
Finite-Volume Diffusion Schemes for Svard’s

Eulerian Governing Equations

Emmett Padway

January 10th, 2024

NASA Langley Research Center

Outline

• Background/motivation

• Governing equations and discretization

• Verification

• Results

• Conclusions and future work

1

Outline

• Background/motivation

• Governing equations and discretization

• Verification

• Results

• Conclusions and future work

1

Outline

• Background/motivation

• Governing equations and discretization

• Verification

• Results

• Conclusions and future work

1

Outline

• Background/motivation

• Governing equations and discretization

• Verification

• Results

• Conclusions and future work

1

Outline

• Background/motivation

• Governing equations and discretization

• Verification

• Results

• Conclusions and future work

1

Background/Motivation

• Magnus Svard put forth an argument for an alternative set of

governing equations for fluid flow

• This derivation is done entirely using diffusion from an Eulerian

perspective

• This set of governing equations allows for arguments of

well-posedness and existence of solutions

• The result is that the viscous flux has only normal terms and it was

believed this would lead to a simpler viscous dissipation matrix and

hyperbolic diffusion system.

• In this work, I compare a typical edge-based finite-volume diffusion

discretization and a hyperbolic diffusion discretization

2

Background/Motivation

• Magnus Svard put forth an argument for an alternative set of

governing equations for fluid flow

• This derivation is done entirely using diffusion from an Eulerian

perspective

• This set of governing equations allows for arguments of

well-posedness and existence of solutions

• The result is that the viscous flux has only normal terms and it was

believed this would lead to a simpler viscous dissipation matrix and

hyperbolic diffusion system.

• In this work, I compare a typical edge-based finite-volume diffusion

discretization and a hyperbolic diffusion discretization

2

Background/Motivation

• Magnus Svard put forth an argument for an alternative set of

governing equations for fluid flow

• This derivation is done entirely using diffusion from an Eulerian

perspective

• This set of governing equations allows for arguments of

well-posedness and existence of solutions

• The result is that the viscous flux has only normal terms and it was

believed this would lead to a simpler viscous dissipation matrix and

hyperbolic diffusion system.

• In this work, I compare a typical edge-based finite-volume diffusion

discretization and a hyperbolic diffusion discretization

2

Background/Motivation

• Magnus Svard put forth an argument for an alternative set of

governing equations for fluid flow

• This derivation is done entirely using diffusion from an Eulerian

perspective

• This set of governing equations allows for arguments of

well-posedness and existence of solutions

• The result is that the viscous flux has only normal terms and it was

believed this would lead to a simpler viscous dissipation matrix and

hyperbolic diffusion system.

• In this work, I compare a typical edge-based finite-volume diffusion

discretization and a hyperbolic diffusion discretization

2

Background/Motivation

• Magnus Svard put forth an argument for an alternative set of

governing equations for fluid flow

• This derivation is done entirely using diffusion from an Eulerian

perspective

• This set of governing equations allows for arguments of

well-posedness and existence of solutions

• The result is that the viscous flux has only normal terms and it was

believed this would lead to a simpler viscous dissipation matrix and

hyperbolic diffusion system.

• In this work, I compare a typical edge-based finite-volume diffusion

discretization and a hyperbolic diffusion discretization

2

Governing Equations and

Discretization

Governing Equations and Discretization

We are considering a 2D unsteady hyperbolic system defined as:

∂u

∂t
+

∂fx
∂x

+
∂fy
∂y

= s(x , y , t), (1)

solved on a representative 2D grid.

X

Y

Z

Representative two dimensional grid.

3

Governing Equations and Discretization

We then transform them to the space-time as follows:

∂u

∂z
+

∂fx
∂x

+
∂fy
∂y

= s(x , y , z), (2)

solved on the extruded space-time grid below.

Y

X

Z

Time

Representative space-time grid, z is time.

4

Governing Equations and Discretization: Navier Stokes

Compressible NS equations:

∂tρ+∇x · (ρv) = 0

∂t(ρv) +∇x · (ρv⊗v) = −∇xp +∇x · τ
∂t(E) +∇x · (Ev + pv) = ∇x · (τv)−∇x · q

(3)

where t is the physical time.

