Validation of Universal Cryogenic Flow Boiling Correlations in Thermal Desktop for Liquid Hydrogen

Erin Tesny¹, Brian Johnson², Jason Hartwig¹, Mariano Mercado¹, Vishwanath Ganesan³, Issam Mudawar³

¹NASA Glenn Research Center, ²Michigan Technological University, ³Purdue University AIAA SciTech Forum, January 8-12, 2024

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Outline

- Introduction
- Background
- Built-In Thermal Desktop Correlation
- New Universal Correlation
- ≻Model Set-Up
- Results
- ➢Future Work

Introduction

- Cryogenic transfer systems are essential for the development of future ground and low-g systems
 Two-phase flow will be present in these systems
- Currently there is a need for more accurate, direct cryogenic dataanchored models for various boiling and two-phase phenomena

LH2 Storage Tank and transfer line at NASA's KSC

Introduction, Cont'd

- Existing room-temperature based boiling correlations do a poor job at predicting cryogenic flow phenomena
 - For steady state or heated tube, the disparity between these existing correlations and cryogenic data is as high as 400%
- New universal cryogenic flow boiling correlations were recently developed and anchored to the largest cryogenic flow boiling database assembled in the world to-date
- Current work will show implementation of these new correlations into Thermal Desktop (TD) and compare against TD's built-in code for two historical datasets using liquid hydrogen
 - Recent work has been performed to validate the new cryogenic correlations for other cryogens and results show an improvement over TD's built-in correlations

Background

- For flow boiling in the heating (or steady-state) case, single phase liquid flow is already established
- External heat source gradually boils the liquid
 - The heating configuration follows the boiling curve from left to right

A typical boiling curve. from *Mercado et al., 2019*

Built-in Thermal Desktop Correlations

	Low Flow Quality (x <xnb)< th=""><th>High Flow Quality (XNB<x<1.0)< th=""></x<1.0)<></th></xnb)<>	High Flow Quality (XNB <x<1.0)< th=""></x<1.0)<>
Low Wall Superheat (below T _{CHF})	Chen (1963)	Linear interpolation between Chen and Dittus-Boelter (<i>Nu</i> =0.023 <i>Re</i> 0.8 <i>Pr</i> 0.4)
Transition (between T _{CHF} and the smaller of T _{leid} and T _{dfb})	Non-linear interpolation between nucleate and film boiling using scaling laws by Ramilison and Leinhard	Non-linear interpolation between nucleate and film boiling using scaling laws by Ramilison and Leinhard
High Wall Superheat (above the smaller of T _{leid} and T _{dfb})	Bromley	Groeneveld

XNB: cut-off quality for nucleate boiling, default is 0.7 but can be changed by user

T_{CHF}: critical heat flux temperature

- T_{leid}: Ledienfrost temperature
- 6 **T**_{dfb}: departure from film boiling temperature

New Universal Correlations

- New Universal Cryogenic Correlations were developed at Purdue University in collaboration with NASA Glenn
- Correlations were developed for the location of onset of nucleate boiling (ONB), pre-Critical Heat Flux (CHF) heat transfer coefficient, post-CHF heat transfer coefficient, and the location of the CHF. Subcooled film boiling was not included
- The aim was then to create a smooth, continuous predictive curve for wall superheat as a function of heat flux by patching the individual correlations together

New Universal Correlations

- Correlations are ported into Thermal Desktop using a User Subroutine
- Work has already been completed showing the improvement of the Universal Correlations over TD's Built-in Correlations for liquid helium, nitrogen, and methane

		Built-in Correlations		Universal Correlations							
		Overall		Calculated Z _{CHF}			Fixed Z _{CHF}				
Casa	Fluid	MADE	SMADE	Z _{CHF} %	MADE	SMADE	Z _{CHF} %	NB	NB	FB	FB
Case	Fluid	MAPE	SMAPE	Error	MALE	SMAPE	Error	MAPE	SMAPE	MAPE	SMAPE
Lewis	Nitrogen	141.4%	78.3%	67.7%	18.5%	19.5%	11.4%	4.2%	4.6%	23.6%	16.3%
Qi	Nitrogen	33.0%	33.1%	43.6%	47.8%	27.6%	36.7%	2.8%	2.8%	4.8%	5.0%
Glickstein	Methane	43.0%	56.1%	21.7%	15.7%	13.4%	6.5%	9.9%	10.5%	18.2%	12.8%
	Average	72.5%	55.8%	44.3%	27.3%	20.2%	18.2%	5.6%	6.0%	15.5%	11.4%

