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Unmanned Aerial Vehicles (UAVs) have become commonly used to perform a wide range

of commercial activities such as cinematography and medical supply delivery. Consequently,

regulators have become interested in designing UAV Traffic Management systems (UTMs) to

coordinate UAV traffic among a collection of UAV operators. One framework which has been

recently proposed for a UTM system is a combinatorial auction. In this framework, airspace is

modelled as a 4D grid of space-time cells. UAV operators bid on cells which collectively form

paths for their UAVs. Ideally, an airspace auction should reveal information about the current

price of flight paths to bidders, allowing bidders to identify and bid on a select number of paths

instead of placing as many bids as possible in the hopes of stumbling on a cheap path. Revealing

too much information, however, can allow bad actors to place bids which are intended not to

win but to raise the price that a rival bidder must pay. We address these twin challenges with

a new information revelation framework which provides bidders with wide-ranging pricing

information while suppressing bad actors. We evaluate our framework on scenarios based on a

Japan Aerospace Exploration Agency (JAXA) case study and find that it can scale to thousands

of bids.

Nomenclature

𝑈𝐴𝑆 = Unmanned Aircraft Systems

𝑈𝑆𝑆 = UAS Support Services

𝑈𝑇𝑀 = Urban Transportation Management

𝑈𝐴𝑉 = Unmanned Aircraft Vehicle

𝑋𝑂𝑅 = A disjunction of items, only one of which can be selected

𝐼𝐿𝑃 = Integer Linear Programming
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𝑐, 𝐶 = 4D airspace cell, set of 4D cells

𝛽𝑖 = the 𝑖th bidder

𝑀𝑖 := {𝑚𝑖1, 𝑚𝑖2, . . .} = the set of missions that the 𝑖th bidder would like to fly

𝜇𝑖 𝑗 : 2𝐶 → R = a function mapping each flight path to the value that the 𝑖th bidder would derive from executing mission 𝑚𝑖 𝑗 with that flight path

𝑞 = maximum value a bidder can derive from a set of cells

𝐴𝑖, 𝑗 = The set of cells allocated to a bidder 𝑖 and mission 𝑚𝑖, 𝑗

𝑝 = price bidder is charged for an allocation

𝐵, 𝜔 = set of bids, set of valid bids

𝑣𝑖 .𝑣(𝜔) = value of bid for bidder 𝑖, value for a sum of bid values

𝑏 = (𝛽, 𝐶, 𝑣) = A bid tuple, consisting of a bidder, a set of cells, and a value the bidder is willing to pay

𝑎𝑖𝑟 (𝐶, 𝐵, 𝑋), 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) = Winner determination function, valuation of winning bids

𝑐𝑝(𝑐, 𝐵, 𝑋), 𝑐𝑝(𝐶, 𝐵, 𝑋) = current price of a cell, current price of a set of cells

Introduction
Recent growth in the urban aviation industry has put pressure on cities and government agencies worldwide to create

rules for using urban airspace. A number of proposals for urban transportation management (UTM) have been proposed,

each aimed at ensuring the safety, efficiently, security, and equity of airspace access [1].

The FAA has mandated that a UTM ecosystem is a federated traffic management system, where operators

communicate with a suite of UAS support services (USS) to coordinate, execute, and manage operations, based on

established and regulated procedures. Figure 1 shows a notional UTM architecture (reprinted from [2]). UTM operations

can be strategically managed through planning and sharing of operator intent information, in the form of an operations

plan, indicating the four-dimensional (4D) volume of airspace within which the operation is expected to occur. The USS

offers assistance to the operators in operations planning, intent sharing, strategic and tactical deconfliction, conformance

monitoring, and management of off-nominal situations. Such services improve efficiency and reduce the need for purely

tactical separation management.

The federated operations concept introduces a number of challenges in distributed planning, intent sharing, and

deconfliction. In the case of drone delivery, operators are often competitive, self-interested players who are reluctant to

share operational intent information with other operators[3]. Furthermore, competing for prime airspace in dense urban

environments may increase the urge to engage in adversarial behavior to gain advantage over others. UTM solutions to

strategic federated planning and deconfliction should ensure honest behavior, fairness, while preserving operator control

over its operations and a degree of privacy about providing operator intent information and expressing preferences.