The viscous stress tensor τ is given by

τ = −2

3
µ(∇x · v)I+ µ

(
∇xv + (∇xv)

T
)
. (4)

5

Governing Equations and Discretization: Hyperbolic Navier

Stokes

Compressible HNS equations:

∂τρ+ ∂tρ+∇x · (ρv) = ∇x · (νr r)
∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −∇xp +∇x · (µv τ̃)

∂τ (ρE) + ∂t(ρE) +∇x · (ρvH) = ∇x · (µv τ̃v) +∇x ·
(

µh

γ(γ − 1)
h

)
Tr∂τ r = ∇xρ− r

Tv∂τg = ∇xv − g

Th∂τh = ∇xT − h

(5)

where τ is a pseudotime variable, and τ̃ = − 1
2 tr(g)I+

3
4

(
g + gT

)
,

Tr =
L2r
νr

, Tv =
L2v
νv

, Th =
L2h
νh

, νr = V
4/3
min M∞, νv =

4µ

3ρ
, νh =

γµ

ρPr
, (6)

6

Governing Equations and Discretization: Hyperbolic Navier

Stokes

Compressible HNS equations:

∂τρ+ ∂tρ+∇x · (ρv) = ∇x · (νr r)
∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −∇xp +∇x · (µv τ̃)

∂τ (ρE) + ∂t(ρE) +∇x · (ρvH) = ∇x · (µv τ̃v) +∇x ·
(

µh

γ(γ − 1)
h

)
Tr∂τ r = ∇xρ− r

Tv∂τg = ∇xv − g

Th∂τh = ∇xT − h

(7)

where τ is a pseudotime variable, and τ̃ = − 1
2 tr(g)I+

3
4

(
g + gT

)
,

Tr =
L2r
νr

, Tv =
L2v
νv

, Th =
L2h
νh

, νr = V
4/3
min M∞, νv =

4µ

3ρ
, νh =

γµ

ρPr
, (8)

7

Governing Equations and Discretization: Svard-Eulerian equa-

tions

Svard’s Eulerian equations:

∂ρ

∂t
+∇x · (ρv) = ∇x · (ν∇xρ),

∂ρv

∂t
+∇x · (ρv ⊗ v) +∇xp = ∇x · (ν∇xρv),

∂E

∂t
+∇x · (Ev + pv) = ∇x · (ν∇xE) +∇x · (κ∇xT),

p = ρRT ,

ν = α
µ

ρ
+ β(ρ,T).

(9)

8

Governing Equations and Discretization: Svard-Eulerian equa-

tions

Svard’s Eulerian equations:

∂ρ

∂t
+∇x · (ρv) = ∇x · (ν∇xρ),

∂ρv

∂t
+∇x · (ρv ⊗ v) +∇xp = ∇x · (ν∇xρv),

∂E

∂t
+∇x · (Ev + pv) = ∇x · (ν∇xE),

p = ρRT ,

ν = α
µ

ρ
+ β(ρ,T).

(10)

9

Governing Equations and Discretization: Hyperbolic Eulerian

Flow

Compressible HEF equations:

∂τρ+ ∂tρ+∇x · (ρv) = ∇x · (νr)
∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −∇xp +∇x · ν (vr + ρg)

∂τ (ρE) + ∂t(ρE) +∇x · (ρvH) = ∇x · (νk)
Tr∂τ r = ∇xρ− r

Tv∂τg = ∇xv − g

Th∂τk = ∇xE − k

(11)

where τ is a pseudotime variable and

Tr = Tv = Th =
L2h
ν

(12)

10

Governing Equations and Discretization: Hyperbolic Eulerian

Flow

Compressible HEF equations:

∂τρ+ ∂tρ+∇x · (ρv) = ∇x · (νr)
∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −∇xp +∇x · ν (vr + ρg)