New Universal Correlations TD Implementation

Model Overview

- Test section represented as pipe (Fluid Lumps and Wall Nodes)
- Inlet conditions fixed
- Constant heat flux applied to inner surface pipe
- Lump and Nodes connected by Tie
 - Built-In Code: TD calculates HTC
 - Universal Code: User Subroutine calculates HTC
- Number of Lumps/Nodes matches locations of test data temperature locations

Model Set-Up

- Calculated zCHF vs. Fixed zCHF
 - First Set-Up, Calculated zCHF:
 - Pre-CHF heat transfer coefficients
 - Post-CHF heat transfer coefficients
 - CHF location
 - Second Set-Up, Fixed zCHF:
 - Pre-CHF heat transfer coefficients
 - Post-CHF heat transfer coefficients
 - CHF calculation is FIXED, given as input

Experimental Test Setup

Lewis (1962)

- Vertical Pipe, Upward Flow
- > 0.41m pipe length
- 1.4cm diameter
- SS304 outer wall
- > 28 datasets
- 14 data points each

Hendricks (1966)

- Vertical Pipe, Upward Flow
- > 0.61m pipe length
- > 9.5mm diameter
- SS304 or Inconel outer wall
- 11 datasets
- > 13 data points each

Error Metrics

Mean Average Percentage Error

$$\mathbf{MAPE} = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

13

Symmetrical Mean Average Percentage Error

$$\mathsf{SMAPE} = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{(A_t + F_t)/2} \right|$$

- • percentage of data points within +/- 50% of the test data points

Lewis Calculated zCHF Results

	Built-in Correlations	
MAPE	201.8%	
SMAPE	81.0%	
zCHF Error	44.9%	

	Universal Correlations	
MAPE	102.0%	
SMAPE	29.2%	
zCHF Error	10.4%	

Lewis Calculated zCHF Results

15

Lewis Calculated zCHF Results

Results Excluding Subcooled Film Boiling Data Points

Lewis Fixed zCHF Results

	Universal Correlations
MAPE	5.3%
SMAPE	5.2%
Pre-CHF MAPE	3.1%
Pre-CHF SMAPE	3.1%
Post-CHF MAPE	7.9%
Post-CHF SMAPE	7.8%

Note: No results shown for Built-in Correlations as zCHF cannot be fixed using this method

Lewis Fixed zCHF Nucleate Boiling Results

	Universal Correlations
# Data Points	34
MAPE	16.5%
SMAPE	14.8%
θ	88.2%
φ	88.2%

Lewis Fixed zCHF Film Boiling Results

	Universal Correlations
# Data Points	334
MAPE	18.9%
SMAPE	18.4%
θ	79.4%
φ	90.7%

Lewis Fixed zCHF Film Boiling Results

Results Excluding Subcooled Film Boiling Data Points

	Universal Correlations
# Data Points	319
MAPE	18.8%
SMAPE	16.7%
θ	64.9%
φ	87.3%

Hendricks Calculating zCHF Results

	Built-in Correlations
MAPE	58.9%
SMAPE	84.7%
zCHF Error	-

	Universal Correlations
MAPE	29.3%
SMAPE	34.7%
zCHF Error	-

Hendricks Calculating zCHF Results

Hendricks Calculating zCHF Results

Results Excluding Subcooled Film Boiling Data Points

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

23

Conclusion

Universal Correlations show modest improvement over Thermal Desktop's Built-in Correlations for liquid hydrogen

When subcooled film boiling points are excluded Universal Correlations predict Lewis wall temperatures within 20% vs. 69% for Built-in

- Universal Correlations predict Hendricks wall temperatures within 38% vs. 54% for Built-in
- Future work includes using Universal Correlations for predicting transfer line performance in future systems
 - Correlations have now been validated for 4 different cryogens across a range of flow conditions

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS