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e Magnus Svard put forth an argument for an alternative set of
governing equations for fluid flow

e This derivation is done entirely using diffusion from an Eulerian
perspective

e This set of governing equations allows for arguments of
well-posedness and existence of solutions

e The result is that the viscous flux has only normal terms and it was
believed this would lead to a simpler viscous dissipation matrix and
hyperbolic diffusion system.

e In this work, | compare a typical edge-based finite-volume diffusion
discretization and a hyperbolic diffusion discretization
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Governing Equations and Discretization

We are considering a 2D unsteady hyperbolic system defined as:

ou  OF, Of,
E—FE—FE_S(XL)@t)v (1)

solved on a representative 2D grid.




g Equations and Discretization

We then transform them to the space-time as follows:

ou of, of,
42X Y = 2
0z  9Ox Oy e (2)

solved on the extruded space-time grid below.




Governing Equations and Discretization: Navier Stokes

Compressible NS equations:

8t,0+ Vx ° (pV) =0
Oe(pv) + Vy - (pv@V) = —Vup + Vi - 7 (3)
Ot(E)+ Vx-(Ev+pv) =Vys-(1v) — Vs -q

where t is the physical time.

The viscous stress tensor T is given by

T %u(vx V) 1 (Ve + (Vev) ) (4)



Governing Equations and Discretization: Hyperbolic Navier

Stokes

Compressible HNS equations:

Orp+ 0tp+ Vx - (pv) = Vi - (v4r)
9-(pv) + 9e(pv) + div(pv®v) = —Vyp + Vi - (11 7)

0-(pE) + 0:(pE) + Vi« - (ovH) = Vi - (uy7V) + Vi - (’y(’yﬂhl)h> (5)

T,0.r =Vyp—r
Tvarg = vxv — 8
Tho-h =V T —h

where 7 is a pseudotime variable, and 7 = —3tr(g)l + 3 (g +g7),

4p Y
Tr = T TV = v T = —h r = V4/3Mo(: v — S
s o h 7 4 it y U 307 Vh pPr’ (6)



Governing Equations and Discretization: Hyperbolic Navier

Stokes

Compressible HNS equations:

0rp+ 0tp+ Vx - (pv) = Vi - (/1)
0 (pv) + 0¢(pv) + div(pv@v) = —=Vep + Vi - (1,7)

0r(pE) + 0:(pE) + V- (owH) = Vy - (11,7V) + Vy - (7(7‘”1)0 -

T,0:r =Vyp—r
T,0,g=Vyv—g
Th0-h =V T —h

where 7 is a pseudotime variable, and 7 = —3tr(g)l + 3 (g +g7),

v v h 4/3 4p gl
Ih=—T,=— Th=—", v = V,”,',,M\,al/v =5 Vh=

v, Ry Vh 3p

pPr’ (8)



Governing Equations and Discretization: Svard-Eulerian equa-

tions

Svard's Eulerian equations:

0
5? + Vi - (pv) = Vi - (vVip),
0
6%" + Vi - (pv @ V) + Vyp = Vi - (vVypv),
aa—f—‘rvx-(EV-l-pV) :Vx'(vaE)‘va (kVT), (9)

p=pRT,
v =at 45, T)



Governing Equations and Discretization: Svard-Eulerian equa-

tions

Svard's Eulerian equations:

% + Vy - (pv) = Vy - (1V5p),
% + Vx - (pv @ V) + Vyp = Vi - (¥Vyxpv),
g—f+vx-(Ev+pv):Vx~(VVxE), (10)
p=pRT,

V= a% +B(p, T).