∂τ (ρE) + ∂t(ρE) +∇x · (ρvH) = ∇x · (νk)
Tr∂τ r = ∇xρ− r

Tv∂τg = ∇xv − g

Th∂τk = ∇xE − k

(13)

where τ is a pseudotime variable and

Tr = Tv = Th =
L2h
ν

(14)

11

Governing Equations and Discretization: Residual

We discretize the governing equations on a tetrahedral grid where the

residual at node j is defined as:∑
k∈{kj}

ΦjkAjk = s(xj , yj , zj), (15)

where Φjk is the numerical flux and Ajk is the directed area vector on the

edge that connects nodes j and k .

k

j

nr
jk

nℓ
jk

Stencil for the edge-based (EB) discretization, showing

the directed area vector on edge jk 12

Governing Equations and Discretization: Reconstruction

We extend this to be 2nd -order accurate using the U-MUSCL scheme

wL = κ
wj +wk

2
+ (1− κ)

[
wj +∇wLSQ

j · (xk − xj)
]
, (16)

wR = κ
wj +wk

2
+ (1− κ)

[
wk −∇wLSQ

k · (xk − xj)
]
, (17)

with κ = 1
2 .

13

Governing Equations and Discretization: Fluxes

The numerical flux is defined as:

Φjk = Φinv
jk |(ˆ̂nx , ˆ̂ny)|+Φvis

jk |(ˆ̂nx , ˆ̂ny)|+Φtime
jk |ˆ̂nt |, (18)

where the norm njk = (nx , ny , nt) is normalized in space-time as

n̂jk = njk/|njk | = (n̂x , n̂y , n̂t).

We use aˆ̂notation to indicate normalization in space or time alone. For

space this is:

ˆ̂nxy =
n̂xy
|n̂xy |

=
(n̂x , n̂y)

|(n̂x , n̂y)|
=

(n̂x , n̂y)√
n̂2x + n̂2y

, (19)

and for time it is:

ˆ̂nt =
n̂t
|n̂t |

. (20)

14

Governing Equations and Discretization: Fluxes

The numerical flux is defined as:

Φjk = Φinv
jk |(ˆ̂nx , ˆ̂ny)|+Φvis

jk |(ˆ̂nx , ˆ̂ny)|+Φtime
jk |ˆ̂nt |, (18)

where the norm njk = (nx , ny , nt) is normalized in space-time as

n̂jk = njk/|njk | = (n̂x , n̂y , n̂t).

We use aˆ̂notation to indicate normalization in space or time alone. For

space this is:

ˆ̂nxy =
n̂xy
|n̂xy |

=
(n̂x , n̂y)

|(n̂x , n̂y)|
=

(n̂x , n̂y)√
n̂2x + n̂2y

, (19)

and for time it is:

ˆ̂nt =
n̂t
|n̂t |

. (20)

14

Governing Equations and Discretization: Fluxes

The numerical flux is defined as:

Φjk = Φinv
jk |(ˆ̂nx , ˆ̂ny)|+Φvis

jk |(ˆ̂nx , ˆ̂ny)|+Φtime
jk |ˆ̂nt |, (18)

where the norm njk = (nx , ny , nt) is normalized in space-time as

n̂jk = njk/|njk | = (n̂x , n̂y , n̂t).

We use aˆ̂notation to indicate normalization in space or time alone. For

space this is:

ˆ̂nxy =
n̂xy
|n̂xy |

=
(n̂x , n̂y)

|(n̂x , n̂y)|
=

(n̂x , n̂y)√
n̂2x + n̂2y

, (19)

and for time it is:

ˆ̂nt =
n̂t
|n̂t |

. (20)

14

Governing Equations and Discretization: Fluxes

We use Roe’s flux for the invisicid flux

Φinv
jk =

1

2

[
f inv (wL) + f inv (wR)

]
− 1

2

∣∣Ainv (wL,wR)
∣∣ (uR − uL) , (21)

an upwind temporal flux

Φtime
jk =

1

2
[uL + uR] ˆ̂nt −

|ˆ̂nt |
2

(uR − uL) , (22)

and use an upwind flux for the viscous flux making it hyperbolic

Φvis
jk =

1

2

[
fvis(wL) + fvis(wR)

