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Background/Motivation

• Magnus Svard put forth an argument for an alternative set of

governing equations for fluid flow

• This derivation is done entirely using diffusion from an Eulerian

perspective

• This set of governing equations allows for arguments of

well-posedness and existence of solutions

• The result is that the viscous flux has only normal terms and it was

believed this would lead to a simpler viscous dissipation matrix and

hyperbolic diffusion system.

• In this work, I compare a typical edge-based finite-volume diffusion

discretization and a hyperbolic diffusion discretization
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Governing Equations and Discretization

We are considering a 2D unsteady hyperbolic system defined as:

∂u

∂t
+

∂fx
∂x

+
∂fy
∂y

= s(x , y , t), (1)

solved on a representative 2D grid.

X

Y

Z

Representative two dimensional grid.
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Governing Equations and Discretization

We then transform them to the space-time as follows:

∂u

∂z
+

∂fx
∂x

+
∂fy
∂y

= s(x , y , z), (2)

solved on the extruded space-time grid below.

Y

X

Z

Time

Representative space-time grid, z is time.

4



Governing Equations and Discretization: Navier Stokes

Compressible NS equations:

∂tρ+∇x · (ρv) = 0

∂t(ρv) +∇x · (ρv⊗v) = −∇xp +∇x · τ
∂t(E ) +∇x · (Ev + pv) = ∇x · (τv)−∇x · q

(3)

where t is the physical time.

The viscous stress tensor τ is given by

τ = −2

3
µ(∇x · v)I+ µ

(
∇xv + (∇xv)

T
)
. (4)
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Governing Equations and Discretization: Hyperbolic Navier

Stokes

Compressible HNS equations:

∂τρ+ ∂tρ+∇x · (ρv) = ∇x · (νr r)
∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −∇xp +∇x · (µv τ̃)

∂τ (ρE ) + ∂t(ρE ) +∇x · (ρvH) = ∇x · (µv τ̃v) +∇x ·
(

µh

γ(γ − 1)
h

)
Tr∂τ r = ∇xρ− r

Tv∂τg = ∇xv − g

Th∂τh = ∇xT − h

(5)

where τ is a pseudotime variable, and τ̃ = − 1
2 tr(g)I+

3
4

(
g + gT

)
,

Tr =
L2r
νr

, Tv =
L2v
νv

, Th =
L2h
νh

, νr = V
4/3
min M∞, νv =

4µ

3ρ
, νh =

γµ

ρPr
, (6)
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Governing Equations and Discretization: Svard-Eulerian equa-

tions

Svard’s Eulerian equations:

∂ρ

∂t
+∇x · (ρv) = ∇x · (ν∇xρ),

∂ρv

∂t
+∇x · (ρv ⊗ v) +∇xp = ∇x · (ν∇xρv),

∂E

∂t
+∇x · (Ev + pv) = ∇x · (ν∇xE ) +∇x · (κ∇xT ),

p = ρRT ,

ν = α
µ

ρ
+ β(ρ,T ).

(9)
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Governing Equations and Discretization: Hyperbolic Eulerian

Flow

Compressible HEF equations:

∂τρ+ ∂tρ+∇x · (ρv) = ∇x · (νr)
∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −∇xp +∇x · ν (vr + ρg)

∂τ (ρE ) + ∂t(ρE ) +∇x · (ρvH) = ∇x · (νk)
Tr∂τ r = ∇xρ− r

Tv∂τg = ∇xv − g

Th∂τk = ∇xE − k

(11)

where τ is a pseudotime variable and

Tr = Tv = Th =
L2h
ν

(12)
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Governing Equations and Discretization: Residual

We discretize the governing equations on a tetrahedral grid where the

residual at node j is defined as:∑
k∈{kj}

ΦjkAjk = s(xj , yj , zj), (15)

where Φjk is the numerical flux and Ajk is the directed area vector on the

edge that connects nodes j and k .

k

j

nr
jk

nℓ
jk

Stencil for the edge-based (EB) discretization, showing

the directed area vector on edge jk 12



Governing Equations and Discretization: Reconstruction

We extend this to be 2nd -order accurate using the U-MUSCL scheme

wL = κ
wj +wk

2
+ (1− κ)

[
wj +∇wLSQ

j · (xk − xj)
]
, (16)

wR = κ
wj +wk

2
+ (1− κ)

[
wk −∇wLSQ

k · (xk − xj)
]
, (17)

with κ = 1
2 .
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Governing Equations and Discretization: Fluxes

The numerical flux is defined as:

Φjk = Φinv
jk |(ˆ̂nx , ˆ̂ny )|+Φvis

jk |(ˆ̂nx , ˆ̂ny )|+Φtime
jk |ˆ̂nt |, (18)

where the norm njk = (nx , ny , nt) is normalized in space-time as

n̂jk = njk/|njk | = (n̂x , n̂y , n̂t).