These desiderata for federated UTM management neatly coincide with the properties codified by combinatorial
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Fig. 1 Notional UTM Architecture (reprinted from [2]).

auction theory. [4]. In combinatorial auctions, a set of bidders express their preferences on packages of items, and items

are then allocated efficiently to maximize total value. Such auctions have been employed for a variety of industrial

applications, including transportation, and in particular UAV traffic management[5]. The primary motivation for the use

of combinatorial auctions is the ability to express the ’all-or-nothing’ preferences: for UTM airspace allocation, an

operational intent typically has no value if it is only partially allocated.

This paper presents a framework for allocating airspace based on combinatorial auction mechanisms. Following

a summary of related research, we present a set of desirable properties for an efficient, fair auction, followed by a

formulation, consisting of a bidding language, a winner determination function, and a means of querying the current

state of the auction. We next describe an implementation and evaluation of the the winner determination function, and a

summary of future work.

Related Research

Deconfliction for UTM. Tactical deconfliction based on collisions avoidance mechanisms such as Control Barrier

Functions [6, 7] or Buffered Voronoi Cells [8] have been used to reactively avoid UAV collisions. These mechanisms

are dependent on UAV sensors, and may fail under adverse conditions.
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The problem of Multi-Agent Path Finding (MAPF) solving for deconfliction is well studied, including highly scalable

search-based MAPF solvers [9, 10] and rule-based [11] methods. Traditional MAPF solvers, however, do not contain

mechanisms to incentives bidders to honestly report their valuation flight path valuations. Recently, MAPF solvers

have been proposed that incorporate private incentives [12–15]; as well as privacy protection [16]. No MAPF solver,

however, currently provides economic-efficiency, fairness, truthfulness and scalability simultaneously. More recently,

path finding for autonomous agents using Multi-agent Reinforcement Learning (MARL) [17] has been proposed to train

agents that are robust to changes in the environment.

Combinatorial Auctions. Combinatorial auctions have a long history as a mechanism for allocating public goods such

as spectrum [18]. Combinatorial auctions have also been applied to other problems in transportation and delivery

such as exchanging transportation requests between freight carriers [19], matching carriers and shippers [20, 21],

airport time-slot allocation [22] and delivery logistics [23]. Recently, combinatorial auctions have been proposed

as a framework for UTM [24]. Our auction mechanism is the first, however, to achieve the broad range of criteria

necessary for UTM operations. The challenge of solving the winner determination problem for a combinatorial auction

at scale is well-studied. Proposed approaches use depth-first and breath-first search [25, 26], branch-and-bound [27],

and decision-trees [28].

Desired Properties of Auctions
An airspace auction should ideally be:

(1) Incentive-Aligned. A bidder should maximize her net profit (the value of the flight paths that she wins less their cost)

if she bids honestly, that is, if her bids reflect her true valuation of the flight paths that she is bidding on.

(2) Economically-Efficient. The auction should maximize the total value of the set of bids that it accepts. If all bidders

bid honestly, an economically-efficient auction maximizes the overall value derived from airspace by UAV operators.

(3) Burden Minimal. A UAV operator must use the auction system to obtain a flight path for every mission that she

wants to fly. Many UAV operators are small companies that cannot afford to hire an employee to engage with the

auction system full-time. A UAV operator that only engages with the auction system for a few minutes per bid should

nonetheless be able to obtain satisfactory results.

(4) Scalable. Airspace agencies such as JAXA estimate that even mid-size cities may see tens of thousands of drone

deliveries a day by 2030 [29]. The airspace auction system should therefore scale to tens of thousands of flights.

As part of this research, we conducted a survey of San Francisco Bay Area UAS operators to elicit a ranking of

airspace auction properties in terms of importance for operations. The properties deemed to be most desirable were:

• Real-Time Status Information. Real-time information about whether a bid is winning or losing.

• Price Discovery. Real-time information about flight path pricing.
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• Fleet safety, collision-Avoidance.

• Burden Minimization. Being able to get optimal results without constantly monitoring the auction site.