]
− 1

2

∣∣Avis(wL,wR)
∣∣ (uR − uL) (23)

15

Governing Equations and Discretization: Fluxes

We use Roe’s flux for the invisicid flux

Φinv
jk =

1

2

[
f inv (wL) + f inv (wR)

]
− 1

2

∣∣Ainv (wL,wR)
∣∣ (uR − uL) , (21)

an upwind temporal flux

Φtime
jk =

1

2
[uL + uR] ˆ̂nt −

|ˆ̂nt |
2

(uR − uL) , (22)

and use an upwind flux for the viscous flux making it hyperbolic

Φvis
jk =

1

2

[
fvis(wL) + fvis(wR)

]
− 1

2

∣∣Avis(wL,wR)
∣∣ (uR − uL) (23)

15

Governing Equations and Discretization: Fluxes

We use Roe’s flux for the invisicid flux

Φinv
jk =

1

2

[
f inv (wL) + f inv (wR)

]
− 1

2

∣∣Ainv (wL,wR)
∣∣ (uR − uL) , (21)

an upwind temporal flux

Φtime
jk =

1

2
[uL + uR] ˆ̂nt −

|ˆ̂nt |
2

(uR − uL) , (22)

and use an upwind flux for the viscous flux making it hyperbolic

Φvis
jk =

1

2

[
fvis(wL) + fvis(wR)

]
− 1

2

∣∣Avis(wL,wR)
∣∣ (uR − uL) (23)

15

Governing Equations and Discretization: Fluxes

We use the HNS20G formulation for both the NS and EF equation

viscous fluxes, for NS this is:

ϕvis
jk =



0

−µv [τ̃xx ˆ̂nx + τ̃yx ˆ̂ny]

−µv [τ̃xy ˆ̂nx + τ̃yy ˆ̂ny]

−µv

[(
⃗̃τx u⃗ + µhhx

γ(γ−1)

)
ˆ̂nx +

(
⃗̃τy u⃗ +

µhhy
γ(γ−1)

)
ˆ̂ny
]

−ρˆ̂nx
−ρˆ̂ny
−uˆ̂nx
−uˆ̂ny
−v ˆ̂nx
−v ˆ̂ny
−T ˆ̂nx
−T ˆ̂ny



(24)

16

Governing Equations and Discretization: Fluxes

In contrast, the HEF flux is:

ϕvis
jk =



−ν(rxn)

−ν [ρ(uxn) + (rxn)u]

−ν [ρ(vxn) + (rxn)v]

−ν(Exn)

−ρˆ̂nx
−ρˆ̂ny
−uˆ̂nx
−uˆ̂ny
−v ˆ̂nx
−v ˆ̂ny
−E ˆ̂nx
−E ˆ̂ny



(25)

Where we define the following variables uxn = ux ˆ̂nx + uy ˆ̂ny ,

vxn = vx ˆ̂nx + vy ˆ̂ny , rxn = rx ˆ̂nx + ry ˆ̂ny , Exn = Ex ˆ̂nx + Ey ˆ̂ny .

17

Governing Equations and Discretization: Dissipation

By diagonalizing the matrix and using the local preconditioning approach

we get a dissipation matrix of the form:

|PA| =


aν 0 0

0 νnx2

aν
νnxny
aν

0 νnxnxy
aν

νny2

aν

...

 (26)

where aν =
√

ν
Th
. Note that this (reduced) matrix is block diagonal.

Additionally, it lacks the additional dissipation vectors HNS20G requires

to maintain strong coupling for design-order accurate computation of the

velocity gradients.

18

Verification

Verification: Exponential Solution

We used the method of manufactured solutions (MMS) with an

exponential solution to calculate the truncation and discretization errors.

The solution is:

a = a0 + ascaleexp(axx + ayy + att), (27)

and the parameters to define it are below.

variable a0 ascale ax ay at
ρ .5 1.0 0.525 0.550 0.575

u .1 0.1 0.125 0.150 0.175

v .2 0.2 0.225 0.250 0.275

p .4 0.714 0.425 0.450 0.475

Parameters used to define the exact solution.

