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Introduction

» Mars Ascent Vehicle (MAV) likely
largest indivisible payload
predeployed to Martian surface

 Entry, Descent, and Landing
limitations may make landing MAV
without ascent propellant
advantageous

« Options for strategies to acquire
ascent propellant prior to crew
arrival being studied
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Trade Space

* 75t payload capacity vertical lander
* Integrated ascent vehicle

 Cryogenic propellant (LOX/LCHA4)
—300 t cryo propellant required for MAV launch

 Propellant manufacturing using In-situ Resource Utilization technologies*
— Earth-delivered resources plus local resources
—Requires plentiful power

*Oleson, S., et. al, “Kiloton Class ISRU Systems for LOX/LCH4 Propellant Production on the Mars Surface,” AIAA SciTech Forum, Submitted for Publication, AIAA,
Orlando, FL, 2024.
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Concept of Operations
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Water delivery Mars Ascent and Landing Vehicles (MALVs) (Water-1 and
Water-2) arrive at first two opportunities
Payload remains quiescent

. i.e. no deployment activity
Some amount of housekeeping/heater power needed, unless payload
wateris allowed to freeze.

Cargo-1 MALV delivers 1x Mobility Transport Chassis, 5x 40 kW Fission Surface
Power (FSP) units and 1x Surface Water Transportation Pallet
Mobility Transport Chassis Deploys FSPs and cabling systems
FSPs provide power to Water MALVs
. Allows water to thaw if frozen

Water delivery MALVs deploy downcomer hose/mating system via elevator
Water transportation pallets aboard MT chassis alternate delivering 5t water
to ISRU plants
. Approx. 30 trips required
Estimated water consumption of ISRU plants is ~13kg/hr (approx. 16 Earth
days to empty tanker)
. Water Transportation Pallet pressurization maintained with local
atmosphere pressurized by small onboard scroll compressor
ISRU pallets have 1 sol water capacity onboard to allow for tanker swap.
Second water tanker on standby. Takes on water prior to switching operation.
. Fill rate of 4.5 kg/min to fill tanker within 1 sol period. (Goal to allow
tanker pallet failure contingency)



Concept of Operations (cont’d)
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MAYV ISRU operation MUST be
complete prior to crew landing
ISRU, cryocooler, and tanker
systems moved by mobility to safe
distance and placed in standby
mode for possible reuse.

Water-1, Water-2, and Cargo-1 are
abandonedin place.




Surface Water Transportation Pallet
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< 30QDs (water,

« Two pallets landed to support ISRU
operations

* 5m3tank pressurized with local
atmosphere via scroll compressor.

« Two hose management assemblies
(OSAM-1 derived) to mate to ISRU units.

— Water connection
— CO2 connection (to support leak checks)
— Power connection

 Dust Tolerant Automated Umbilical
connections at mating surfaces

* Electrical jack stands

* Carrier chassis interface common to all
pallets
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Water Transport Pallet Electrical System Block

Diagram
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is an option; for this case
physical connectors may
be preferred.
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Thermal Design
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Mobility Transport Chassis

» Two chassis landed to support surface

operations
Robot Arm (Sm « 7.1t estimated payload capacity
reach) _ _
Robot Arm * Manipulator arm adapted from Robotic
Chariot-derived Translation Umbilical Arm studied for fluid servicing
e Rail/Cart between Artemis pressurized rover and

surface habitat elements.

 Translation rail/cart analogous to ISS
Mobile Transporter

 Load/offload rail systemto enable pallet
deployment
Rail System
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Manipulator Arm

» Make/break connections between
various surface elements, O tached o bueint Tool Caddy
particularly the Water mobilitybasechassi On robot baseplate
Transportation Pallet and the ISRU
propellant plant.

* 5m reach + translation rall

* End effector toolkit for other
operations as needed

* Inspection/alignment camera at tip

Robotic Arm
Folded inthe
transportposition

Robotic Arm Linear Rails
Attached to Mobility
Base
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Load/Offload Rall System

Mobility Transporter (MT) Rail Concept:

2 Rails — hollow tubular structure
Rail end stop and
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Energetics

Water-1 to ISRU
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Water Delivery Lander

« Two Delivery MALVs landed to supply
water for ISRU

« Umbilical hose passively deployed via reel
assembly by lowering MALYV elevator

75m? Water — Water connection
Tank

— CO2 connection (to support leak
checks)
ilical H I
Umbilical Hose — Power connection
. Umbilical Hose « DTAU connection at umbilical interface
L plate

MALYV Elevator

Strategy & Architecture Office



Water Delivery Lander Thermal Analysis
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Technological Needs

« Systems would operate in a Martian environment and would be critical for
successful crew return for an ISRU-based return architecture

— System reliability
— Fault detection, isolation, and recovery
—Repeated, reliable umbilical mating/demating

— Autonomous robotics/operations
o Autonomous navigation, path planning, and maneuvering
o Autonomous task processing and scheduling
o Autonomous manipulator system operations
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Concept Animation
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Questions?
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