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To study microstructure characteristics of cementitious materials hydrated in space; 
previously, cement binder formations were processed under microgravity conditions and was 
further compared against ground-based experiments. For accurate estimation of process-
structure-property linkage, particularly on samples hydrated in the microgravity 
environment, it is desired to have a high-fidelity volumetric representation of the 
microstructure. However, owing to small sample size and high porosity of the space-returned 
samples, conventional experimental characterization techniques are not viable. Hence, a deep 
learning-based reconstruction algorithm was employed to obtain high fidelity 3D volumes 
from sparse high resolution 2D Scanning Electron Microscopy (SEM) images, as inputs to 
micromechanics-based modeling. This machine learning-based reconstruction methodology 
validated against low-order statistical descriptors, captured the microstructural topology of 
both sample types (ground, 1g and microgravity, μg). Due to the lack of gravity, hydration 
products of the samples processed in space differed from those processed-on ground. Such AI-
generated virtual samples were analyzed in a multiscale recursive micromechanics approach 
using the NASA Multiscale Analysis Tool (NASMAT). Here, we present a methodology to 
rapidly integrate and evaluate these AI-generated volumes in NASMAT. The synthesized 
microstructural volumes are directly employed as Representative Volume Elements (RVEs) 
to preserve the fidelity (1 pixel = 0.54 µm). Invariably, analysis of such largescale problems 
(5123 voxels) requires huge amount of computational resources. By taking advantage of the 
NASMAT architecture, we also focused on systematic multiscale integration of these AI-
reconstructed virtual volumes to reduce the computational demands. In this work, this 
methodology is demonstrated on the ground-based, 1g samples. The estimated stiffness value 
of 15.90 GPa is comparable to experimentally obtained modulus of hydrated tricalcium 
silicate sample. The workflow presented here paves the way for utilizing the NASMAT tool to 
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perform multiscale analyses of other multi-phase material systems using either 3D virtual 
datasets synthesized using AI or obtained via micro-CT.  

I. Introduction 
 To protect both crew and equipment during long-duration space exploration missions, habitats are necessary on 
extraterrestrial bodies such as the Moon and Mars. In addition, landing pads are required for the spacecrafts to reliably 
land and launch from these bodies. Given the prohibitive cost of transporting materials into space, it is envisioned that 
in situ materials such as the lunar regolith will be employed for constructing habitats and launch pads with the aid of 
cement-like binders. The solidification of these cement binders under the influence of reduced microgravity (10-6 g or 
μg) was previously studied under the ambit of the project titled – “Microgravity Investigation of Cement Solidification 
(MICS)” [1, 2]. To focus on the influence of reduced gravity and how it affects the microstructural formation of 
cement-binder formation, pure compounds - tricalcium silicate (Ca3SiO5: C3S in cement notation) and tricalcium 
aluminate (Ca3Al2O6: C3A in cement notation) were analyzed under both terrestrial (1g) as well as μg conditions. 
Note, C3S constitutes ~ 50 – 70 % of Ordinary Portland Cement (OPC) by mass [3], and is an important component 
that governs the hydration of OPC. Hence, the C3S microstructure directly influences the physical and mechanical 
properties of the hardened cement paste. Due to the size limitation and highly porous nature (~ 70 %) of the space 
returned C3S samples [2], traditional experimental characterization techniques such as flexure or compression testing 
are not viable. Therefore, numerical modeling is currently the only way to evaluate mechanical properties to perform 
structure-property predictions of these samples. To reliably predict mechanical and transport properties of these 
cement binders using a numerical code, 3D representations which capture the unique microstructure morphology are 
required. The hydration products in the μg samples, namely, calcium silicate hydrate (C-S-H), portlandite (CH), and 
porosity exhibited distinct and unique characteristics compared to the 1g samples; C-S-H and CH – cement chemistry 
notation, C = CaO, S = SiO2, and H = H2O followed throughout this manuscript.  
 