19

Verification: Exponential Solution

(a) Coarsest perturbed mesh (b) Solution on coarsest mesh

Example mesh and solution.

20

Verification: Exponential Solution Discretization Error

(a) Alpha damping discretization error con-

vergence

(b) HEF discretization error convergence

Discretization error convergence.

21

Verification: Exponential Solution

(a) LSQ(ux) on a 323-node grid. (b) gux (= ux) on a 323-node grid.

Gradient calculation on arbitrary perturbed mesh

22

Results

Results: Boundary Layer Solution

• We used the FUN3D sketch to solution framework (combining

EGADS, refine, and ruby scripts).

• This entailed 10 adaptation cycles with mesh size doubling every

other iteration.

• The Mach Hessian metric computed by refine off the alpha-damping

viscous discretization

• The final HEF results shown are from solving the hyperbolic

equations on the final adapted mesh

23

Results: Boundary Layer Solution

• We used the FUN3D sketch to solution framework (combining

EGADS, refine, and ruby scripts).

• This entailed 10 adaptation cycles with mesh size doubling every

other iteration.

• The Mach Hessian metric computed by refine off the alpha-damping

viscous discretization

• The final HEF results shown are from solving the hyperbolic

equations on the final adapted mesh

23

Results: Boundary Layer Solution

• We used the FUN3D sketch to solution framework (combining

EGADS, refine, and ruby scripts).

• This entailed 10 adaptation cycles with mesh size doubling every

other iteration.

• The Mach Hessian metric computed by refine off the alpha-damping

viscous discretization

• The final HEF results shown are from solving the hyperbolic

equations on the final adapted mesh

23

Results: Boundary Layer Solution

• We used the FUN3D sketch to solution framework (combining

EGADS, refine, and ruby scripts).

• This entailed 10 adaptation cycles with mesh size doubling every

other iteration.

• The Mach Hessian metric computed by refine off the alpha-damping

viscous discretization

• The final HEF results shown are from solving the hyperbolic

equations on the final adapted mesh

23

Results: Boundary Layer Solution

The exact solution is defined by:

wexact =


1.0

1.0

0.1

1.0

−


0.1

1.0

0.1

0.1

 exp(−η), η = y

√
R(z)

x − 0.2
, (28)

where R(z) is a time-dependent parameter defined by

R(z) = 105 [1 + 0.75 sin(4πz)] . (29)

24

Results: Boundary Layer Solution

The exact solution is defined by:

wexact =


1.0

1.0

0.1

1.0

−


0.1

1.0

0.1

0.1

 exp(−η), η = y

√
R(z)

x − 0.2
, (28)

where R(z) is a time-dependent parameter defined by

R(z) = 105 [1 + 0.75 sin(4πz)] . (29)

24

Results: Boundary Layer Solution - Mesh and Solution

(a) Grid. (b) X -velocity contours.

Grid and solution for MMS boundary layer test case.

25

Results: Boundary Layer Solution - Gradient Comparison

(a) Alpha: LSQ(uy) at z = 0.619. (b) HNS: guy at z = 0.619.

Wall normal gradient contours on XY plane for z = 0.619

26

Results: Boundary Layer Solution - Gradient Comparison

(a) Alpha: LSQ(uy) at y = 0. (b) HNS: guy at y = 0.

Wall normal gradient contours on XZ plane for y = 0.0

27

Results: Boundary Layer Solution - Time to Solution Compari-

son

Iteration

R
e

s
id

u
a

l
N

o
rm

s

100 200 300 400 500 600 700
10

­13

10
­12

10
­11

10
­10

10
­9

10
­8

10
­7

Alpha (energy eq.)

HEF (energy eq.)

(a) Iterations to solution

Wall Time

R
e

s
id

u
a

l
N

o
rm

s

50 100 150 200 250 300 350 400
10

­13

10
­12

10
­11

10
­10

10
­9

10
­8

10
­7

Alpha (energy eq.)

