate of India is considered tropical, with a mixture of dry and wet 151 

tropical weather in the country's interior regions. The country gets most of its precipitation 152 

from monsoon rains that begin in June and last till September. Although the analysis has been 153 

done on a 0.1° spatial resolution grid across the Indian landmass, an attempt has been made 154 



to highlight the outcomes based on major river basins as specified by the Central Water 155 

Commission (CWC), India, which are available through the India Water Resources 156 

Information System (IWRIS; www.india-wris.nrsc.gov.in). 157 

 158 

Fig. 1. A map depicting the ILDAS spatial domain, Indian Central Water Commission 159 

River basins and streamflow gauge stations considered in the study. 160 

2.2 Modeling framework  161 

http://www.india-wris.nrsc.gov.in/


LISF is an infrastructure that supports multiple land surface models, meteorological 162 

forcings, and various data assimilation and routing schemes. Given the scalability and 163 

flexibility of LISF, it is well suited for large-scale terrestrial modeling as it enables users to 164 

harness high-performance computing and combine various modeling tools and data sources 165 

in a systematic and streamlined manner. The Noah land surface model with 166 

multiparameterization options (Noah-MP; (G. Y. Niu et al., 2011) builds upon the earlier 167 

Noah model (Ek et al., 2003) by including newer land surface physics such as (a) tiling 168 

scheme in the grid, which can differentiate between vegetation and bare soil, (b) a multi-layer 169 

snowpack as compared to one bulk-layer snowpack, (c) a canopy layer, (d) separation of 170 

permeable and non-permeable frozen soil fractions, and (e) TOPMODEL-based runoff 171 

scheme along with Simple Groundwater Model (SIMGM; Niu et al., 2007). The Noah-MP 172 

also includes multiparameterization options for various physical processes such as runoff 173 

generation, dynamic vegetation, canopy stomatal resistance, groundwater, and so on. 174 

To simulate discharge and floodplain inundation, we use the coupled Noah-MP with the 175 

Hydrological Modeling and Analysis Platform (HyMAP; (A. Getirana, Peters-Lidard, et al., 176 

2017; A. C. V. Getirana et al., 2012) river routing model. HyMAP is a state-of-art global 177 

scale hydrodynamic model that uses local inertia formulation to simulate surface water 178 

dynamics in rivers and floodplains based on baseflow and surface runoff provided by the 179 

LSM at each modeling timestep (Bates et al., 2010; De Almeida et al., 2012). The model 180 

employs the local inertia formulation, which involves solving the complete momentum 181 

equation of open channel flow. This enables a more stable and efficient representation of 182 

river flow diffusiveness and inertia of large water masses with deep flow. Such a 183 

representation is important for a physically accurate representation of wetlands, lakes, 184 

floodplains, tidal effects, and impoundments (A. Getirana et al., 2020). It adopts a sub-grid 185 

approach where both base flow and surface runoff at each grid cell are passed through 186 

individual linear reservoirs and adjusted against relevant time delay factors. To derive water 187 



storage, elevation and discharge in stream and floodplains, HyMAP processes the 188 

topographic information in the form of Digital Elevation Model (DEM), river geometry, and 189 

roughness. The HyMAP parameters are derived from the Multi-Error-Removed Improved-190 

Terrain (MERIT; Yamazaki et al., 2017) DEM while the widths of major rivers are derived 191 

from MERIT-Hydro which is a 90-m global estimated river width dataset based on Landsat 192 

data. However, the width of smaller channels that were not detected by the dataset, was 193 

derived using an empirical equation (A. C. V. Getirana et al., 2012): 194 

𝑤 = max(0.2 ,  20 × 𝑄𝑚𝑒𝑑
0.5 )    (1) 195 

where   w (m) is the average river width within a grid cell and Qmed (m3/s) is the annual mean 196 

discharge. 197 

River width and bankfull height, h (m) was estimated using the following empirical equation: 198 

ℎ = max(0.35, 𝛼 × 𝑤) ;  𝑤ℎ𝑒𝑟𝑒 𝛼 = 2.6 × 10−3     (2) 199 

 The roughness of open channels as well as floodplains is considered in the form of 200 

Manning’s coefficient, which is based on vegetation type in the individual grid cell (A. C. V. 201 

Getirana et al., 2012). 202 

Model Configuration: 203 

The specifications of various ILDAS parameters are shown in Table 1. The Land Data 204 

Toolkit (LDT; Arsenault et al., 2018) was used to generate parameter files that contain 205 

various static information to be processed by Noah-MP, such as land use/land cover, 206 

irrigation, soil types, elevation, and so on. Four open-loop individual runs were conducted in 207 

retrospective mode within the LIS Framework (LISF) on a 0.1x0.1 grid at a 15 minutes 208 

timestep. The four runs were conducted from 1981-2021 using MERRA-2, CHIRPS, ERA-5, 209 

and IMD, respectively, and the model outputs were produced at daily timestep. In our initial 210 

testing, we found that the model reached an equilibrium state over the ILDAS domain after 211 



approximately ten years of simulation. We evaluated the equilibrium of the model based on 212 

the percentage difference between the water balance components generated over two 213 

consecutive spin-up runs (Rodell et al., 2005). To ensure that the model has significant 214 

atmospheric information to reach a steady state, we performed two spin-ups for each run with 215 

five years of meteorological data. The simulations were performed in a high-performance 216 

computing facility using 64-100 total CPUs with an average completion time of 217 

approximately 3 hours per year of simulation.  218 

Table 1. List of ILDAS components and their specifications. 219 

ILDAS Component Specifications 

Land Surface Model Noah-MP 3.6 

Routing Scheme HyMAP 

Spatial Extent 68°-98°E, 5.5°-37.5°N 

Spatial Resolution 0.1° 

Temporal Resolution 15 minutes Noah-MP 3.6 and HyMAP with adaptive 
timestep, daily output fields 

Time Period 1981-2021 

Forcing  MERRA-2, CHIRPS (precipitation) + MERRA-2, ERA-5, 
IMD 

Forcing Variables Precipitation, near-surface air temperature, near-surface 
specific humidity, surface pressure, eastward and northward 
wind velocity, incident longwave and shortwave radiation 

