

Development of Aerodynamic Loads Databases for the Space Launch System Booster Separation Event

Michael Lee, Derek Dalle, Michael Sanders, Carole Addona

2024 AIAA SciTech Forum

This material is a work of the U.S. Government and is not subject to copyright protection in the United States

www.nasa.gov/sls

Multi-Input, Multi-Output

TSRB

TBSM

 $(\Delta x, \Delta y, \Delta z)$

 $(\Delta \psi, \Delta \theta, \Delta \phi)$

F&M

 (α_c, β_c)

symmetric

Ś.

F&M

 (q_{∞}, M_{∞})

F&M NASA

Lee et al.

SLS Booster Separation Aero Database

- Captures freestream, motor plume, and shock envelope effects
- Spans and informs broad separation trajectory window

Data Pipeline

and the second

Nominal Data Pipeline

www.nasa.gov/sls

Lee et al. | 5

FUN3D Simulations

Thousands of simulated points

 Steady RANS-SA

 Asymptotic or limit cycle iteration convergence

Perfect gas everywhere

- Engine temperature not matched
- Engine thrust matched via freestream ratios of pressure and temperature
 Engine mass flow matched
- Off-body mesh adaptation based on Mach number

13D Run Matrix Organization

- Original bounding run matrix sought to capture entire viable separation envelope
- Secondary Sobol sequence to more densely fill simulated trajectory window

Data Table Interpolation

Data Space Dimension Reduction

• Are the F&M outputs sensitive to all thirteen parameter inputs?

- 50 different times:
 - 1. Randomly assign 75% of CFD points as P_{train} and 25% as P_{test}
 - 75%-25% split done separately at each principal ΔX
 - 2. Interpolate from P_{train} in 13D and find $E_{ALL}(\Delta X) = rms \left| P_{all}^{ITP} P_{all}^{CFD} \right|$
 - 3. Interpolate from P_{train} in 12D and find $E_{LOO}(\Delta X) = rms \left| P_{all}^{ITP} P_{all}^{CFD} \right|$
 - Flatten each dimension once, except Euler angles
- Observe min/mean/max trends in $\Delta E(\Delta X) = |E_{ALL} E_{LOO}|$

Data Space Dimension Reduction

Order-ofmagnitude sensitivity comparison

thrusts T_{CSE}, T_{BSM} disregarded in data tables

and the second

Uncertainty Pipeline and Trajectory Simulations

www.nasa.gov/sls

Lee et al. | 11

Uncertainty Model

- Uncertainty captures differences between FUN3D and:
 - Alternative simulated plume physics
 - Multispecies plumes modeled with OVERFLOW
 - Physical full-configuration flow physics
 - LaRC UPWT test with air jet BSMs
 - Interpolated physics
 - Point dropout analysis in interior/exterior space
- Additive uncertainty model

 U_{tot}^{intr}

Trajectory Simulations: CLVTOPS

- Developed for multibody dynamic simulations
- Integrates aero database with many others
- Monte Carlo dispersions of separation trajectories

Summary

 Very complicated multibody fluid dynamics problem

Critical for SLS launch missions

Aerodynamic F&M database

 Captures relevant trajectory space
 Accounts for myriad uncertainties
 Informs trajectory simulations
 and ultimate mission efficacy

Development of Aerodynamic Loads Databases for the Space Launch System Booster Separation Event

Michael Lee, Derek Dalle, Michael Sanders, Carole Addona

2024 AIAA SciTech Forum

This material is a work of the U.S. Government and is not subject to copyright protection in the United States

www.nasa.gov/sls

Code-to-code Uncertainty

Compare FUN3D to OVERFLOW

- Key OVERFLOW differences
 - Overset surface mesh
 - Overset structured volume mesh
 - Multispecies engine plumes

- 99.7 percentile of F&M comparisons
 - Function of Δx
 - Dominated by few cases

Code-to-tunnel Uncertainty

- Langley Unitary Plan Wind Tunnel test 1891 (2014)
 - Boosters mounted on separate stings
 - BSMs represented as air jets
 - CSE/SRB engines not active
- BSM-on/off for low/high Δx UQ
 - More points than C2C
 - 99.7 percentile bounds

high Δx

Model Uncertainty

- Identical 50-trial 25%-dropout procedure
 99.7 percentile bound on test point interpolations
 - $-U_{mod} \leftarrow$ mean of 50 trials
- Calculated separately for exterior (bounding) points and interior (Sobol sequence) points

 Generally, U^{exterior}_{mod} > U^{interior}_{mod}

- Unnecessary penalty on interior (more relevant) data space

Model Uncertainty