• Fairness. Preventing a small number of bidders monopolizing airspace.

• Economic Efficiency. Maximizing the value that all operators derive from airspace.

The results of this survey informed the technical approach to the auction mechanism design applied here, which we

present next.

Airspace Auction Formulation
We introduce a model for combinatorial auctions to allocate airspace to UAV operators. Such a mechanism consists

of the following elements.

Airspace Model. Airspace is a 4D space with 3 space dimensions and 1 time dimension. It is modelled as a 4D grid of

space-time cells. Each space-time cell represents a region of space at a particular time interval. We denote a space-time

cell 𝑐 and the set of all space-time cells 𝐶.

Bidders. Bidders 𝛽1 . . . 𝛽𝑛 correspond to UAV operators participating in an airspace auction. Each bidder 𝛽𝑖 is

associated with a set of missions 𝑀𝑖 := {𝑚𝑖1, 𝑚𝑖2 . . .}, minimally consisting of a start and goal location. For each

mission 𝑚𝑖 𝑗 , a bidder needs to obtain a flight path, a set of space-time cells 𝐶′ ⊆ 𝐶 that a UAS can fly through.

Valuation function and Allocation. A bidder 𝛽𝑖’s mission valuation functions 𝑞𝑖 : 2𝐶 → R+, describes the maximum

value that the bidder can derive from each set of cells 𝐶′ ⊆ 𝐶. Let the set of cells 𝐴𝑖 assigned to bidder 𝛽𝑖 by the auction

be termed bidder 𝛽𝑖’s allocation. Let 𝐴𝑖1, 𝐴𝑖2, . . . be a partition of the allocation 𝐴𝑖 such that mission 𝑚𝑖 𝑗 is flown with

flight path 𝐴𝑖 𝑗 . Bidder 𝛽𝑖’s overall valuation 𝑞𝑖 (𝐴𝑖) of allocation 𝐴𝑖 is:

𝑞𝑖 (𝐴𝑖) := max
𝐴𝑖1 ,𝐴𝑖2...

∑︁
𝑚𝑖 𝑗 ∈𝑀𝑖

𝑞𝑖 𝑗 (𝐴𝑖 𝑗 ).

Let 𝑝𝑖 be the price that bidder 𝛽𝑖 is charged for their allocation 𝐴𝑖 . A bidder 𝛽𝑖 wants to maximize her net profit

𝑞𝑖 (𝐴𝑖) − 𝑝𝑖 , the overall value 𝑞𝑖 (𝐴𝑖) of her allocation less the price 𝑝𝑖 that she has to pay.

Figure 2 shows the components of an airspace auction. On the left (green) a UAV operator is submitting bids and

querying useful information about the state of the auction. In the middle are the ways the bidders interact with the

auction framework. On the right are the processing units of the auction framework (in blue) and the inputs and outputs

of the system (grey).

As shown in the figure, while this auction is open, bidders can interact with it in one of four ways:

(1) Submit a New Bid.

(2) Increase the Price of a Bid.
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Fig. 2 The Airspace Auction Framework. Bidders (UAS operators) submit bids and queries for information to
the UTM system. The UTM system stories and summarizes auction state information, and eventually generates
an allocation of airspace.

(3) Query the Current Price of a Flight Path.

(4) Request a Price Heatmap for a Region of Airspace.

The following sections describe these components in more detail.

Submitting a New Bid and Increasing the Price of a Bid

We start by describing the bidding language that bidders use to submit new bids and update bids. We then describe

how a provisional set of winning bids and provisional prices are generated when a new bid is submitted or a bid’s price

is increased.

Bidding Language. Bidders express their preferences with bids organized into XOR constraints. A bid 𝑏𝑖 := (𝛽𝑖 , 𝐶𝑖 , 𝑣𝑖)

is a (bidder, flight plan, value) tuple, indicating that bidder 𝛽𝑖 will pay up to value 𝑣𝑖 for flight plan 𝐶𝑖 . An XOR

constraint 𝑥 𝑗 := {𝑏1, 𝑏2, . . .} is a set of bids, with the condition that at most one of the bids 𝑏1, 𝑏2, . . . should win. A

language including XOR constraints improves the ability for bidders to specify their preferences. Specifically, XORs

allow the bidder to express a willingness to take any of a set of flight paths.