Previously, a deep learning-based microstructure reconstruction approach [4] was employed to synthesize 3D 
microstructures of both μg and 1g samples (see Figure 1) from high-resolution of Scanning Electron Microscopy 
(SEM) images. These reconstructed volumes successfully captured randomly oriented elongated plate-like 
morphology of the CH phase distinct to the space returned samples. For instance, a larger prismatic morphology of 
CH crystallite formation due to the absence of gravity was captured in the μg reconstructed volume. Individual phases 
were discerned from both SEM images (utilized as exemplars) as well as the 3D virtual data by greyscale-based 
thresholding, following overflow method coupled with local-minima approach [4]. In addition, statistical descriptors, 
two-point correlation function, S2(r), two-point cluster function, C2(r), and linear-path function, L2(r) [5] were 
employed to validate the randomness and distribution of various phases contained in both and μg and 1g samples [6]. 
Both qualitative and quantitative assessments of these synthesized samples indicated that such AI-based 3D 
reconstructions are stable in comparison to micro-CT virtual data [6]. These reconstructed volumes are then directly 
employed as Repeating Unit Cells (RUCs) in the advanced micromechanical-based numerical code – NASA 
Multiscale Analysis Tool (NASMAT) for mechanical characterization. Specifically, the micromechanics model High-
Fidelity Generalized Method of Cells (HFGMC) in the NASMAT code was employed to obtain both Young’s modulus 
and Poisson’s ratio of the reconstructed microstructure volumes. In this work, we discuss numerical results of only 1g 
samples.  
 
The deep learning-based reconstruction methodology [4] enables utilization of high-resolution exemplars to synthesize 
ensembles of virtual volumes. Thus, by employing such high-resolution (1 pixel = 0.54 μm) exemplars for 
reconstruction, the generated 3D virtual datasets were able to achieve better representation of each phase. Such a high-
quality representation of microstructure morphology augments the fidelity of the analysis. However, to conduct a 
probabilistic analysis, several ensembles of such 3D microstructure reconstructions need to be solved in NASMAT. 
For instance, for the virtual dataset of 2563 voxels shown in Figure 1, NASMAT needs to homogenize as many 
stiffness tensor terms which invariably requires a prohibitive amount of memory. On the other hand, a separate 
sensitivity study [6] for AI-based 3D reconstruction concluded that for the given pixel resolution of 0.54 μm, at least 
512 x 512 pixels (276. 5 x 276.5 μm2) exemplar size is required for the μg samples. This is based on common design 
guidelines, wherein the recommended RUC size for mechanical characterization is at least 5 – 10x that of the 
characteristic size of the phase. Here, in the case of μg samples, portlandite phase with its distinct elongated plate-like 
morphology governs the characteristic length-scale (100 – 125 μm) [6]. To enable analysis of such large-scale 
problems, we present a strategy in this work, wherein the generated volumes are split into an arbitrary number of 
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multiscale analysis incorporating smaller RUCs at the lower sub volumes. Homogenization is performed at all scales 
in order to obtain the bulk properties of the sample. By exploiting the recursive nature of the NASMAT tool, we first 
perform multiscale analysis of 1g samples to obtain mechanical properties (Young’s modulus and Poisson’s ratio).  
Since the properties of interest are considered linear at this time, the absences of true separation of scales in the 
multiscale analysis does not introduce significant error into the model.  However, the same multiscale strategy may 
not be feasible if the constituent behavior is nonlinear. The workflow presented here will be extended to analyze μg 
samples as well as to pave the way for multiscale analysis of conventional large-scale virtual data, including micro-
CT volumes to be efficiently solved using NASMAT.  
 
 

Reconstructed Volumes CH C-S-H Porosity 

 
μg sample  

11.7% 
 

20.4% 
 

68.47% 

 
1g sample  

17.4% 
 

33.9% 
 

49.3% 

Fig 1. Reconstructed 3D volumes (2563 voxels) of both 1g and μg samples and respective phases segmented 
using greyscale-based thresholding utilizing an overflow method coupled with local minima approach [4]. An 
exemplar size 256 x 256 pixels (with 0.54 μm resolution) is shown here. Individual % phase composition is 
provided beneath each phase.  

