

Mini/MEMs Tri-Axis Sensor System (MTASS)

Kenneth Toro, Jonathon Ponder January 9, 2023

AIAA SciTech 2024 Orlando, FL

Force and Angle Measurement

- Force and angle are two principal measurements used to evaluate aerodynamic performance
 - Basic Lift: $L = \frac{1}{2} \rho V^2 A C_{L\alpha} \alpha$
- Six-component force balance provide direct model load measurement
- Angle is measured using a variety of methods:
 - Onboard Accelerometers
 - Support structure angle measurement (Accelerometers, potentiometers, LVDTs, etc.)
 - Photogrammetry

Force and Angle Measurement Examples

Accelerometer and Force measurement installed in 31-inch Mach 10 Wind Tunnel.

MTASS Project Overview

- Create a family of reduced volume model attitude packages
 - Current sensors provide challenges with small models (supersonic, hypersonic)
- Tri-axis capability to allow flexibility usage
 - Pitch and roll measurement on-board
 - Flexible positioning
- Lower cost of assembled unit
- No additional signal conditioning required
 - Current accelerometers require additional rack mount components

Current State of Art

- Internal seismic mass on spring
 - Mass deflection proportional to acceleration
 - Acceleration = Sine of Angle
- Q-Flex uses a quartz spring
 - Long term stability
 - Low bias shifts
 - Low temperature sensitivity
- Tri-axis accelerometer package capable of measuring pitch and roll angles
 - Typically used for model setup and as a transfer standard
 - Gravity reference does not allow estimation of yaw angle

MEMs Sensor and Checkout Board

- High-end, single-axis, accelerometer (2g Specs)
 - Long term bias and scale factor repeatability, 0.24 mg
 - Low in-run bias, 3 μg
 - Internal temperature sensor
 - 0.35-inch (8.9mm) edge length
- Single sided PCB layout for ease of mounting to test fixtures
- Accelerometer-less PCB was be used to test performance and thermal stability of signal conditioning

Single-axis evaluation board with MEMs accelerometer.

Electronic Stability

- Accelerometer produces a differential acceleration output and single-ended temperature output
- Both outputs must be buffered for transmission along a cable due to low capacitive load driving capability
- Manufacturer stipulates that connected opamps must have ultra-low bias current and the circuit must have $1M\Omega$ input impedance at a minimum
- Acceleration output has 200kHz switching noise from a capacitance-to-voltage converter internal to the sensor package

Filter Topology

- A 2-pole Multiple Feedback (MFB) topology filter with a 1kHz cutoff frequency was designed to filter and buffer the acceleration output
- MFB was chosen due the relatively high output impedance of ultra-low bias current op-amps, which would cause the attenuation of the filter to degrade above 100kHz and ramp back up
- A Sallen-Key topology filter would require a follow-on RC filter to counteract the ramp up, the resistance of which would interact with the input impedance of any connected DAQ device
- For the gain setting resistors of the MFB filter, a matched quad of $1M\Omega$ was chosen to produce a stable gain of 1

Tri-Axis Boards

- Three single-axis sensors placed orthogonally to provide pitch and roll through 360°
- Folded PCB assembly approximately 0.6-inch cube.
- Supporting electronics on-board, no extra datasystem requirements
- Initial results show good performance on the order of 0.01 Deg

MTASS board in demonstration assembly.

Assembled MTASS layout and components.

Packaged Prototype Sensor

- Mimics the packaging of a Honeywell Q-Flex
 - Common interface in-use at NASA
 - Many current fixtures available for evaluation/calibration
 - 1-inch Diameter
 - 0.65-inch forward from foot pad (Ref. Q-Flex is 0.58")
 - Same bolt pattern design.
- Omnetics Nano-D 15 Pin
 - 16 Conductors (Temperature leads expanded)
- Assembly is fully potted to protect electronics

Partially fabricated (above) and completed (below) MTASS units.

Calibration Design

Calibration and Test Points

- Full scale points for model (±35° Pitch, 360 Roll)
- Low angle confirmation points
 - Simulated tunnel use
 - ±15° Pitch at 0° &180° Roll

Calibration experimental design for MTASS.

Calibration Model – Linear

Linear model was fit between voltages and set gravity vector

•
$$v = \beta_0 + \sum_{i=1}^k \beta_i g_i + \epsilon$$

No temperature corrections

Angles were back computed using the following trigonometry functions:

•
$$\theta = \sin^{-1} g_x$$
, $\phi = \tan^{-1} \frac{g_y}{g_z}$

Calibration conducted over 3 days of continuous sampling

- · 26 repeated run schedules
- Calibration model build on off one run.

Calibration Results, Residuals Charts

• 2g

5g

Std Dev(2g): 0.00596

Std Dev(5g): 0.00218

150

100

200

Ames Check Standard Demonstration

- Ames Unitary Plan Wind Tunnel Check Standard Model provides four Q-Flex locations
 - Two pitch and two roll locations
 - redundant locations allow for low-risk demonstration opportunity
- MTASS installed in secondary roll Q-Flex location, tri-axis format allows for any installation position
- No Temperature compensation was applied
- Wiring used during test was found to have a fabrication error, may have impacted data quality
 - Loss of sensor signal requiring data system/sensor reset
 - Temperature outputs accidentally combined, unintentional feedback loop

View of MTASS installed in the NASA Ames check standard model during instrumentation build up.

Ames Demonstration Results

Ames Demonstration Results (MTASS Only)

Summary

- Accelerometers were integrated to form a tri-axis unit with a volume taken by a single axis Q-Flex
- Static calibrations demonstrated performance level meets requirements of aerodynamic ground testing
- Demonstration at Ames had promising results despite wiring issue
- Demonstration at AEDC Tunnel 9 results under review
- Future work:
 - Temperature testing and compensation (Paper at IEEE Inertial 2024)
 - Dynamic evaluation and characterization
 - Long term stability and repeatability