Submitting and Updating Bids. A bidder places a bid 𝑏𝑖 associated with XOR constraint 𝑥 𝑗 with the operation Bid(𝑏𝑖 , 𝑥 𝑗 ).

If the XOR constraint 𝑥 𝑗 does not exist, it is created. A bidder increases the value of a bid 𝑏𝑖 := (𝛽𝑖 , 𝐶𝑖 , 𝑣𝑖) from 𝑣 𝑗 to

𝑣 𝑗 with the operation IncrValue(𝑏𝑖 , 𝑣 𝑗 ). If the new value 𝑣 𝑗 is less than the old value 𝑣𝑖 , the operation fails. A bidder

𝛽𝑖 associates a XOR constraint with every mission 𝑚𝑖 𝑗 ∈ 𝑀𝑖 that she would like to fly. She associates a bid 𝑏𝑘 with

XOR constraint 𝑥 𝑗 for every flight path that mission 𝑚𝑖 𝑗 might take.

An Example Auction. Fig. 3 (top) shows an example airspace auction. In this auction, there are two bidders, 𝛽1 and 𝛽2.

Bidder 𝛽1 wishes to fly from the point 𝑠1 in the cell (0, 0) to the point 𝑔1 in the cell (6, 2). In this scenario, bidder 𝛽1
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Fig. 3 (top) An example airspace auction state and (bottom) its heatmap.

would like to fly the mission with one of two flight paths:

• the flight path (0, 0) → (0, 2) → (6, 2), depicted in blue. Bidder 𝛽1 values this flight path at $3.

• the flight path (0, 0) → (6, 0) → (6, 2), depicted in yellow. Bidder 𝛽1 values this flight path at $4.

Bidder 𝛽1 hence places the two bids inside an XOR bid Bid(𝑏2, 𝑥4):

𝑏1 := (𝛽1, {(0, 0), (0, 1), . . . , (5, 2), (6, 2)}, $3)

𝑏2 := (𝛽1, {(0, 0), (1, 0), . . . , (6, 1), (6, 2)}, $4)

We He can place these bids and this XOR statement by executing the operations Bid(𝑏1, 𝑥4), and Bid(𝑏2, 𝑥4) in any

order.

Bidder 𝛽2 wishes to fly from the point 𝑠2 in the cell (4, 1) to the point 𝑔2 in the cell (8, 1) using the flight path

(4, 1), (5, 1), . . . (8, 1), depicted in green. Bidder 𝛽2 values this flight path at $2. He therefore places the bid:

𝑏3 := (𝛽3, {(4, 1), (5, 1), . . . , (8, 1)}, $2)

Auction State. Whenever a bidder either submits a new bid or increases the price of an existing bid, the airspace

auction updates the auction state. The state of an auction is a 3-tuple (𝐶, 𝐵, 𝑋) where 𝐶 is the set of cells being

auctioned, 𝐵 is the set of submitted bids, and 𝑋 is the set of submitted XOR constraints. In the example airspace auction

𝐵 = {𝑏1, 𝑏2, 𝑏3} and 𝑋 = {𝑥4}.

Fair Winner Determination. Once the auction state is updated, a fair winner determination function 𝑎𝑖𝑟 (𝐶′, 𝐵, 𝑋)
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selects a provisional set of winning bids (Figure 2, 6-7). The set of winning bids is a maximal value, valid set of bids.

We now describe what this means. A set of bids 𝜔 ⊆ 𝐵 is valid if it has three properties:

Property 1. Any bid 𝑏𝑖 ∈ 𝜔 only contains cells that are up for auction.

∀ (𝛽𝑖 , 𝐶𝑖 , 𝑣𝑖) ∈ 𝜔, 𝐶𝑖 ∈ 𝐶′.

Property 2. No two bids 𝑏𝑖 , 𝑏 𝑗 ∈ 𝜔 share a cell or an XOR constraint.

∀ 𝑏𝑖 , 𝑏 𝑗 ∈ 𝜔, 𝐶𝑖 ∩ 𝐶 𝑗 = ∅ ∧ ¬∃ 𝑥𝑘 ∈ 𝑋 𝑠.𝑡. {𝑏𝑖 , 𝑏 𝑗 } ⊆ 𝑥𝑘 .

Property 3. The set of bids 𝜔 must satisfy all fairness constraints.

An example anti-monopoly fairness constraint might read “no bidder may win more than 5% of all space-time

cells”. If 𝜔𝑖 is the subset of 𝜔 submitted by bidder 𝛽𝑖 , this constraint may be expressed:

∀ bidders 𝛽𝑖 ,
∑︁

𝑏 𝑗 ∈𝜔𝑖

|𝐶 𝑗 | ≤ 0.05|𝐶 |.

Since a goal of this work is to study the effects of imposing fairness on an auction mechanism, we start by developing

an airspace auction with no fairness constraints, then specify 3 useful classes of fairness constraints that preserve its

theoretical properties. We call an airspace auction with fairness constraints an f-Airspace Auction.

Given auction state (𝐶′, 𝐵, 𝑋), let Ω(𝐶′, 𝐵, 𝑋) ⊆ 2𝐵 be the set of all sets of valid bids. Let the value 𝑣(𝜔) of a set

of bids 𝜔 be the sum of those bids’ values:

𝑣(𝜔) :=
∑︁
𝑏𝑖∈𝜔

𝑣𝑖 .

The winner determination function 𝑎𝑖𝑟 (𝐶′, 𝐵, 𝑋) selects a maximal value, valid set of bids.

𝑎𝑖𝑟 (𝐶′, 𝐵, 𝑋) ∈ argmax
𝜔∈Ω(𝐶′ ,𝐵,𝑋)

𝑣(𝜔)

Pricing. Once we have computed an provisional set of winning bids, we compute the provisional price that every bidder

has to pay for her winning bids. The airspace auction uses a Vickery-Clarke-Groves (VCG) pricing scheme, a pricing

scheme where a bidder is charged for the decrease in value that their presence causes other bidders. In other words, a

bidder 𝛽𝑖 is charged:

• the value of the set of bids that would have won if bidder 𝛽𝑖 had not bid

• minus the value of the set of bids submitted by other bidders 𝛽 𝑗 ≠ 𝛽𝑖 that did win.
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We now formalize our pricing scheme. Let bidder 𝛽𝑖’s

• set of bids and XOR constraints be 𝐵𝑖 and 𝑋𝑖

• set of winning bids be 𝑎𝑖𝑟𝑖 (𝐶, 𝐵, 𝑋) ⊆ 𝑎𝑖𝑟 (𝐶, 𝐵, 𝑋)

• valuation of her winning bids be 𝑎𝑖𝑟𝑣𝑖 (𝐶, 𝐵, 𝑋) := 𝑣(𝑎𝑖𝑟𝑖 (𝐶, 𝐵, 𝑋)).

Let 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) be the total value of the winning bids:

𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) := 𝑣(𝑎𝑖𝑟 (𝐶, 𝐵, 𝑋)) =
∑︁
𝑖

𝑎𝑖𝑟𝑣𝑖 (𝐶, 𝐵, 𝑋).

The price 𝑝𝑖 that bidder 𝛽𝑖 is charged is:

𝑝𝑖 := 𝑎𝑖𝑟𝑣(𝐶, 𝐵/𝐵𝑖 , 𝑋/𝑋𝑖) −
∑︁
𝑗≠𝑖

𝑎𝑖𝑟𝑣 𝑗 (𝐶, 𝐵, 𝑋).

Response. Finally, each bidder is sent her current set of winning bids and the current price that she is being charged for

them. A bidder can react to this information by placing new bids and increasing the price of her bids as long as the

airspace auction is open.

Querying the Current Price of a Flight Path.

The current price of a flight path is the minimum amount of money that a bidder has to bid on the flight path to

win it. Bidders will often want to inquire about the current price of a flight path before bidding on it, in order to avoid

needless effort. To meet this demand, we provide a service which allows bidders to query the price of any flight. This

service works as follows.

Let 𝑐𝑝(𝐶′, 𝐵, 𝑋) be the current price of a flight path 𝐶′ ⊆ 𝐶 in an auction with state (𝐶, 𝐵, 𝑋). We compute current

prices with the expression given in Theorem 1.

Theorem 1 If an auction is in the state (𝐶, 𝐵, 𝑋), the current price of a flight path 𝐶′ ⊆ 𝐶 is:

𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) − 𝑎𝑖𝑟𝑣(𝐶\𝐶′, 𝐵, 𝑋) + 𝜖 .

Proof. If an auction is in the state (𝐶, 𝐵, 𝑋), for a new bid (𝛽𝑖 , 𝐶′, 𝑣) on flight path 𝐶′ to win, the value of 𝑣 plus the

value 𝑎𝑖𝑟𝑣(𝐶\𝐶′, 𝐵, 𝑋) of the best set of winning bids that doesn’t overlap with 𝐶′ must be greater than the value of the

current best set of winning bids 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋), that is:

𝑎𝑖𝑟𝑣(𝐶\𝐶′, 𝐵, 𝑋) + 𝑣 > 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋).

The current price of 𝐶′, the minimum such value for 𝑣, is therefore 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) − 𝑎𝑖𝑟𝑣(𝐶\𝐶′, 𝐵, 𝑋) + 𝜖 . □
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Example Price Query. Fig. 3 (top) shows an example query on the price of the flight path {(2, 1), (2, 2), (3, 2)} in red.

The highest price valid set of bids which don’t contain these cells is {𝑏2} with price $4. The highest price valid set of

bids which do contain these cells is {𝑏1, 𝑏3} with price $7. The price of the flight path in red is therefore $3 + 𝜖 .

Requesting a Price Heatmap for a Region of Airspace

Ideally, the auction would allow a bidder to learn the current price of every flight path 𝐶′ ⊆ 𝐶. Unfortunately, there

are an exponential number of flight paths 𝐶′ ⊆ 𝐶. It is therefore computationally infeasible to compute the price of

every flight path. Instead, we provide a bidder with enough information to lower bound the current price of every flight

path that she is allowed to know about. Knowing the lower bound of each flight path allows a bidder to rule out flight

paths which are definitely out of her budget. She can then query the current price of any remaining flight path that she is

interested in. We enable a bidder to lower-bound the current price of any flight path by providing a price heatmap. A

price heatmap associates each cell 𝑐 ∈ 𝐶 with a lower bound on the current price of any path that includes that cell.

Example Price Heatmap. Figure 3 (bottom) shows a price heatmap for the example airspace auction. This price heatmap

associates the cell (0, 0) with the price $3, indicating that any flight path that contains cell (0, 0) has a current price of

at least $3.

Computing a Price Heatmap. What is a lower bound the current price of any cell 𝑐 ∈ 𝐶? We claim:

Theorem 2 For any airspace instance (𝐶, 𝐵, 𝑋), the current price of a flight plan 𝐶′ ⊆ 𝐶 is lower bounded by the

current price of any cell 𝑐 ∈ 𝐶′ in that flight path.

𝑐𝑝(𝐶′, 𝐵, 𝑋) ≥ max
𝑐∈𝐶′

𝑐𝑝({𝑐}, 𝐵, 𝑋).

We prove Theorem 2 with the following Lemma.

Lemma 3 If flight path 𝐷′ is a subset of flight path 𝐶′, the current price of 𝐷′ lower bounds the current price of 𝐶′.

𝐷′ ⊆ 𝐶′ ⇒ 𝑐𝑝(𝐷′, 𝐵, 𝑋) ≤ 𝑐𝑝(𝐶′, 𝐵, 𝑋).

Proof. If flight path 𝐷′ is a subset of flight path 𝐶′, the set of cells 𝐶/𝐷′ is a superset of the set of cells 𝐶/𝐶′. The set

of valid solutions Ω(𝐶/𝐷′, 𝐵, 𝑋) is therefore a superset of the the set of valid solutions Ω(𝐶/𝐶′, 𝐵, 𝑋). The highest

value solution in Ω(𝐶/𝐷′, 𝐵, 𝑋) is therefore at least as large as the highest value solution in Ω(𝐶/𝐶′, 𝐵, 𝑋), that is:

𝑎𝑖𝑟𝑣(𝐶/𝐷′, 𝐵, 𝑋) ≥ 𝑎𝑖𝑟𝑣(𝐶/𝐶′, 𝐵, 𝑋).

It follows that:
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𝑐𝑝(𝐷′, 𝐵, 𝑋) = 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) − 𝑎𝑖𝑟𝑣(𝐶\𝐷′, 𝐵, 𝑋) + 𝜖

≤ 𝑎𝑖𝑟𝑣(𝐶, 𝐵, 𝑋) − 𝑎𝑖𝑟𝑣(𝐶\𝐶′, 𝐵, 𝑋) + 𝜖

= 𝑐𝑝(𝐶′, 𝐵, 𝑋). □

Theorem 2 follows directly from Lemma 3.

Implementation and Evaluation
The airspace auction framework was implemented and evaluated on eight UAV delivery scenarios based on a JAXA

study [29]. The goal of this evaluation on a realistic experimental design was to evaluate the operational feasibility of

our auction mechanisms on realistic UAV delivery scenarios at differing density levels.

Implementation

The winner determination function 𝑎𝑖𝑟 (𝐶′, 𝐵, 𝑋) is implemented with the following ILP formulation. Let 𝑎𝑖 𝑗 denote

that cell 𝑐𝑖 ∈ 𝐶 is allocated to bid 𝑏 𝑗 and 𝑤 𝑗 denote that 𝑏 𝑗 is a winning bid. The value of the set of winning bids is

maximized:

max
∑︁
𝑏 𝑗 ∈𝐵

𝑤 𝑗 𝑝 𝑗 .

subject to the following constraints:

Constraint 1. A cell in 𝐶′ is allocated to at most one bid. A cell not in 𝐶′ is left unallocated:

∀ 𝑐𝑖 ∈ 𝐶,
∑︁
𝑏 𝑗 ∈𝐵

𝑎𝑖 𝑗 ≤


1 𝑐𝑖 ∈ 𝐶′

0 𝑐𝑖 ∉ 𝐶′

Constraint 2. A bid wins iff it is allocated every cell in its flight path:

∀ 𝑏 𝑗 ∈ 𝐵,

∑
𝑐𝑖∈𝐶 𝑗

𝑎𝑖 𝑗

|𝐶 𝑗 |
≥ 𝑤 𝑗

Constraint 3. At most one bid in each XOR constraint can win:

∀ 𝑥𝑘 ∈ 𝑋,
∑︁

𝑏 𝑗 ∈𝑥𝑘
𝑤 𝑗 ≤ 1

Code Base
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Fig. 4 A map of Sendai, Japan where drone hubs are colored white, hub delivery areas are colored blue, and
no-fly-zones are colored red.

Benchmark Hardware

We implemented the fl-airspace auction as a toolchain written in Python 3.11. The ILP formulation generated by

this toolchain was solved using the GurobiPy library, a Python wrapper for the Gurobi ILP solver [30]. Each evaluation

was performed on a 16 core, 3.2 MHz AMD Ryzen 7 5800h CPU with a 256 KiB Li1 Cache, a 4 MiB L2 Cache, a 16

MiB L3 Cache, 13.5 GiB of RAM and 512 GB of disk memory running a 64-bit version of Ubuntu 20.04.6 LTS.

Benchmark Scenarios

The scenarios take place in a 10km by 5km region of the city of Sendai, Japan. The region contains 6 small

no-fly-zones which protect public buildings such as Sendai Station. Our scenarios are based on two delivery hub layout

models presented in the JAXA study, Model 1 and Model 2, in order to demonstrate how locations of delivery hubs have

a significant impact on delivery efficiency by ground vehicles. Model 1 uses existing ground vehicle delivery hubs as

drone hubs, whereas in Model 2 public elementary and junior high schools are used as drone hubs.

In the model, each hub is associated with one of three operators, a daily mission quota, and a delivery area. Figure 4

depicts each hub in Model 2 with a white cross and the hub’s delivery area with a blue circle. No-fly-zones are depicted

as red polygons.