 

II. Methodology 
 

 Study of pure compounds, such as C3S, a prime constituent in OPC aids in understanding the nature of 
microstructural formation and will lead to comparison of ground and space-cured samples. In addition, from the 
perspective of mechanical characterization, a thorough characterization of such pure phases invariably renders the 
analysis workflow robust. The success of any multiscale micromechanics-based analysis of a multi-phase material 
system depends on the accurate description of the size and morphology of individual phases in a RUC. In this work, 
the morphology of individual phases is represented using 3D RUCs, obtained via a deep learning-based 2D to 3D 
reconstruction framework initially proposed by Gutierrez et al. [7], and extended to cementitious system in our 
previous work [4]. This synthesized virtual data was segmented using a histogram-based greyscale thresholding 
approach and the resulting RUCs are directly inputted to NASMAT code (see Figure 2). In this section, we briefly 
provide an overview of this AI-based reconstruction methodology [4, 6] and NASMAT code [8], followed by 
multiscale integration of the synthesized volumes into the NASMAT framework. A schematic illustration of the 
workflow is presented in Figure 2. Owing to the sheer size of this synthesized volume (5123 voxels; 0.54 μm 
resolution), a stand-alone algorithm is developed here that allows for any arbitrary number of sub volumes to be 
generated from a given volume (AI-reconstructed or traditional micro-CT -based). This in-turn reduces the required 
computational demand, and here, this multiscale approach applied to C3S is modeled using the High-Fidelity 
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Generalized Method of Cells (HFGMC) [9]. Note, that the NASMAT tool, by its recursive nature allows to define any 
arbitrary number of sub volumes. This enables the analysis of such large-scale problems containing high-resolution 
3D virtual data with modest memory and compute time requirements.  
 

 
Fig 2. Workflow: Triply periodic user-defined RUC definition of reconstructed C3S microstructure virtual 
volumes with chosen exemplar(s) taken from the NASA PSI database. Multiscale analysis in NASMAT is 
achieved via an in-house developed Python-based script that enables automatic generation of input files by 
portioning a virtual volume into a pre-defined arbitrary length-scales.  

 
A. Brief Overview of NASMAT   
 
NASMAT's design and architecture prioritize key aspects such as modularity, upgradability, maintainability, 
interoperability, utility, and scalability [8]. The NASMAT procedures and data types exhibit a recursive nature, 
facilitating the creation of the Multiscale Recursive Micromechanics (MsRM) framework [10]. The code by its 
inherent modular design employs several recursive procedures and subroutines. Hence, this code can also be easily 
adapted by interchanging the modules allowing for flexible formulation to address a particular multiscale problem. 
For instance, NASMAT has been successfully employed to perform multiscale failure simulations of 3D woven 
composites [11], unidirectional fiber-reinforced composites [12], braided composites [13], and have also been 
successfully integrated with Molecular Dynamics (MD) at its lowest tier to study thermoplastics [14] and nanoplatelets 
[15]. Here we utilize multiscale modeling to ascertain the mechanical properties of the reconstructed C3S virtual 
volumes, and exploit the recursive nature of NASMAT to analyze these AI-synthesized samples.  
 
Note, that NASMAT facilitates “plug and play” functionality and hence, is capable of invoking various 
micromechanics theories such as the Generalized Method of Cells (GMC), the Parametric HFGMC, Carerra Unified 
Formulation (CUF), and the Mori-Tanaka Mean Field Theory (MT) [16-19]. The semi-analytical method, the High-
Fidelity Generalized Method of Cells (HFGMC) [9] was selected here to predict the mechanical properties of the 
hydrated C3S samples. Here, the effective mechanical properties of the reconstructed C3S is computed via 
homogenization using the HFGMC model, and the overall utility of the chosen micromechanics model is also verified.  
 
B. Deep Learning-based Microstructure Reconstruction & Phase Allocation in User-defined RUCs 
 
The tricalcium silicate samples, C3S, evaluated in this work was cured with lime water at a water-to-cement ratio (w/c) 
of 2.0 by mass. This high w/c ratio enhanced crystal growth by coarsening the porosity. Moreover, magnifying the 
effect of overall microstructural development aids in understanding the µg effects. The fabrication details of these 
samples can be found elsewhere [1]. The fractured surfaces of the hydrated samples were dried under a vacuum, 
mounted in acrylic resin, and polished. The Backscattered Electron (BSE) images of the polished sections were taken 
with a magnification of 500x and was used as exemplars in the 2D – 3D reconstruction framework, refer to [4,6] and 
see Figure 1.  
 