Governing Equations and Discretization: Hyperbolic Eulerian

Flow

Compressible HEF equations:

O0-p+ 0tp+ Vi - (pv) = Vi - (vr)
0-(pv) + 9¢(pv) + div(pv@v) = —Vyp + Vy - v (vr + pg)
Or(pE) + 0c(pE) + Vx - (pvH) = Vi - (vk)
T,0-r =Vyp—r
T,0,g=Vxv—g
Tho k = V4E —k

(11)

where 7 is a pseudotime variable and

_ 4
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Governing Equations and Discretization: Hyperbolic Eulerian

Flow

Compressible HEF equations:

Orp+ 0ep+ Vx - (pv) = Vi - (1)
9-(pv) + O(pv) + div(pv@v) = —Vyp + Vi - v (vr + pg)
Or(pE) + 0c(pE) + Vx - (pvH) = Vi - (k)
T,0.r =Vyp—r
T,0,g=Vyyv—g
Th0-k = ViE — k

(13)

where 7 is a pseudotime variable and
L2
Tr — Tv — Th =—h (14)

v
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Governing Equations and Discretization: Residual

We discretize the governing equations on a tetrahedral grid where the
residual at node j is defined as:

> SuAu=s(x. 5 2), (15)
ke{ki}
where @ is the numerical flux and Aj is the directed area vector on the
edge that connects nodes j and k.

k

Stencil for the edge-based (EB) discretization, showing
the directed area vector on edge jk 12



Governing Equations and Discretization: Reconstruction

We extend this to be 2"¥-order accurate using the U-MUSCL scheme

w, = Hw +(1-k) {wj + ijLSQ - (xk — Xj):| . (16)
w; +w
WR JTk +(1-r) {wk = Vw,ﬁSQ (xk — xj)} , (17
with K = %

13



g Equations and Discretization: Fluxes

The numerical flux is defined as:
®p = OR|(x, By + OFF| (R, )| + TR, (18)

where the norm njy = (ny, ny,, n¢) is normalized in space-time as

A = nj/[nj| = (Pix, Ay, fr).

14
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The numerical flux is defined as:

®p = OR|(x, By + OFF| (R, )| + TR, (18)
where the norm njy = (ny, ny,, n¢) is normalized in space-time as
Aje = nji/[nj| = (P, Ay, ).

We use a” notation to indicate normalization in space or time alone. For
space this is:

ﬁ _ ﬁXy _ (ﬁx’ ﬁ)’) _ (ﬁxv ﬁy) (19)
Xy — ~ - ~ ~ - b
g Ay | |(Px, Ay)| A2 + ﬁ}2/

14



Governing Equations and Discretization: Fluxes

The numerical flux is defined as:

®p = OR|(x, By + OFF| (R, )| + TR, (18)
where the norm njy = (ny, ny,, n¢) is normalized in space-time as
Aje = nji/[nj| = (P, Ay, ).

We use a” notation to indicate normalization in space or time alone. For
space this is:

ﬁxy _ r:le — (f’x’?)’) _ (ﬁx,ﬁy) ’ (19)
Ay | |(Px, Ay )| 2+ ﬁ}%
and for time it is: .
A ne
ny = T To 20
t |nt| ( )
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Governing Equations and Discretization: Fluxes

We use Roe’s flux for the invisicid flux

invil

i = 5 [ (wi) + €7 (we)] % [A™ (wi, we)| (ur —ur),  (21)
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invil
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an upwind temporal flux

, 1 N n
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Governing Equations and Discretization: Fluxes

We use Roe’s flux for the invisicid flux

) 1. ) 1, .
J’.ZV = E [f’nv(WL) + fmv(WR)] — E ‘A’HV(WL,WR)| (UR — l,l[_), (21)
an upwind temporal flux

, 1 N n
®ime = 5 [ur + u] A - % (ug —uyp), (22)

and use an upwind flux for the viscous flux making it hyperbolic

vis __

w = [fv"S(WL)+fV"S(wR)]—%}AV’S(wLawR)\(UR—ud (23)

N~
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Governing Equations and Discretization: Fluxes

We use the HNS20G formulation for both the NS and EF equation
viscous fluxes, for NS this is:

0
— My [;xx;\’x + ’Fyxﬁy]
—Hv [?xyﬁx + 7N'yyﬁy]
& o hy A = h A
—ue (R + sy ) b+ (B -+ 5l ) )

o3 = —ey (24)