We use aˆ̂notation to indicate normalization in space or time alone. For

space this is:

ˆ̂nxy =
n̂xy
|n̂xy |

=
(n̂x , n̂y )

|(n̂x , n̂y )|
=

(n̂x , n̂y )√
n̂2x + n̂2y

, (19)

and for time it is:

ˆ̂nt =
n̂t
|n̂t |

. (20)
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Governing Equations and Discretization: Fluxes

We use Roe’s flux for the invisicid flux

Φinv
jk =

1

2

[
f inv (wL) + f inv (wR)

]
− 1

2

∣∣Ainv (wL,wR)
∣∣ (uR − uL) , (21)

an upwind temporal flux

Φtime
jk =

1

2
[uL + uR ] ˆ̂nt −

|ˆ̂nt |
2

(uR − uL) , (22)

and use an upwind flux for the viscous flux making it hyperbolic

Φvis
jk =

1

2

[
fvis(wL) + fvis(wR)

]
− 1

2

∣∣Avis(wL,wR)
∣∣ (uR − uL) (23)
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Governing Equations and Discretization: Fluxes

We use the HNS20G formulation for both the NS and EF equation

viscous fluxes, for NS this is:

ϕvis
jk =



0

−µv [τ̃xx ˆ̂nx + τ̃yx ˆ̂ny ]

−µv [τ̃xy ˆ̂nx + τ̃yy ˆ̂ny ]

−µv

[(
⃗̃τx u⃗ + µhhx

γ(γ−1)

)
ˆ̂nx +

(
⃗̃τy u⃗ +

µhhy
γ(γ−1)

)
ˆ̂ny
]

−ρˆ̂nx
−ρˆ̂ny
−uˆ̂nx
−uˆ̂ny
−v ˆ̂nx
−v ˆ̂ny
−T ˆ̂nx
−T ˆ̂ny



(24)
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Governing Equations and Discretization: Fluxes

In contrast, the HEF flux is:

ϕvis
jk =



−ν(rxn)

−ν [ρ(uxn) + (rxn)u]

−ν [ρ(vxn) + (rxn)v ]

−ν(Exn)

−ρˆ̂nx
−ρˆ̂ny
−uˆ̂nx
−uˆ̂ny
−v ˆ̂nx
−v ˆ̂ny
−E ˆ̂nx
−E ˆ̂ny



(25)

Where we define the following variables uxn = ux ˆ̂nx + uy ˆ̂ny ,

vxn = vx ˆ̂nx + vy ˆ̂ny , rxn = rx ˆ̂nx + ry ˆ̂ny , Exn = Ex ˆ̂nx + Ey ˆ̂ny .
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Governing Equations and Discretization: Dissipation

By diagonalizing the matrix and using the local preconditioning approach

we get a dissipation matrix of the form:

|PA| =


aν 0 0

0 νnx2

aν
νnxny
aν

0 νnxnxy
aν

νny2

aν

... ... ...

 (26)

where aν =
√

ν
Th
. Note that this (reduced) matrix is block diagonal.

Additionally, it lacks the additional dissipation vectors HNS20G requires

to maintain strong coupling for design-order accurate computation of the

velocity gradients.

18
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Verification: Exponential Solution

We used the method of manufactured solutions (MMS) with an

exponential solution to calculate the truncation and discretization errors.

The solution is:

a = a0 + ascaleexp(axx + ayy + att), (27)

and the parameters to define it are below.

variable a0 ascale ax ay at
ρ .5 1.0 0.525 0.550 0.575

u .1 0.1 0.125 0.150 0.175

v .2 0.2 0.225 0.250 0.275

p .4 0.714 0.425 0.450 0.475

Parameters used to define the exact solution.
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Verification: Exponential Solution

(a) Coarsest perturbed mesh (b) Solution on coarsest mesh

Example mesh and solution.
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Verification: Exponential Solution Discretization Error

(a) Alpha damping discretization error con-

vergence

(b) HEF discretization error convergence

Discretization error convergence.
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Verification: Exponential Solution

(a) LSQ(ux ) on a 323-node grid. (b) gux (= ux ) on a 323-node grid.

Gradient calculation on arbitrary perturbed mesh
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Results: Boundary Layer Solution

• We used the FUN3D sketch to solution framework (combining

EGADS, refine, and ruby scripts).

• This entailed 10 adaptation cycles with mesh size doubling every

other iteration.

• The Mach Hessian metric computed by refine off the alpha-damping

viscous discretization

• The final HEF results shown are from solving the hyperbolic

equations on the final adapted mesh
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Results: Boundary Layer Solution

The exact solution is defined by:

wexact =


1.0

1.0

0.1

1.0

−


0.1

1.0

0.1

0.1

 exp(−η), η = y

√
R(z)

x − 0.2
, (28)

where R(z) is a time-dependent parameter defined by

R(z) = 105 [1 + 0.75 sin(4πz)] . (29)
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Results: Boundary Layer Solution - Mesh and Solution

(a) Grid. (b) X -velocity contours.

Grid and solution for MMS boundary layer test case.
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Results: Boundary Layer Solution - Gradient Comparison

(a) Alpha: LSQ(uy ) at z = 0.619. (b) HNS: guy at z = 0.619.

Wall normal gradient contours on XY plane for z = 0.619
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Results: Boundary Layer Solution - Gradient Comparison

(a) Alpha: LSQ(uy ) at y = 0. (b) HNS: guy at y = 0.

Wall normal gradient contours on XZ plane for y = 0.0

27



Results: Boundary Layer Solution - Time to Solution Compari-

son

Iteration

R
e

s
id

u
a

l 
N

o
rm

s

100 200 300 400 500 600 700
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­13
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10
­11

10
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10
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Alpha (energy eq.)

HEF (energy eq.)

(a) Iterations to solution

Wall Time

R
e

s
id

u
a

l 
N

o
rm

s

50 100 150 200 250 300 350 400
10

­13

10
­12

10
­11

10
­10

10
­9

10
­8

10
­7

Alpha (energy eq.)

HEF (energy eq.)

(b) CPU time to soluion

Comparison of CPU time and iterations to convergence for boundary layer

MMS.
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Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29



Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29



Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29



Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29



Results: Infinite Cylinder - Solution Evolution

Solution for 13th spatiotemporal triangulation
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Results: Infinite Cylinder - Comparison of Lift Coefficient

(a) Alpha damping. (b) HEF.

Lift coefficient vs. time
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Results: Infinite Cylinder - Comparison of Drag Coefficient

(a) Alpha damping. (b) HEF.

Drag coefficient vs. time
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Results: Infinite Cylinder - Comparison of Engineering Coeffi-

cients

St cLrms cDavg

reference 0.1957 0.4244 1.3365

NS values 0.1961 0.4941 1.3376

EF values 0.1964 0.4991 1.3699

HEF values 0.1969 0.4986 1.3697

Comparison of engineering quantities to reference values.
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Results: Infinite Cylinder - Comparison of Normal Gradient of

x-velocity

(a) LSQ gradient. (b) HEF gradient.

Normal gradient on cylinder surface.
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Results: Infinite Cylinder - Comparison of Time to Solution

Iteration
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(a) Iterations to solution

Wall Time

R
e

s
id

u
a

l 
N

o
rm

s

10000 20000 30000

10
­5

10
­4

10
­3

10
­2

10
­1

Alpha (energy eq.)

HEF (energy eq.)

(b) CPU time to soluion

Comparison of CPU time and iterations to convergence for boundary layer

MMS.
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Conclusions and Future Work: Conclusions

• Implemented Svard’s Eulerian governing equations and showed

computations for highly skewed/anisotropic meshes

• Verified these results with MMS and compared with NS

discretizations

• Demonstrated that the HEF solver is faster in time to solution than

the alpha-damping solver and has better accuracy in the gradients

• The HEF discretization has a simpler viscous dissipation matrix
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Conclusions and Future Work: Future Work

• Implement the equations in 3 physical dimensions and benchmark on

realistic configurations.

• High-order finite-volume/difference schemes with one flux per edge

due to the lack of tangent terms in the viscous fluxes.
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