Image reconstruction has been ubiquitously applied in the field of computer vision and graphics. In the materials 
science community, Markov Random Field (MRF) based microstructure reconstruction technique is prominent [20]. 
With the recent advancement in Convolutional Neural Networks (CNNs) in the field of computer vision, machine 
learning-based approaches, especially transfer-learning based microstructure reconstruction techniques are widely 
becoming popular [21-23]. Amongst such machine learning-based techniques, a computationally efficient approach 
based on texture-synthesis [7] was employed by the authors previously [4] to synthesize ensembles of 3D 
microstructures of both µg and 1g samples. In this framework, initially proposed by Gutierrez et al. [7], a compact 
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generative framework based on CNN was employed. A pre-trained deep network architecture, namely, VGG-19 [24] 
is utilized, and a volumetric perceptual loss function is defined that optimizes the statistical features of the generated 
volume to that of the input 2D exemplar. By comparing only 2D slices of the synthesized volume across a set of 
desired directions with the exemplar, this methodology enables computationally efficient microstructure 
reconstruction. Note, the pre-trained deep CNN model, VGG-19 used in this model is trained on ImageNet dataset 
[25] and accepts a 2D image with a 3-channel (RGB) as input. The 2D greyscale exemplars (512 x 512 pixels) selected 
from the BSE images stored in the NASA PSI database was converted to a 3-channel representation using the OpenCV 
library. During training, statistical features of the exemplar is compared to the slices extracted from the synthesized 
volume using feature maps. The reconstructed C3S microstructural volume is then directly incorporated as a user-
defined 3D RUC in NASMAT, refer to Figures 1 and 2. Compared to our previous work in [4], we augmented the 
reconstruction here by adding more target images in the reconstruction algorithm. By carefully selecting exemplars 
containing various CH crystals, the resulting synthesized volume captured the distinct plate-like morphology of CH 
crystals in μg samples very well (Figure 2). The increase in computational time for training was not that significant.  
 
Invariably to define the material card of this user-defined 3D RUC, each phase in the reconstructed C3S microstructural 
volume needs to be identified. Previously, the SEM images of both µg and 1g samples, stored in the NASA PSI 
database was analyzed using a greyscale-based thresholding approach [4] to discern various hydration products (CH, 
C-S-H and porosity). Firstly, the images were treated using a Sigma filter (with σ = 2.0) [26] and then analyzed using 
an in-house script that identifies various bounds in the histogram to distinct to each phase. A local-minima based 
approach was used to identify the bound in the histogram between CH and C-S-H phases. To circumvent edge effects 
attributed to the high mismatch of atomic numbers between porosity and the C-S-H phase, overflow method [27] was 
used to identify the porosity/C-S-H boundary. The image analysis was benchmarked against the total porosity for both 
µg and 1g samples using the Mercury Intrusion Porosimetry (MIP) technique [1]. For a detailed overview of the 
greyscale-based image segmentation workflow used to identify each phase in hydrated C3S samples, refer to our 
previous work [4]. A short Python-based script was developed to assign individual phase on each voxel of the 
reconstructed C3S volume based on its intensity (see Figure 2). For material assignment, depending on each voxel 
intensity, following NASMAT material notation, M = 1; CH, M = 2; C-S-H, and M = 3; Porosity were assigned to 
each of the 5123 voxels. A detailed discussion on the hierarchical multiscale modeling strategy devised to study C3S 
virtual data is provided in the subsequent section.  
 
C. Multiscale Integration of Reconstructed C3S Volumes  
 
The phase-assigned reconstructed 3D virtual data is directly inputted into the NASMAT tool as a user-defined RUC 
to assess effective stiffness properties. However, due to the prohibitive amount of memory required, simulation of the 
reconstructed virtual volume as a single RUC (5123 subcells) is very challenging. Hence, multiscale modeling of C3S 
microstructure spanning multiple concurrent length scales was carried out to obtain the mechanical properties. The 
schematic illustration of such a multiscale modeling setting in which the reconstructed volume is partitioned into 
arbitrary length-scale is presented in Figure 3.  Within the MsRM approach, any arbitrary number of scales can be 
included. The MsRM framework of NASMAT allows information to be passed down the scales through localization, 
and up the scales through homogenization [12]. Here, Level 0 represents the highest RUC (5123 voxels; resolution 
0.54 μm/pixel). The effective properties of each subcell are obtained via the homogenization of the RUCs at the 
subsequent scales defined below. The scales are linked by equilibrating the homogenized average stress, strain and 
stiffness tensors at a particular level, i to the local stress, strain, and stiffness tensors of a given subcell at level, i - 1 
[8, 10].  It should be noted that in these analyses there is no separation in scale as is typically required for multiscale 
analysis.  However, the error introduced is minimal since the properties of interest obtained through homogenization 
are linear. 
 
