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Introduction

➢Cryogenic transfer systems are 

essential for the development of 

future ground and low-g systems

➢Two-phase flow will be present in 

these systems

➢Currently there is a need for more 

accurate, direct cryogenic data-

anchored models for various 

boiling and two-phase phenomena
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LH2 Storage Tank and transfer line at 

NASA's KSC



Introduction, Cont’d

➢ Existing room-temperature based boiling correlations do a poor job at predicting 

cryogenic flow phenomena

➢ For steady state or heated tube, the disparity between these existing correlations and 

cryogenic data is as high as 400%

➢ New universal cryogenic flow boiling correlations were recently developed and 

anchored to the largest cryogenic flow boiling database assembled in the world 

to-date

➢ Current work will show implementation of these new correlations into Thermal 

Desktop (TD) and compare against TD’s built-in code for two historical datasets 

using liquid hydrogen

➢ Recent work has been performed to validate the new cryogenic correlations for other 

cryogens and results show an improvement over TD’s built-in correlations
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Background

➢ For flow boiling in the 

heating (or steady-state) 

case, single phase liquid 

flow is already established

➢ External heat source 

gradually boils the liquid

➢ The heating configuration 

follows the boiling curve 

from left to right
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A typical boiling curve. 

from Mercado et al., 2019



Built-in Thermal Desktop Correlations
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Low Flow Quality

(x<XNB)

High Flow Quality

(XNB<x<1.0)

Low Wall Superheat (below TCHF) Chen (1963)

Linear interpolation between 

Chen and Dittus-Boelter

(𝑁𝑢=0.023𝑅𝑒0.8𝑃𝑟0.4)

Transition (between TCHF and the 

smaller of Tleid and Tdfb)

Non-linear interpolation 

between nucleate and film 

boiling using scaling laws 

by Ramilison and Leinhard

Non-linear interpolation 

between nucleate and film 

boiling using scaling laws by 

Ramilison and Leinhard

High Wall Superheat (above the 

smaller of Tleid and Tdfb)
Bromley Groeneveld

XNB: cut-off quality for nucleate boiling, default is 0.7 but can be changed by user

TCHF: critical heat flux temperature

Tleid: Ledienfrost temperature

Tdfb: departure from film boiling temperature



New Universal Correlations

➢New Universal Cryogenic Correlations were developed at 

Purdue University in collaboration with NASA Glenn

➢Correlations were developed for the location of onset of 

nucleate boiling (ONB), pre-Critical Heat Flux (CHF) heat 

transfer coefficient, post-CHF heat transfer coefficient, and the 

location of the CHF. Subcooled film boiling was not included

➢The aim was then to create a smooth, continuous predictive 

curve for wall superheat as a function of heat flux by patching 

the individual correlations together
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New Universal Correlations

➢ Correlations are ported into Thermal Desktop using a User 

Subroutine

➢ Work has already been completed showing the improvement 

of the Universal Correlations over TD’s Built-in Correlations 

for liquid helium, nitrogen, and methane
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Built-in Correlations Universal Correlations

Overall Calculated ZCHF Fixed ZCHF

Case Fluid MAPE SMAPE
ZCHF % 

Error
MAPE SMAPE

ZCHF % 

Error

NB 

MAPE

NB 

SMAPE

FB 

MAPE

FB 

SMAPE

Lewis Nitrogen 141.4% 78.3% 67.7% 18.5% 19.5% 11.4% 4.2% 4.6% 23.6% 16.3%

Qi Nitrogen 33.0% 33.1% 43.6% 47.8% 27.6% 36.7% 2.8% 2.8% 4.8% 5.0%

Glickstein Methane 43.0% 56.1% 21.7% 15.7% 13.4% 6.5% 9.9% 10.5% 18.2% 12.8%

Average 72.5% 55.8% 44.3% 27.3% 20.2% 18.2% 5.6% 6.0% 15.5% 11.4%



New Universal Correlations TD Implementation
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Schematic of Universal Correlation implementation into Thermal Desktop model



Model Overview

➢ Test section represented as pipe (Fluid Lumps 

and Wall Nodes)

➢ Inlet conditions fixed

➢ Constant heat flux applied to inner surface of 

pipe

➢ Lump and Nodes connected by Tie 

➢Built-In Code: TD calculates HTC

➢Universal Code: User Subroutine calculates 

HTC

➢Number of Lumps/Nodes matches locations of 

test data temperature locations
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Model Set-Up

➢ Calculated zCHF vs. Fixed zCHF

➢ First Set-Up, Calculated zCHF:

➢Pre-CHF heat transfer coefficients

➢Post-CHF heat transfer coefficients

➢CHF location

➢ Second Set-Up, Fixed zCHF:

➢Pre-CHF heat transfer coefficients

➢Post-CHF heat transfer coefficients

➢CHF calculation is FIXED, given as input11



Experimental Test Setup

Lewis (1962)

➢ Vertical Pipe, Upward Flow

➢ 0.41m pipe length

➢ 1.4cm diameter

➢ SS304 outer wall

➢ 28 datasets

➢ 14 data points each
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Hendricks (1966)

➢ Vertical Pipe, Upward Flow

➢ 0.61m pipe length

➢ 9.5mm diameter

➢ SS304 or Inconel outer wall

➢ 11 datasets

➢ 13 data points each



Error Metrics
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➢ Mean Average Percentage Error

MAPE = 
1

𝑛
σ𝑡=1
𝑛 𝐴𝑡−𝐹𝑡

𝐴𝑡

➢ Symmetrical Mean Average Percentage Error

SMAPE = 
1

𝑛
σ𝑡=1
𝑛 𝐴𝑡−𝐹𝑡

(𝐴𝑡+𝐹𝑡)/2

➢ θ : percentage of data points within +/- 30% of the test data 

points

➢ Φ: percentage of data points within +/- 50% of the test data 

points



Lewis Calculated zCHF Results
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Built-in Correlations

MAPE 201.8%

SMAPE 81.0%

zCHF Error 44.9%

Universal Correlations

MAPE 102.0%

SMAPE 29.2%

zCHF Error 10.4%



Lewis Calculated zCHF Results
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Built-in Correlations

# Data Points 368

MAPE 64.4%

SMAPE 34.6%

Ɵ 63.9%

ɸ 86.4%

Universal Correlations

# Data Points 368

MAPE 41.5%

SMAPE 46.9%

Ɵ 66.8%

ɸ 73.4%



Lewis Calculated zCHF Results
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Built-in Correlations

# Data Points 353

MAPE 68.8%

SMAPE 35.2%

Ɵ 64.9%

ɸ 87.3%

Universal Correlations

# Data Points 353

MAPE 40.5%

SMAPE 44.5%

Ɵ 69.1%

ɸ 74.8%

Results Excluding Subcooled Film Boiling Data Points



Lewis Fixed zCHF Results

17

Universal Correlations

MAPE 5.3%

SMAPE 5.2%

Pre-CHF 

MAPE
3.1%

Pre-CHF 

SMAPE
3.1%

Post-CHF 

MAPE
7.9%

Post-CHF 

SMAPE
7.8%

Note: No results shown for Built-in 

Correlations as zCHF cannot be 

fixed using this method



Lewis Fixed zCHF Nucleate Boiling Results
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Universal Correlations

# Data Points 34

MAPE 16.5%

SMAPE 14.8%

Ɵ 88.2%

ɸ 88.2%



Lewis Fixed zCHF Film Boiling Results
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Universal Correlations

# Data Points 334

MAPE 18.9%

SMAPE 18.4%

Ɵ 79.4%

ɸ 90.7%



Lewis Fixed zCHF Film Boiling Results
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Results Excluding Subcooled Film Boiling Data Points

Universal Correlations

# Data Points 319

MAPE 18.8%

SMAPE 16.7%

Ɵ 64.9%

ɸ 87.3%



Hendricks Calculating zCHF Results
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Built-in Correlations

MAPE 58.9%

SMAPE 84.7%

zCHF Error -

Universal Correlations

MAPE 29.3%

SMAPE 34.7%

zCHF Error -



Hendricks Calculating zCHF Results
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Built-in Correlations

# Data Points 132

MAPE 37.2%

SMAPE 48.0%

Ɵ 32.6%

ɸ 69.7%

Universal Correlations

# Data Points 132

MAPE 40.1%

SMAPE 51.3%

Ɵ 44.7%

ɸ 77.3%



Hendricks Calculating zCHF Results
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Built-in Correlations

# Data Points 115

MAPE 40.3%

SMAPE 52.8%

Ɵ 24.3%

ɸ 65.2%

Universal Correlations

# Data Points 115

MAPE 33.8%

SMAPE 37.7%

Ɵ 51.3%

ɸ 88.7%

Results Excluding Subcooled Film Boiling Data Points



Conclusion

➢ Universal Correlations show modest improvement over Thermal 

Desktop’s Built-in Correlations for liquid hydrogen

When subcooled film boiling points are excluded Universal 

Correlations predict Lewis wall temperatures within 20% vs. 69% for 

Built-in

➢ Universal Correlations predict Hendricks wall temperatures within 

38% vs. 54% for Built-in

➢ Future work includes using Universal Correlations for predicting 

transfer line performance in future systems

➢ Correlations have now been validated for 4 different cryogens 

across a range of flow conditions
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