Forcing Height 2 m for surface air temperature, specific humidity, and 
surface pressure, 10 m for wind 

Topography and river 
network 

MERIT Hydro 

Soils Definition (NCAR) STATSGO+FAO blended soil texture map 

Vegetation Definition  MODIS-IGBP (NCEP-modified), Monfreda et al. (2008) 
crop types 

Output Format NetCDF 



2.3 Atmospheric Forcings 220 

2.3.1 MERRA-2 221 

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 222 

(MERRA-2; Gelaro et al., 2017) improves upon its predecessor, MERRA, by leveraging 223 

recent developments at NASA's Global Modeling and Assimilation Office (GMAO), which 224 

include updates to the Goddard Earth Observing System (GEOS) as well as new assimilation 225 

schemes for microwave observations, NASA ozone observations, hyperspectral radiance and 226 

many more datatypes (Gelaro et al., 2017). In previous studies (Ghatak et al., 2017, 2018; 227 

Gupta et al., 2020), MERRA-2 has shown satisfactory results for temperature and 228 

precipitation estimates over India. In this study, we used bias-corrected precipitation from the 229 

MERRA-2 dataset at a spatial resolution of 0.625°x0.5° and hourly timesteps for the period 230 

1981-2021. 231 

2.3.2 CHIRPS 232 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS; Funk et 233 

al., 2015) is a quasi- global precipitation dataset derived from global Cold Cloud Duration 234 

(CCD) rainfall estimates calibrated using Tropical Rainfall Measuring Mission Multi-235 

Satellite Precipitation Analysis version 7 (TMPA 3B42 v7). CHIRPS aims to bridge the gap 236 

between high latency precipitation products such as Global Precipitation Climatology Centre 237 

(GPCC) and low latency satellite-only products like the TMPA 3B42 RT (Funk et al., 2015). 238 

The CHIRPS precipitation estimates incorporate in situ gauge station data and active radar 239 

satellite systems, and the dataset is available from 1981 to the near present at a high spatial 240 

resolution of 0.05°. Since CHIRPS consists of only precipitation, we used MERRA-2 as an 241 

overlay to provide other variables in the simulation. 242 

2.3.3 ERA-5 243 



ECMWF's ERA-5 (ERA-5; Hersbach et al., 2020) is a new global reanalysis dataset 244 

that builds upon the earlier ERA-Interim reanalysis. The dataset is available from 1959 to 245 

present at a spatial resolution of 0.25° and hourly timestep. ERA-5 uses a 10-member 246 

ensemble with 12hr 4D-Var data assimilation method to include various reprocessed datasets. 247 

The dataset is available in preliminary form at 5 days latency to real time and the final quality 248 

assured product is released with a latency of 2 months.  249 

2.3.4 Indian Meteorological Department (IMD) Precipitation 250 

We used gridded daily rainfall data related to the 1981-2021 period at 0.25° spatial 251 

resolution provided by the Indian Meteorological Department (IMD). This data is generated 252 

using 6955 gauge stations which include IMD observatory stations, hydrometeorological 253 

observatories, and Agromet observatories (Pai et al., 2014). To generate gridded data from 254 

point-based station rainfall data, an inverse distance weighted interpolation scheme with 255 

localized directional effects and barriers was used which is based on (Shepard, 1968). While 256 

comparing the observed and reanalysis precipitation products, we rescaled all the datasets to a 257 

0.1° spatial resolution. Since IMD precipitation only covers the geographical boundaries of 258 

India, we supplemented it with MERRA-2 to provide the missing values beyond IMD 259 

precipitation's domain. 260 

2.4. Observed and Satellite Products 261 

The following section covers the suite of satellite-based and in-situ observations that were 262 

acquired from various sources for the evaluation.  263 

2.4.1 GRUN (RUNOFF) 264 

We used the GRUN runoff dataset (Ghiggi et al., 2019) as observed data, which is an 265 

observationally driven growly reconstructed monthly runoff at 0.5° resolution for the period 266 

of 1902-2014. Machine learning-based Random Forest (RF) was used to generate the GRUN 267 

runoff data, and the temperature and precipitation gridded data was used from the Global Soil 268 



Wetness Project Phase 3 (GSWP3) (Kim & Office, 2017). The Global Streamflow Indices 269 

and Metadata archive (GSIM) was used to obtain monthly runoff observations. To test the 270 

sensitivity of the machine learning algorithm, Ghiggi et al., (2019) used 50 ensembles. In this 271 

study, we used the GRUN reconstruction, which is an ensemble mean of the realizations. 272 

2.4.2 Observed Soil Moisture (COSMOS) 273 

We acquired in-situ observed soil moisture at two-gauge stations (Singanallur-SGR 274 

and Adahalli-MDH) from Indian Cosmic Ray Network (ICON; Upadhyaya et al., 2021). 275 

ICON consists of seven sites equipped with COSMOS instruments across India operational 276 

from 05/2015. The Cosmic Ray Neutron Probe (CRNP) technique is used in the COSMOS 277 

instrument, which uses non-invasive neutron counts as a measure of soil moisture. More 278 

information can get from webpage https://cosmos-india.org/ . 279 

2.4.3 ESA-CCI (SATELLITE SOIL MOISTURE) 280 

European space agency's climate change initiative for soil moisture (ESA-CCI SM 281 

version v07.1) is used as the soil moisture reference dataset in our study, which is available at 282 

0.25° resolution from 1978 (Dorigo et al., 2017; Gruber et al., 2017, 2019). The ESA CCI 283 

provides three products, namely Active, Passive, and Combined. While Active products were 284 

retrieved from active microwave sensors using the TU Wien water Retrieval Package 285 

(WARP) algorithm, their Passive counterparts were obtained using the Land Parameter 286 

Retrieval Model (LPRM) algorithm (Owe et al., 2008) from passive-microwave-based 287 

sensors. In this study, we used a combined product of the ESA-CCI SM products, which is 288 

generated by merging the active and passive products following a decision tree method and 289 

has been found to be most suitable for evaluation in the Indian mainland (Chakravorty et al., 290 

2016; Maina et al., 2022).  291 

2.4.4 MODIS Evapotranspiration 292 

https://cosmos-india.org/


We acquired Evapotranspiration from Moderate Resolution Imaging 293 

Spectroradiometer (MODIS). We used the MYD16A2GF product (Running et al., 2019), a 294 

gap filled at 8-day temporal resolution and 500m spatial resolution. Calculation of ET is 295 

typically based on the conservation of either energy or mass or both. The Penman-Monteith 296 

equation (J. L. Monteith, 1965) has been used in the ET algorithm. 297 

2.4.5 GRACE TERRESTRIAL WATER STORAGE ANOMALIES (TWSA)  298 

We acquired Gravity Recovery Climate Experiment (GRACE; Landerer and 299 

Swenson, 2012; Tellus, 2018) terrestrial water storage anomalies (TWSA) data from the Jet 300 

Propulsion Laboratory (JPL). The TWS is obtained using the Mass Concentration blocks 301 

(mascons) techniques, which implement geophysical constraints referred to as mascons. Our 302 

study used the latest JPL mascon solution (Tellus, 2018; Watkins et al., 2015), which is 303 

available monthly at 0.5° spatial resolution. The anomalies are calculated relative to the 304 

January 2004-December 2009 as the time-mean baseline and provided as TWSA.  305 

2.4.6 Observed streamflow 306 

The daily streamflow observed records were collected from various government 307 

agencies through the public domain as well as official requests. The records were checked for 308 

data inconsistencies and were converted to a standard format for analysis. Due to varying 309 

record lengths across the gauge stations, a common testing period with enough stations could 310 

not be established. We selected gauge stations with at least twenty years of daily recorded 311 

values in the period 1981-2021, which may or may not be continuous. In this way, a total of 312 

162 stream flow gauge stations were chosen across the study area, as highlighted in (Fig. 1). 313 

2.5 Mann-Kendall Trend Analysis 314 

We used the Mann-Kendall (Mann, 1945) test for trend analysis, which is a non-315 

parametric test for the monotonic trends of environmental data over time, such as climate 316 



data or hydrological data (Hu et al., 2020). It is a rank-based significance test, that identifies 317 

the significance of the trend by checking S-statistics of the time series fall in the confidence 318 

interval null hypothesis or not. The S-statistics are calculated to determine whether the trend 319 

is increasing or decreasing. 320 

𝑆  =   ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘)
𝑛
𝑗 =𝑘+1

𝑛−1
𝑘 = 1    (3) 321 

where x is the time series variable, and the subscripts j and k are the observation time. 322 

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑘) is equal to +1, 0, or -1, which means increasing, no, and decreasing trends, 323 

respectively. We rescaled the S-statistics between (-1,1) for better understanding. Here we 324 

assume that there is no significant trend in data at a level of 5% (or 95% confidence interval) 325 

as a null hypothesis. 326 

2.6 Evaluation criteria 327 

To check the effectiveness of different meteorological forcing, we used correlation 328 

coefficient, Relative Root Mean Square Error (RRMSE), and percent bias to evaluate the 329 

annual mean precipitation of reanalyzed meteorological forcings with gridded precipitation 330 

data from IMD. 331 

𝑅𝑅𝑀𝑆𝐸 =

√∑ (𝑝𝑜−𝑝𝑟)2

𝑁

∑ 𝑝𝑜

𝑁

    (4)  332 

𝑃𝑏𝑖𝑎𝑠 =
∑ (𝑝𝑟−𝑝𝑜)

∑ 𝑝𝑜
× 100%            (5) 333 

where 𝑝𝑜, 𝑝𝑟, and N are Observed, reanalyzed and number of data, respectively.  334 

To perform a balanced assessment of simulated water balance against observed values, we 335 

rescaled all the observed datasets to the same resolution of ILDAS for the evaluation of the 336 



ILDAS. We selected Kling Gupta Efficiency (KGE; Gupta et al., 2009) as our primary metric 337 

with its three components, namely, correlation coefficient (r), variability ratio(α) and bias(β). 338 

The calculation of KGE is expressed as: 339 

𝐾𝐺𝐸 = 1 − √𝑆𝑟[𝑟 − 1]2 + 𝑆𝛼[𝛼 − 1]2 + 𝑆𝛽[𝛽 − 1]2    (6) 340 

      (𝛼 =
𝜎𝑠

𝜎𝑜
, 𝛽 =

𝜇𝑠

𝜇𝑜
) 341 

where Sr, Sα, and Sβ are scaling factors for the three components respectively, that can be 342 

specified by the user; σs and σo are the standard deviations for simulated and observed 343 

variables, respectively, and μs and μo are the corresponding mean values. The three 344 

components of KGE highlight different parts of the performance of a model where the 345 

agreement between the timing of simulated and observed values is given by correlation (r), 346 

the statistical variability is expressed by variability ratio (α), and the bias is highlighted by 347 

bias (β). A KGE value equal to 1 (r=1, α=1, β=1) means a perfect agreement between 348 

simulated and observed values, while a value less than -0.41 denotes that the model is a 349 

worse predictor than the mean of the observed series (Knoben et al., 2019). The scaling 350 

factors can be used to emphasize one or more components of KGE depending on the 351 

objective of the study (Mizukami et al., 2019). In this study, we wanted to present a balanced 352 

overview of performance, and therefore, we considered all three scaling factors equal to 1.0. 353 

Moreover, considering the wide differences in soil moisture obtained from models, satellites, 354 

and in-situ observations, we used anomaly correlation and unbiased RMSE (ubRMSE) 355 

instead of KGE for an objective evaluation of the variable. 356 

3. Results and discussion 357 

3.1 Precipitation analysis 358 



A significant uncertainty in hydrological models comes from meteorological forcings, 359 

particularly precipitation. In particular, the precipitation frequency distribution is the most 360 

important factor for the accurate characterization of frequent and extreme floods (Newman et 361 

al., 2021). To check consistency, we evaluated the meteorological forcing inputs from 1981 362 

to 2021 against the IMD gridded observed precipitation dataset. Overall, ERA-5 shows a 363 

better national median correlation (median value of the correlation for all gridded values in 364 

the Indian mainland) compared to MERRA-2 and CHIRPS. It also shows a better correlation 365 

with IMD in the Himalayan and northeast regions than MERRA-2 and CHIRPS (Fig. 2a-c). 366 