By Japanese law, a drone may not fly more than 150m above the ground. The JAXA study suggests drone separation

distances of 60m and 150m. We divide time into 3 minute intervals. We therefore consider scenarios with 150m ×

150m × 150m × 3 minute and 60m × 60m × 150m × 3 minute space-time cells. A grid of 150m × 150m × 150m × 3

minute space-time cells which share a time interval is shown in Figure 5. Gaps in the grid are depicted in black and
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Fig. 5 The set of 150m by 150m by 150m by 3 minutes space-time cells which share a time interval. A single hub
vertex is colored red. Vertices in the hub’s service area are colored grey

Table 1 The time required by airspace auction and f-airspace auction to solve the winner determination problem.

Model Cell Size (m) Period (hr) XOR Cn. Bids Cells in Bids Airspace Runtime (sec) f-Airspace Runtime (sec)
1 150 1 2239 7873 29046 19.3 -0.90 +0.80 44.32 -1.70 +2.2
1 150 2 4478 15603 58596 97.0 -3.45 +1.66 17.89 -0.54 +0.80
1 60 1 2239 8501 79486 109.04 -3.45 +1.66 32.69 -1.17 +0.89
2 150 1 2110 6619 22854 3.09 -0.05 +0.06 4.05 -0.10 +0.16
2 150 2 4220 13228 46696 9.54 -0.21 +0.40 11.9 -0.10 +0.10
2 150 4 8440 26421 93126 36.0 -2.10 +0.40 39.27 -0.62 +1.33
2 60 1 2110 7743 55426 6.77 -0.12 +0.10 13.17 -0.12 +0.13
2 60 2 4220 13228 46696 23.6 -1.40 +1.20 44.5 -2.79 +1.88

correspond to Sendai’s no-fly-zones. Hubs are positioned at the nearest cell to their true location and serve cells in their

delivery area. Figure 5 depicts the cell that one hub is positioned at in red and that hub’s service area in grey.

The JAXA study associates each hub with a daily number of missions. We conduct auctions for 1, 2, and 4 hour

periods and scale the number of missions flown out of each hub accordingly. Each mission flown out of a hub delivers a

package to a randomly chosen cell in that hub’s delivery area. The start time of a mission is chosen at random. We

generate 1-4 flight paths for each mission. Each flight path follows a shortest path connecting the mission’s hub and

delivery location. Flight path construction assumes that UAVs fly at 15 m/s, the flight speed of the Multirotor DJI

Metrice600. A bid is placed on each flight path valued at 100 Yen less the length of the flight path, that is, 100 − |𝐶′ |

Yen. The bids associated with each mission are added to that mission’s XOR constraint.

Table 1 shows the outcome of the experiments. Each row of the table shows the hub model, the cell size, the period

during which airspace is allocated, the numnber of XOR Constraints, the number of bids, the total number of cells the
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airspace being allocated, and the winner determination runtime for the two formulations. Each winner determination

function was run 5 times on eight scenarios. The f-airspace winner determination function was run using the example

fairness constraint.

Table 1 shows each winner determination function’s mean run time and run time range on each scenario. Each

scenario’s run times clustered within 10% of each other, suggesting high replicability. Model 1 had longer run times

than Model 2 because it had fewer and more densely packed hubs, resulting in more conflicts for the ILP solver to

resolve. The f-airspace auction took longer to run on the lower density scenarios due to its extra constraints but less long

to run on the higher density scenarios because these constraints disallowed difficult-to-find but high value solutions.

Both winner determination functions terminated in less than 2 minutes on every scenario suggesting that they are

feasible on real UTM scenarios. In summary, the results strongly suggest that winner determination can be achieved for

large problems in a matter of seconds, which should be reasonable in an operational setting. More experiments will be

conducted to further justify this claim.

Summary and Future Work
This paper has proposed a framework for strategic deconfliction of UTM airspace based on combinatorial auction

theory. Combinatorial auctions offer an efficient, safe and fair framework for allocating airspace in a federated operational

environment. Future work will seek to improve the framework by planning in continuous 4D volumes using geometric

constraints. We also plan to consider different ways to ensure fairness, as well and to explore ways of integrating

strategic and tactical approaches to deconfliction.
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