A stand-alone algorithm was developed that allows for partitioning of a given virtual volume (AI-generated or micro-
CT) into multiple sub volumes (see Table 1). For a given heterogenous material, the algorithm (see pseudocode 
presented in Table 1) automatically assembles a NASMAT input file by splitting the given RUC to any user-defined 
consequent sub volumes. The metadata regarding NASMAT header files are automatically handled by the algorithm 
requiring no further modification to the script prior to submission. The schema presented in Figure 1 shows two cases, 
wherein the reconstructed C3S 1g sample is partitioned into two multiple sub volumes. Note, that while assembling 
the code for submission in NASMAT, material properties must be defined and each voxel in the virtual volume must 
be assigned a distinct material. Here, CH, C-S-H and porosity phases are assigned to each voxel based on the greyscale 
bounds identified using a combined overflow method and local minima-based approach [4]. This material assignment 
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is performed at its lowest sub volume; for instance, at Level-2 comprising of 43 voxels (see Figure 3), the algorithm 
compares the greyscale intensity with the defined bounds and allocates a material. By exploiting the recursive 
framework in NASMAT, the homogenized properties are then assigned to next upper level (Level 1 in this case). In 
addition, the presented schema allows to perform failure analysis of microstructures with increased fidelity. For 
instance, advanced 2D to 3D reconstruction tools [4, 6, 20 - 23], enables generation of virtual data with higher pixel 
resolution. Hence, the current approach enables investigation of such high-resolution 3D microstructural volumes in 
NASMAT. Moreover, on occasions where there is limited availability of computer nodes at runtime or limited 
memory, the current approach aids to break down the analysis domain into further smaller volumes at an arbitrary 
number of sub volumes, thus reducing the computational demands. The ability to partition a given RUC to a pre-
defined number of scales also allows the user to quickly evaluate the utility of various micromechanical models.  
 
 
 

 
Fig 3. Schematic illustration of the proposed multiscale analysis framework in which the AI-assisted 
reconstructed C3S virtual volume (1g sample) is partitioned into user-defined arbitrary sub volumes; top: 5123 
volume partitioned into 163 voxels in Level 0, 83 voxels in Level 1 and 43 voxels in Level 2 and bottom 5123 
volume partitioned into 323 voxels in Level 0 and 163 voxels in Level 1. During homogenization, the effective 
stiffness matrix for the 3D RUC is passed up from the bottom-most scale to Level 0.  
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  Table 1. Pseudocode for generating multiscale NASMAT input file by partitioning a given RUC volume 
(reconstructed or micro-CT) of a heterogenous material into hierarchical sub volumes. 

 

III. Results and Discussion 
 
 The phase-assigned reconstructed 3D virtual data of 1g C3S sample are directly inputted into the NASMAT code 
as a triply-periodic, user-defined, multiscale RUC to assess the effective stiffness properties. Here, the numerical 
results for the case wherein, the RUC is partitioned into 163 in Level 1 and 323 voxels in Level 0 is presented. A 
standard linear elastic model was considered for each phase. The material properties of individual phases (C-S-H and 
CH) were taken from the literature, where the reported values are obtained using a nanoindentation study [28]. The E-
modulus and Poisson’s ratio of the C-S-H phase were 21.7 GPa and 0.25, respectively. For the CH crystals, E-modulus 
35 GPa and Poisson’s ratio 0.31 was assumed. Due to the high w/c ratio used in this study, hydrated C3S samples 
under 1g condition exhibited porosity of 48.4% [1, 4, 6]. In such highly porous samples (see Figure 1), the failure 
mechanism is driven by the porosity. Here, the modulus of the porosity was chosen as 1 MPa. As previously 
mentioned, the stiffness properties of the monophasic materials (C-S-H and CH) have been taken from the 
nanoindentation study in the literature. These methods postulate that there exist two types of C-S-H and validity of 
utilizing such nanoindentation and deconvolution techniques is highly debated. It must also be noted that the modulus 
considered here for both C-S-H and CH phases assume non-porous monophasic composition. However, for initial 
comparison, the stiffness values obtained from the nanoindentation study can be used. The analysis was run on a single 
CPU; results are presented in Table 1, along with the memory used and wall time. The total recorded analysis time 
for the case wherein, the reconstructed 5123 voxels is partitioned into two levels is 23.02h with a total memory usage 
of 55.41 GB.  
 

Table 2. Summary of multiscale analysis on reconstructed 1g C3S samples portioned into sub volumes having 
Level 0: 323 voxels and Level 1: 163 voxels. 

Mechanical Properties 
E11 E22 E33 

15.90  9.02 15.83 
G12 G23 G13 
3.83 3.06 5.57 
ν12 ν23 ν13 

0.25 0.12 0.23 
Resource Usage  
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CPU Time Used 23.02 h 
Memory Used 55.41 GB 

 
The numerical results obtained here (Table 1) are compared against a 32-year-old hydrated C3S sample with a reported 
E-modulus = 18.84 GPa at 43.35% porosity [29]. The numerically obtained results (E11) are comparable to stiffness 
value presented in [29], obtained via microindentation testing. Microindentation of a multiphase composite such as 
C3S enables robust measurement of stiffness properties, as the interaction volume beneath the indenter that arises in 
nanoindentation test and surface roughness influences are circumvented. Additionally, the microindentation data 
provides a composite response and the contribution of individual phases in hydrated C3S cannot be separated from the 
results. In the hydrated C3S, C-S-H phase is the principle binding phase and CH are present as stiff inclusions that 
prevent deformation.  
 
Initial numerical results presented in this work exploiting the recursive nature of NASMAT to devise multiscale 
integration of reconstructed C3S volumes looks promising. The discrepancy in E22 value compared to E11 and E33 (by 
almost ~ 50%) is not well understood. It may be attributed to the reconstructed volume itself, which in turn is governed 
by the chosen exemplar. In general, hydrated cement is considered to be isotropic in nature. Moreover, mechanical 
properties such as Young’s modulus and hardness are dependent on humidity. In the 1g sample, despite having high 
porosity content (attributed to high w/c ratio = 2.0), the CH crystals are uniformly distributed (see Figure 1). For the 
reconstructed 1g sample volumes, the CH phase composition varied between 8 – 17.40 %, porosity varied 49 – 52 %, 
and the C-S-H matrix composition was estimated to be 34 – 40 % [4, 6]. Additionally, the spatial distribution of both 
CH crystal and porosity phases were both qualitatively and quantitatively affirmed with the aid of micro-CT data [6]. 
For quantitative evaluation, low-order statistical functions, two-point correlation function, S2(r), two-point cluster 
function, C2(r), and linear-path function, L2(r) were used [6]. Future efforts will involve probabilistic estimation of 
stiffness properties following the multiscale integration strategy presented in this work.  

IV. Conclusion 
 For highly porous samples, in particular, cementitious materials hydrated in space conventional mechanical 
characterization is not viable. Therefore, to estimate mechanical properties numerical assessment can be carried out 
with the aid of 3D virtual data generated from their high-resolution 2D SEM images. This work provides a framework 
to carry out analysis of such high-resolution reconstructed virtual data. To reduce the demand of computational 
resources, a multiscale analysis in NASMAT wherein, the highly porous synthesized volume is partitioned into 
multiple sub volumes is introduced. This multiscale representation of the reconstructed volume led to effective 
computation of stiffness properties in NASMAT. Numerical results pertaining to reconstructed C3S samples hydrated 
on ground is presented. The numerically predicted stiffness value of 15.90 GPa is comparable to experimentally values 
in the literature. Note, that the results presented here are comparable to hydrated C3S samples exhibiting similar 
porosity. Furthermore, since our previously reported work, the reconstructed samples, especially that of μg samples 
have been improved. These improvements were caused by adding more exemplars as input images in the 
reconstruction methodology. By adding more target images along the desired orthogonal directions, the distinct plate-
like features of CH morphology were captured very well. The study also aims to present the user with an automated 
methodology to effectively partition a given virtual volume data into pre-defined length scales, and assemble a 
NASMAT input script by assigning each voxel with a distinct phase following greyscale-based phase segmentation. 
In future, the workflow presented here will be extended to analyze μg samples as well as paves the way for traditional 
large-scale virtual data, e.g., micro-CT to be efficiently solved using NASMAT. 
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