However, MERRA-2 shows a better correlation in Rajasthan and Deccan plateau than 367 

CHIRPS and ERA-5 meteorological forcing precipitation. In all three meteorological 368 

forcings, we found that precipitation is underestimated (i.e., percent bias shows negative 369 

values) in the Western Ghats, Himalayan, and northeastern region (Fig. 2d-f). General 370 

underestimation in satellite precipitation over the Himalayan region has also been reported by 371 

Bharti and Singh, (2015) due to satellites missing the convective clouds. CHIRPS indicates 372 

positive Pbias (overestimation) in parts of northeast India. In the northern plane and Deccan 373 

plateau, CHIRPS and ERA-5 show overestimation (positive Pbias) compared to MERRA-2. 374 

Moreover, CHIRPS and ERA-5 show a nationwide median of Pbias positive 375 

(overestimation), whereas MERRA-2 shows underestimation. Underestimation in the 376 

Western Ghats might be due to the radiometrically warm land surface, and the coastal regions 377 

are a mixture of the radiometrically cold oceans (Mccollum & Ferraro, 2005; Shah & Mishra, 378 

2016). We also found that RRMSE is higher in the Western Ghats, Himalayan, and northeast 379 

regions than in the Deccan plateau and Rajasthan (semiarid areas) (Fig. 2g-i). Moreover, all 380 

metrological forcings show improvement in RRMSE for the monsoon (JJAS) period (Fig. 381 

S4). Fig. 3a shows the annual mean precipitation for IMD, MERRA-2, CHIRPS, and ERA-5. 382 

We identified that MERRA2 underestimates the annual mean precipitation compared to other 383 

forcings till 2009, which is consistent with the observations of a previous study 384 



(Bhattacharyya et al., 2022). From the figure, it is clear that all meteorological forcings are 385 

showing a significant positive trend (p<0.05) unlike IMD for most of the basins. MERRA-2 386 

displayed an increasing trend in the Himalayan regions, a pattern similar to what was found 387 

by Yoon et al., (2019). Overall, our analysis shows that CHIRPS is less uncertain than 388 

MERRA-2 and ERA-5 with IMD as the baseline. 389 

 390 

 391 

Fig. 2. Comparison of correlation coefficient (a-c), Pbias (d-f), and RRMSE (g-i) of 392 

Annual precipitation for different precipitation datasets (i.e., MERRA-2, CHIRPS, and ERA-393 



5) with respect to the India Meteorological Department (IMD) precipitation dataset for 1981-394 

2021. 395 

 396 

Fig. 3. Nationwide mean annual precipitation plot for different precipitation datasets (IMD, 397 

MERRA-2, CHIRPS, ERA-5) for 1981-2021(a) and basin wise precipitation Mann Kendall 398 

(M.K.) trend analysis, colored boxes show a significant trend (b). 399 

3.2. Model output evaluation 400 

3.2.1. Soil moisture  401 

To evaluate the ability of the ILDAS to simulate soil moisture, we calculated the 402 

coefficient of correlation and unbiased RMSE (Fig. 4) of simulated monthly mean soil 403 

moisture anomalies with ESA-CCI monthly mean soil moisture anomalies for the period of 404 

2007 to 2021. The period is selected based on continuous data availability without gaps over 405 

India. After evaluating the basin-wise coefficient of correlation median values over the 406 

primary basins, we found that MERRA-2 shows a high correlation in most of the basins, with 407 



the highest in the west flowing rivers from Tapi to Kanyakumari (0.95) (Fig. 4a). Kantha Rao 408 

and Rakesh, (2019) also found a high correlation of simulated soil moisture and in-situ 409 

observations in the coastal regions. We found that MERRA-2 and ERA-5 show less ubRMSE 410 

compared to CHIRPS and IMD in most of the basins (Fig. 4b).   411 

 412 

 413 

Fig. 4. Basin-wise comparison of correlation, and unbiased RMSE of simulated 414 

monthly soil moisture anomalies for different meteorological forcings (IMD, MERRA-2, 415 

CHIRPS, and ERA-5) with ESA-CCI soil moisture anomalies for 2007-2021. 416 

The in-situ soil moisture observations in India are rare due to sparse gauge network and 417 

limited data availability. The validation with in-situ COSMOS soil moisture observations was 418 

performed at daily and monthly scale for a period of 2015-2019 at two-gauge stations. The 419 



monthly simulated soil moisture shows good agreement with in-situ soil moisture data 420 

throughout the time series as the R2 is greater than 0.66 at both gauge stations for all four 421 

meteorological forcing (Fig. 5). The model retains skill at daily scale as R2 varies from 0.74 422 

to 0.68 and 0.61 to 0.57 at SGR and MDH, respectively (Fig. 6). We also evaluated basin-423 

wise trend and found that the simulated and ESA-CCI soil moisture anomaly do not show 424 

significant trend in most of the basins at monthly scale (Fig. S1). 425 

 426 

Fig. 5. Comparison of simulated monthly mean soil moisture for different meteorological 427 

forcings (IMD, MERRA-2, CHIRPS, and ERA-5) with COSMOS (in-situ) soil moisture at 428 

two-gauge stations (a) SGR and (b) MDH from June 2015 to December 2019. 429 



430 

Fig. 6. Comparison of simulated daily mean soil moisture for different meteorological 431 

forcings (IMD, MERRA-2, CHIRPS, and ERA-5) with COSMOS (in-situ) soil moisture at 432 

two-gauge stations (a) SGR and (b) MDH from June 2015 to December 2019. 433 

 434 

3.2.2. Evapotranspiration 435 

We evaluated the ILDAS simulated evapotranspiration with the four meteorological 436 

forcings against the MODIS Aqua Evapotranspiration from 2002 to 2021 (Fig. 7).  We 437 

calculated basin-wise KGE (Fig. 7a) and found that the ILDAS performs well in most of the 438 

basins except Indus, Cauvery, and east flowing rivers from Pennar to Kanyakumari. ERA-5 439 

shows a high basin-wise median r (Fig. 7b) in most of the basins than IMD, MERRA-2 and 440 

CHIRPS. Most of the basins show variability greater than one for evapotranspiration with all 441 

four meteorological forcings (Fig. 7c). However, Brahmaputra and west flowing rivers from 442 

Tapi to Kanyakumari show variability near to one than other basins (Fig. 7c). We found that 443 

all four meteorological forcings (IMD, MERRA-2, CHIRPS, and ERA-5) show 444 

overestimation in most of the basins except Brahmaputra, and west flowing rivers from Tapi 445 

to Kanyakumari (Fig. 7d). However, in an early study, Srivastava et al., (2017) stated that the 446 



MODIS underestimated evapotranspiration in India; Our results show a higher bias in most of 447 

the basins. All four meteorological forcings show overestimation of the mean annual 448 

evapotranspiration compared to the MODIS aqua evapotranspiration (Fig. S2a). Most of the 449 

basins show a positive trend in simulated and MODIS aqua evapotranspiration except 450 

Brahmaputra, whereas CHIRPS shows a negative trend (Fig. S2b). 451 

 452 

Fig. 7. Basin-wise comparison of KGE, correlation, α, and β of simulated monthly mean 453 

evapotranspiration for different meteorological forcing (IMD, MERRA-2, CHIRPS, and 454 

ERA-5) with MODIS Aqua (MYD16A2GF) Evapotranspiration product for 2002-2021. 455 



3.2.3. Runoff  456 

   We evaluated simulated runoff for different meteorological forcings against GRUN 457 

runoff (Fig. 8a-d). We found that all four meteorological forcings show poor performance 458 

(KGE<0.2) in the Indus and Brahmaputra River basins (Himalayan region) (Fig. 8a). 459 

However, the ERA-5 performs better other three forcings in Indus and Brahmaputra. GRUN 460 

(Ghiggi et al., 2019) did not consider glacier melting in the generation of runoff data and this 461 

may lead to larger uncertainties in the Himalayan region, and our meteorological forcings 462 

underestimated the precipitation in this region, which may incorporate the uncertainty in the 463 

runoff. All four meteorological forcings show a high correlation in the Indian subcontinent 464 

(Fig. 8b). However, the correlation is relatively less in the Indus and Himalayan regions 465 

compared to other parts of India. Next, we checked the basin-wise variability of simulated 466 

runoff from the model with all four meteorological forcings against the GRUN runoff (Fig. 467 

8c). We found that variability in the runoff is less than one in the basins for all four 468 

meteorological forcings except Tapi. However, ERA-5 and IMD show variability closer to 469 

one compared to MERRA-2 and CHIRPS. We found that the runoff is highly underestimated 470 

(Fig. 8d) in the Indus, Brahmaputra, and Western Ghats regions, possibly due to the hilly 471 

terrains in these regions and the lack of incorporation of irrigation practices in our current 472 

system. Irrigation leads to a decrease in runoff, which is currently underrepresented and will 473 

be incorporated in the next version of the system. We found that all meteorological forcings 474 

are underestimating the runoff (Fig. S3a). Next, we evaluated the basin-wise trend, all 475 

meteorological forcings showed positive trend in most of the basins (Fig. S3b). Overall, IMD 476 

performed better compared to MERRA-2, CHIRPS and ERA-5 in simulating runoff. 477 



 478 

Fig. 8. Basin-wise comparison of KGE, correlation, α, and β of simulated monthly mean 479 

Runoff for different meteorological forcings (IMD, MERRA-2, CHIRPS, and ERA-5) with 480 

monthly mean GRUN Runoff for 1981-2014. 481 

3.2.4. Streamflow 482 

We calculated KGE and its components for simulated vs observed monthly 483 

streamflow from 1981-2021 for each gauge location. The spatial distribution of performance 484 

for all gauge stations on an annual basis is shown in (Fig. 9). Comparing the nationwide 485 



median and interquartile range (IQR) of overall KGE score, IMD scored the highest median 486 

value of 0.36 (IQR: 0.08 – 0.57), closely followed by CHIRPS and ERA-5 with median 487 

values of 0.33 (IQR: 0.04 – 0.56) and 0.3 (IQR: -0.08 – 0.58), respectively. MERRA-2 scored 488 

the lowest median value of 0.27 (IQR: 0.06 – 0.47). The west flowing rivers from Tapi to 489 

Kanyakumari show the highest KGE scores, whereas the gauge stations in central India 490 

exhibited majority of the underperformance (Fig. 9a-d). While comparing the performance of 491 

individual KGE components, we found that all four forcings showed a good median 492 

correlation (r > 0.7), with IMD scoring the highest nationwide median value of 0.83, 493 

followed by ERA-5 (0.81), CHIRPS (0.75) and MERRA-2 (0.71). Additionally, 94% of 494 

gauge stations had a r >= 0.5 for ERA-5, 92% for IMD, 89% for CHIRPS, and 79% for 495 

MERRA-2. It may be noted that even though the median correlation for ERA-5 is lower than 496 

IMD, it shows correlation greater than 0.5 in more basins compared to IMD. The spatial 497 

distribution of gauge stations with high r scores matches with those that had high overall 498 

KGE scores, with most of the underperformance seen in upper Ganga River basin (Fig. 9e-h) 499 

as multiple reservoirs and other irrigation structures result in a delayed response in the river’s 500 

streamflow. In terms of statistical variability of monthly flows, IMD, CHIRPS and ERA-5   501 

had α > 1 in most gauge stations (51%, 52% and 61%, respectively), which corresponds to 502 

higher variability in simulated values as compared to the observed ones. In contrast, 503 

MERRA-2 showed low variability with α < 1 in 63% of the gauge stations. In terms of the 504 

spatial distribution, the relatively lower values of α are seen majorly in Ganga River basin 505 

and some of the gauge stations in west flowing rivers. However, for ERA-5 simulations, the 506 

variability in Ganga River basin is higher than the observed, which also resulted in the 507 

highest overall median α (1.08).  The nationwide median β was lowest for MERRA-2 (1.11), 508 

followed by IMD (1.13), CHIRPS (1.15) and ERA-5 (1.4). All forcings showed positive bias 509 

in simulated streamflow for most of the stations with ERA-5 showing highest number of 510 

gauge stations with overestimated streamflow (70%), followed by CHIRPS (61%), IMD 511 



(59%) and MERRA-2 (53%). Additionally, we also found that ERA-5 had the highest 512 

number of gauge stations (20%) with a bias greater than 100% (β >=2), compared to CHIRPS 513 

(12%), IMD (9%) and MERRA-2 (4%). The high median β for streamflow simulated by 514 

ERA-5 and CHIRPS shows that the ILDAS struggled to match the magnitude of seasonal 515 

flows, especially in the central and peninsular regions which is expected due to the non-516 

perennial rivers and various anthropogenic activities (Fig. 9m-p). Overall, IMD can be 517 

considered as the best performing precipitation forcing among the four based on median KGE 518 

value. 519 

Besides annual evaluation, since most of the precipitation over India is concentrated in the 520 

months of June-September (also known as JJAS season) which results in very high seasonal 521 

flows in the Indian rivers, we also evaluated the simulated streamflow specifically for JJAS 522 

season (Fig. 10). Overall, the nationwide KGE median score increased by 11.1% for 523 

MERRA-2 and IMD) and 6.6% for ERA-5 (0.32 vs 0.3) but decreased for CHIRPS by 6% 524 

(0.33 vs 0.31). However, all four forcings saw a reduction of in median r score in JJAS 525 

season, with values of 0.62, 0.64, 0.71, 0.77 for MERRA-2, CHIRPS, ERA-5 and IMD, 526 

respectively. Additionally, a corresponding reduction in β is observed, while α decreased 527 

marginally for CHIRPS but increased for MERRA-2, ERA-5 and IMD. Hence, during the 528 

JJAS season, ILDAS captured the magnitude and variability of high monsoon flows with a 529 

higher skill, but the timing could not be matched well, which is due to the various regulatory 530 

structures such as reservoirs resulting in a reduced as well as delayed streamflow in the 531 

rivers. 532 

The performance of the integrated hydrological-hydrodynamic model can be assessed by 533 

evaluating the overall patterns of streamflow. Therefore, we calculated monthly streamflow 534 

anomalies for all four forcings and compared them against the observed to assess the ability 535 

of ILDAS to capture general streamflow patterns during the annual cycle and monsoon 536 

season. We used the anomaly correlation coefficient and unbiased RMSE (ubRMSE) to 537 



evaluate the performance of the model across 162 catchments (Fig. 11-12). The results of the 538 

annual evaluation showed that the IMD driven streamflow had the highest correlation with 539 

the observed anomalies (0.69), followed by ERA-5 (0.57), MERRA-2 (0.53), and CHIRPS 540 

(0.51). Although the anomaly correlation coefficient marginally improved during the JJAS 541 

season, the ubRMSE showed a significant increase in value across all forcings, suggesting 542 

that ILDAS overestimated the anomalies during the monsoon (Fig. 12e-h). This could be due 543 

to the lack of information regarding various management practices, such as reservoirs, in 544 

ILDAS which caused the model to simulate higher flows than observed. The overall superior 545 

performance of IMD could be due the localized and more accurate precipitation information 546 

as it leverages the extensive network of rain gauges across India. 547 

On the daily scale, daily streamflow shows a nationwide median KGE of 0.27, compared 548 

to 0.36 for IMD monthly. The error metrics for other meteorological forcings are presented in 549 

Figure S5-S6. The assessment of daily streamflow anomaly correlation for annual season 550 

shows that IMD has highest correlation with observed anomalies (R = 0.48), followed by 551 

ERA-5 (0.36), CHIRPS (0.31), and MERRA2 (0.29). For JJAS season, the daily anomaly 552 

correlation largely remains same but ubRMSE increases significantly, indicating higher 553 

variability in daily monsoon flows (Fig.13). The skill of streamflow simulations at daily scale 554 

emphasizes the future need for calibration and including anthropogenic effects into the model 555 

such as reservoirs.To further investigate the performance of ILDAS, we also calculated 556 

commonly used hydrological signatures such as mean annual flow, mean annual monsoon 557 

flow, low flow, and high flow. Using the coefficient of determination (R2) as the performance 558 

metric, we observed that ERA-5 had the highest R2 scores across all hydrological signatures 559 

followed by CHIRPS, IMD, and MERRA-2 (Fig. 14). The highest and lowest R2 scores were 560 

observed for mean annual high flow and mean annual low flow, respectively. The low R2 for 561 

mean annual low flows emphasizes the need for incorporating the anthropogenic effects and 562 

calibration of the model.  563 



564 

Fig. 9. Comparison of KGE (a-d), r (e-h), α (i-l), and β (m-p) of simulated monthly mean 565 

streamflow annually for different meteorological forcings at 162 gauge stations.  566 



567 

Fig. 10. Comparison of KGE (a-d), r (e-h), α (i-l), and β (m-p) of simulated monthly mean 568 

streamflow in JJAS season for different meteorological forcings at 162 gauge stations. 569 

Table 5. Detailed analysis of monthly simulated streamflow against observed streamflow for 570 

annual and JJAS (monsoon season) from 1981-2019 for the four forcings. The digits 571 

represent the number of gauge stations (out of 162) falling under the specified criteria. 572 

Criteria MERRA-2 CHIRPS ERA-5 IMD 



Annual JJAS Annual JJAS Annual JJAS Annual JJAS 

KGE  

Inter 

Quartile 

Range 

0.06 - 

0.47 

0.01 - 

0.51 

0.04 - 

0.56 

0.11 - 

0.49 

-0.08 - 

0.58 

0.02 - 

0.52 

0.08 - 

0.57 
0.1 - 0.59 

Correlation 

(r) 

Distribution 

(>=0.5/<0.5) 

128/34 113/49 144/18 129/33 152/10 142/20 147/15 135/27 

Variability 

(α) 

Distribution 

(low/high)  

103/59 101/61 78/84 78/84 64/98 71/91 80/82 73/89 

Bias (β) 

Distribution 

(negative/posi

tive) 

76/86 86/76 63/99 80/82 49/113 54/108 57/95 78/84 

β >= 2 7 6 19 9 32 16 14 7 

         



573 

Fig. 11. Anomaly correlation coefficient (a-d) and unbiased RMSE (e-h) for monthly mean 574 

streamflow in annual season for different meteorological forcings at 162 gauge stations. 575 

576 

Fig. 12. Anomaly correlation coefficient (a-d) and unbiased RMSE (e-h) for monthly mean 577 

streamflow in JJAS season for different meteorological forcings at 162 gauge stations. 578 



579 

Fig. 13. Anomaly correlation coefficient (a-d) and unbiased RMSE (e-h) for daily streamflow 580 

in JJAS season for different meteorological forcings at 162 gauge stations.581 

582 

Fig. 14. Scatter plots of various hydrological signatures for 162 catchments across Indian 583 

subcontinent. The values in-set denote coefficient of determination (R2) corresponding to 584 

each hydrological signature. 585 



3.2.5. Terrestrial Water Storage Anomaly (TWSA)  586 

We evaluated the TWS for all meteorological forcings by adding Land Surface Model (LSM) 587 

water storage (LWS) and Surface water storage (SWS). LWS consists of groundwater storage 588 

(GWS), soil moisture (SM), and snow water equivalent (SWE). Most of the studies do not 589 

consider the SWS in the TWS. However, Surface water storage (SWS) contributes 8% of 590 

TWS variability globally (A. Getirana, Kumar, et al., 2017). While comparing the time series 591 

of nationwide monthly mean simulated TWSA using Noah MP + HyMAP with 592 

meteorological forcings to GRACE TWSA for 2003-2017 (Fig. 15a), we found that all four 593 

meteorological forcings had captured the seasonality of TWSA well. However, from 2010 594 

onward, all meteorological forcings overestimated the peaks and the troughs. We noted that 595 

GRACE shows a negative trend in the TWSA. This negative trend may be due to the 596 

extensive extraction of groundwater in parts of India such as Punjab, East Flowing River 597 

(Pennar-Kanyakumari) (EFR-PK) and Ganga basin. Similar patterns were observed by 598 

previous studies in the Indian mainland (Satish Kumar et al., 2023). We found that CHIRPS 599 

shows a positive trend, whereas IMD, MERRA-2, and ERA-5 show relatively no trend. 600 

Uncertainties in the TWSA GRACE and ILDAS simulated TWSA may be due to India's 601 

anthropogenic conditions and irrigation, which will be incorporated in ILDAS in the future. 602 

We also calculated the basin-wise R2 for the primary basin and found that most of the basins 603 

show high R2 for MERRA-2 and ERA-5 (Fig. 15b). Moreover, all forcings show poor R2 in 604 

the Indus River basin which could be due to the excessive groundwater extraction in this 605 

region. Previous studies (Asoka & Mishra, 2020; Maina et al., 2022) have also shown a 606 

similar pattern in the northwest (Indus) region. Overall, our results show that IMD, MERRA-607 

2, and ERA-5 performed well with a nationwide mean (R2 >0.57) except CHIRPS (R2 = 608 

0.53). Similarly, Soni and Syed, (2015) also found similar performance in the major river 609 

basins of India. 610 

 611 



 612 

Fig. 15. A plot of time series plot for nationwide monthly mean terrestrial water storage 613 

anomaly for GRACE, IMD, MERRA-2, CHIRPS, and ERA-5 for 2003-2017 (a) and basin-614 

wise R2 (b). 615 

3.2.6. Seasonal Water Balance Cycle 616 

A coupled hydrological-hydrodynamic model is expected to capture the variation of 617 

long-term water balance of the region. Therefore, along with the quantitative assessment of 618 

water balance components discussed in the previous sections, we've tried to illustrate the 619 

ability of ILDAS in capturing the seasonal variation of the terrestrial water budget using time 620 

series plots of various water balance components along with the anomalies of water fluxes 621 



and the terrestrial water storage. Here, we present the qualitative analysis for simulated water 622 

balance using CHIRPS at Kudige, Cauvery River basin, which is a rain-fed region in the 623 

southern India (Fig. 16-17). Fig. 16 shows the long-term variation of various water balance 624 

components for the period 1981-2021. Additionally, Fig. 17 shows the monthly anomalies for 625 

simulated water balance for four different meteorological seasons. We observed that ILDAS 626 

is successful in simulating the long-term seasonal variation in terrestrial water storage with 627 

precipitation as the primary factor. The terrestrial water storage remains in deficit compared 628 

to long term monthly mean when precipitation is low in winters and summers, followed by a 629 

surplus period in monsoons, which agrees with the climate and topography of the basin. 630 

Moreover, the deficit is largest during the peak summer which gets replenished in the 631 

subsequent monsoon.  632 



Fig. 16. A time-series plot showing long-term variation of various components of 633 

simulated water balance at Kudige, Cauvery River basin. 634 



Fig. 17. Seasonal variations of different water balance components as monthly anomalies 635 

simulated using ILDAS forced by CHIRPS at Kudige, Cauvery River basin. 636 

3.2.8 Hydroclimatic Extreme Event Analysis 637 

 In May 2022, the town of Haflong, located in the Dima Hasao district of Assam, 638 

India, experienced a catastrophic series of landslides and floods resulting in extensive 639 

damage and loss of life and property. The disaster occurred between May 11-18 and was 640 

triggered by heavy rainfall, affecting multiple villages in the area (Roy et al., 2023). The 641 

landslides caused severe damage to infrastructure such as roads, bridges, and buildings, 642 

hampering rescue and relief efforts. To better understand the underlying conditions, we 643 

reconstructed the total column soil moisture (1000 mm) in the area from 1981-2022 and 644 

compared the 2022 daily soil moisture anomaly to 1981-2021 median (Fig. 18). Fig. 18 645 



illustrates that the antecedent soil moisture anomaly in the area was significantly higher than 646 

the long-term median, indicating saturation of the soil due to heavy rainfall on April 15-17. 647 

This heightened soil moisture content increased the vulnerability to landslides and 648 

inundation. The subsequent high rainfall in May resulted in high runoffs and increased pore 649 

pressure which caused district wide inundation and cluster landslides due to slope failure at 650 

multiple sites. This finding underscores the importance of monitoring soil moisture 651 

conditions and incorporating this information into landslide risk assessment and management 652 

strategies. The ILDAS was able to capture the local antecedent soil moisture condition even 653 

at an uncalibrated stage which is a promising prospect for future implementation in 654 

operational forecasts. 655 

656 

Fig. 18. Reconstructed daily soil moisture anomaly in Haflong, Assam for the extreme 657 

hydroclimatic event that occurred from 11-18 May 2022. 658 

 659 

4. Conclusions 660 



We have established ILDAS as a prototype of a coupled hydrologic-hydrodynamic 661 

system to generate a high-quality reanalysis of land surface estimates and streamflow at 0.1° 662 

resolution and daily temporal resolution across the Indian mainland for the period 1981-2021. 663 

We tested the ILDAS using three meteorological forcings with varying spatial and temporal 664 

resolutions and assessed its ability to simulate various water balance components such as soil 665 

moisture, evapotranspiration, surface runoff, streamflow, and terrestrial water storage 666 

anomalies. We evaluated the uncertainty and bias in the precipitation component of three 667 

global meteorological forcings across the various regions of India. We found that CHIRPS 668 

exhibits lower uncertainty than MERRA-2 and ERA-5, and a high correlation and minimum 669 

RRMSE against observation-based IMD precipitation. Additionally, we evaluated all major 670 

components of simulated water balance. It was found that all meteorological forcings showed 671 

good performance for simulated soil moisture by ILDAS. However, MERRA-2 showed 672 

minimum median ubRMSE value for most of the basins compared to others. The correlation 673 

is high in simulated soil moisture as well as runoff for all meteorological forcings. However, 674 

our results did not indicate good agreement with GRUN runoff in the Himalayan region, 675 

which may be due to glacier melting not being considered in generating GRUN runoff. We 676 

evaluated the average monthly streamflow against observed streamflow at multiple gauge 677 

stations for annual and the monsoon (JJAS) season. The overall results from the annual 678 

evaluation show that ILDAS could match the streamflow timing better than the magnitude 679 

and variability, especially in central and peninsular India, which may be caused by very low 680 

flows during the non-monsoon months in seasonal rivers, that are further reduced due to 681 

human abstractions. However, while evaluating the streamflow specifically during the 682 

monsoon months, we found that the overall nationwide median values of both r and β were 683 

reduced. This means that although ILDAS performance improved in capturing the magnitude 684 

of streamflow, the timings of the flows could not be matched well. However, an overall 685 

nationwide KGE of 0.36 for IMD in annual evaluation is a promising result for ILDAS, 686 



which can be further improved using data assimilation, calibration, or post-processing. The 687 

evaluation of monthly streamflow anomalies for annual season agreed with the evaluation of 688 

streamflow timeseries and IMD showed highest anomaly correlation coefficient and lowest 689 

ubRMSE. However, ubRMSE degraded for all the forcings in JJAS season due to the 690 

uncalibrated state of ILDAS, resulting in higher than observed flows. While evaluating the 691 

streamflow-derived hydrological signatures, we observed that IMD’s superior performance in 692 

simulating temporal patterns of streamflow did not translate to overall statistical streamflow 693 

patterns of the catchments. The global forcings including ERA-5 and CHIRPS performed 694 

better in simulating the hydrological signatures compared to IMD. The overall evaluation of 695 

water balance components suggests that different meteorological forcings performed better 696 

for different land surface variables, which highlights the value of developing an ensemble of 697 

model configurations with multiple data sources. We also reconstructed antecedent soil 698 

moisture during a recently occurred hydro-climatic extreme in Haflong town of Assam, India, 699 

causing a series of landslides and inundation in the area.  We observed that ILDAS 700 

successfully simulated the observed daily soil moisture anomaly, which was significantly 701 

higher before the extreme precipitation that occurred in May. This highlights the importance 702 

of a high resolution hydrological-hydrodynamic model, such as ILDAS, for risk assessment 703 

and disaster mitigation of hydro-climatic extremes. 704 

This study is envisioned as a proof-of-concept of an integrated system over an underserved 705 

region such as the Indian subcontinent as most land surface models run in uncoupled mode 706 

with river routing models. The ILDAS will serve as a testbed for future experiments on 707 

assimilating remote sensing observations and provide near real-time estimates of land surface 708 

states, natural water balance, and energy fluxes that are consistent across space and time, with 709 

the potential to assist policymakers in decision-making related to food security, water 710 

resources management, mitigation of natural hazards, and assessing climate change impacts. 711 

Furthermore, there is a pressing need for a transboundary water modeling system which can 712 



be used by countries to assess inflows and outflows from the Ganga and Brahmaputra, 713 

leading to better cooperation within South Asia in the water sector. The first version of 714 

ILDAS has some limitations that will serve as the basis for future improvements. Currently, 715 

ILDAS outputs are based on a "natural" terrestrial state, as no information regarding 716 

irrigation and reservoirs has been incorporated. Moreover, we acknowledge the limitations of 717 

simplified assumptions and inaccuracies in parameterization while representing the physical 718 

processes. Future enhancements to ILDAS will include data assimilation of remote sensing 719 

products, localized land use/land cover parameters, and representation of reservoirs. 720 
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