16



Governing Equations and Discretization: Fluxes

In contrast, the HEF flux is:

¢vis _ —pny

Where we define the following variables uxn = uyhy + uyhy,
Vel = Ve + vy Ry, ren = ey + 1,0y, Eqn = Exhy + E Dy

17



Governing Equations and Discretization: Dissipation

By diagonalizing the matrix and using the local preconditioning approach
we get a dissipation matrix of the form:

av 0 0
O unx2 vnxny
|PA| = 0 un?:vxy V‘;;Z (26)
av av
where av =, /<. Note that this (reduced) matrix is block diagonal.

Additionally, it lacks the additional dissipation vectors HNS20G requires
to maintain strong coupling for design-order accurate computation of the
velocity gradients.

18



Verification




Verification: Exponential Solution

We used the method of manufactured solutions (MMS) with an
exponential solution to calculate the truncation and discretization errors.
The solution is:

a = ag + ascaleexp(axx + a,y + a;t), (27)

and the parameters to define it are below.

variable | ag | ascale EM ay as
P .5 1.0 | 0.525 | 0.550 | 0.575
u 1 0.1 0.125 | 0.150 | 0.175
v 2 0.2 0.225 | 0.250 | 0.275
p 4 | 0.714 | 0.425 | 0.450 | 0.475

Parameters used to define the exact solution.

19



Verification: Exponential Solution

(a) Coarsest perturbed mesh (b) Solution on coarsest mesh

Example mesh and solution.
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Verification: Exponential Solution Discretization Error

Convergence of Discretization Error on Domain Convergence of Discretization Error on Domain

Variables. o Variables
—
-25 — )
- —— xvelocity = —— xvelocity
g —— yvelocity g —— yvelocity
5 0 pressure I —— pressure
g — £ ~h
2 s > 07 order g -0
g 4 Torder £ —
s —— 2 order 2 -
2 a0 3 — v
£
£ 54 -y
g 45 & —~ T
g g -1
g g
< 50 < s — al
—= 07 order
4 torder
)
o P P a 2 20 1s B En 12 e 2¢order
log10(effective clement size) log10leffective element size)

(a) Alpha damping discretization error con- (b) HEF discretization error convergence
vergence

Discretization error convergence.
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Verification: Exponential Solution

(a) LSQ(ux) on a 323-node grid. (b) gux(= ux) on a 323-node grid.

Gradient calculation on arbitrary perturbed mesh
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Results: Boundary Layer Solution

e We used the FUN3D sketch to solution framework (combining
EGADS, refine, and ruby scripts).
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Results: Boundary Layer Solution

e We used the FUN3D sketch to solution framework (combining
EGADS, refine, and ruby scripts).

e This entailed 10 adaptation cycles with mesh size doubling every
other iteration.

e The Mach Hessian metric computed by refine off the alpha-damping
viscous discretization

e The final HEF results shown are from solving the hyperbolic
equations on the final adapted mesh
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Results: Boundary Layer Solution

The exact solution is defined by:

1.0 0.1
1.0 1.0 R(z2)
Wexact = - eXP(*U)» n=y P (28)
"] 01 0.1 x—0.2

1.0 0.1
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Results: Boundary Layer Solution

The exact solution is defined by:

1.0 0.1
1.0 1.0 R(z)
Wexact = - eXP(*U)» n=y P (28)
"] 01 0.1 x—0.2
1.0 0.1

where R(z) is a time-dependent parameter defined by

R(z) = 10° [1 + 0.75sin(47z)] . (29)
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Results: Boundary Layer Solution - Mesh and Solution
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(a) Grid. (b) X-velocity contours.

Grid and solution for MMS boundary layer test case.
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Results: Bounda radient Comparison

0
0.2 04 0.6 08 1 0.2 0.4 06 08 1

(a) Alpha: LSQ(uy) at z = 0.619. (b) HNS: gy, at z = 0.619.

Wall normal gradient contours on XY plane for z = 0.619
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Results: Boundary Layer Solution - Gradient Comparison

(a) Alpha: LSQ(uy) at y = 0. (b) HNS: gyy at y = 0.

Wall normal gradient contours on XZ plane for y = 0.0
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Results: Boundary Layer Solution - Time to Solution Compari-

son

Alpha (energy eq.)
HEF (energy eq.)

Alpha (energy eq.)
HEF (energy eq.)

esidual Norms
<
T

xi0"
107
1 1 1 1 1 1 10" 1 1 1 1 i 1
100 200 300 400 500 600 700 50 100 150 200 250 300 350 400
Iteration Wall Time
(a) Iterations to solution (b) CPU time to soluion

Comparison of CPU time and iterations to convergence for boundary layer
MMS.
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Results: Infinite Cylinder

e Infinite cylinder in M = 0.2, Re = 200 crossflow.

e Once again, used the FUN3D sketch to solution framework.
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Results: Infinite Cylinder

Infinite cylinder in M = 0.2, Re = 200 crossflow.

Once again, used the FUN3D sketch to solution framework.

This entailed 18 adaptation cycles with mesh size doubling every

four iterations.
e The Mach Hessian metric computed by refine

We look at the 13" mesh (26.5M nodes) and compare the results of
HEF discretization to those of the alpha-damping one.
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Results: Infinite Cylinder - Solution Evolution

Solution for 13" spatiotemporal triangulation
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Results: Infinite Cylinder - Comparison of Lift Coefficient

Lift Coefficient

0.00
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— Total
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Time.

(a) Alpha damping.

Lift coefficient

Lift Coefficient

0.00

-0.25

-0.50

-0.75

-1.00

VS.

~-- Pressure Contribution

—-= Viscous Contribution

—— Total

o 50 100 150 200 250 300
Time

time

31



Results: Infinite Cylinder - Comparison of Drag Coefficient

14 14 T
\
\
2 , A A 12 R i, . A
S ANANAARAN AR AN \ L ANANNANAN AR AN
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Time Time

(a) Alpha damping. (b) HEF.

Drag coefficient vs. time
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Results: Infinite Cylinder - Comparison of Engineering Coeffi-

cients

St CLyms CD, .,
reference 0.1957 | 0.4244 | 1.3365
NS values | 0.1961 | 0.4941 | 1.3376
EF values | 0.1964 | 0.4991 | 1.3699

HEF values | 0.1969 | 0.4986 | 1.3697

Comparison of engineering quantities to reference values.
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Results: Infinite Cylinder - Comparison of Normal Gradient of

x-velocity

(a) LSQ gradient. (b) HEF gradient.

Normal gradient on cylinder surface.
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Results: Infinite Cylinder - Comparison of Time to Solution

Alpha (energy eq.)
HEF (energy eq.)

Alpha (energy eq.)
HEF (energy eq.)

Residual Norms
Residual Norms

NI BRI TN B M N —
1000 2000 3000 4000 10000 20000 30000
Iteration Wall Time
(a) Iterations to solution (b) CPU time to soluion

Comparison of CPU time and iterations to convergence for boundary layer

MMS.
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Conclusions and Future Work: Conclusions

e Implemented Svard’s Eulerian governing equations and showed
computations for highly skewed /anisotropic meshes
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Conclusions and Future Work: Conclusions

e Implemented Svard’s Eulerian governing equations and showed
computations for highly skewed /anisotropic meshes

e Verified these results with MMS and compared with NS
discretizations

e Demonstrated that the HEF solver is faster in time to solution than
the alpha-damping solver and has better accuracy in the gradients

e The HEF discretization has a simpler viscous dissipation matrix
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Conclusions and Future Work: Future Work

e Implement the equations in 3 physical dimensions and benchmark on
realistic configurations.
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Conclusions and Future Work: Future Work

e Implement the equations in 3 physical dimensions and benchmark on
realistic configurations.

e High-order finite-volume/difference schemes with one flux per edge
due to the lack of tangent terms in the viscous fluxes.
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