HEF (energy eq.)

(b) CPU time to soluion

Comparison of CPU time and iterations to convergence for boundary layer

MMS.

28

Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29

Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29

Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29

Results: Infinite Cylinder

• Infinite cylinder in M = 0.2, Re = 200 crossflow.

• Once again, used the FUN3D sketch to solution framework.

• This entailed 18 adaptation cycles with mesh size doubling every

four iterations.

• The Mach Hessian metric computed by refine

• We look at the 13th mesh (26.5M nodes) and compare the results of

HEF discretization to those of the alpha-damping one.

29

Results: Infinite Cylinder - Solution Evolution

Solution for 13th spatiotemporal triangulation

30

Results: Infinite Cylinder - Comparison of Lift Coefficient

(a) Alpha damping. (b) HEF.

Lift coefficient vs. time

31

Results: Infinite Cylinder - Comparison of Drag Coefficient

(a) Alpha damping. (b) HEF.

Drag coefficient vs. time

32

Results: Infinite Cylinder - Comparison of Engineering Coeffi-

cients

St cLrms cDavg

reference 0.1957 0.4244 1.3365

NS values 0.1961 0.4941 1.3376

EF values 0.1964 0.4991 1.3699

HEF values 0.1969 0.4986 1.3697

Comparison of engineering quantities to reference values.

33

Results: Infinite Cylinder - Comparison of Normal Gradient of

x-velocity

(a) LSQ gradient. (b) HEF gradient.

Normal gradient on cylinder surface.

34

Results: Infinite Cylinder - Comparison of Time to Solution

Iteration

R
e

s
id

u
a

l
N

o
rm

s

1000 2000 3000 4000

10
­5

10
­4

10
­3

10
­2

10
­1

Alpha (energy eq.)

HEF (energy eq.)

(a) Iterations to solution

Wall Time

R
e

s
id

u
a

l
N

o
rm

s

10000 20000 30000

10
­5

10
­4

10
­3

10
­2

10
­1

Alpha (energy eq.)

HEF (energy eq.)

(b) CPU time to soluion

Comparison of CPU time and iterations to convergence for boundary layer

MMS.

35

Conclusion and Future Work

Conclusions and Future Work: Conclusions

• Implemented Svard’s Eulerian governing equations and showed

computations for highly skewed/anisotropic meshes

• Verified these results with MMS and compared with NS

discretizations

• Demonstrated that the HEF solver is faster in time to solution than

the alpha-damping solver and has better accuracy in the gradients

• The HEF discretization has a simpler viscous dissipation matrix

36

Conclusions and Future Work: Conclusions

• Implemented Svard’s Eulerian governing equations and showed

computations for highly skewed/anisotropic meshes

• Verified these results with MMS and compared with NS

discretizations

• Demonstrated that the HEF solver is faster in time to solution than

the alpha-damping solver and has better accuracy in the gradients

• The HEF discretization has a simpler viscous dissipation matrix

36

Conclusions and Future Work: Conclusions

• Implemented Svard’s Eulerian governing equations and showed

computations for highly skewed/anisotropic meshes

• Verified these results with MMS and compared with NS

discretizations

• Demonstrated that the HEF solver is faster in time to solution than

the alpha-damping solver and has better accuracy in the gradients

• The HEF discretization has a simpler viscous dissipation matrix

36

Conclusions and Future Work: Conclusions

• Implemented Svard’s Eulerian governing equations and showed

computations for highly skewed/anisotropic meshes

• Verified these results with MMS and compared with NS

discretizations

• Demonstrated that the HEF solver is faster in time to solution than

the alpha-damping solver and has better accuracy in the gradients

• The HEF discretization has a simpler viscous dissipation matrix

36

Conclusions and Future Work: Future Work

• Implement the equations in 3 physical dimensions and benchmark on

realistic configurations.

• High-order finite-volume/difference schemes with one flux per edge

due to the lack of tangent terms in the viscous fluxes.

37

Conclusions and Future Work: Future Work

• Implement the equations in 3 physical dimensions and benchmark on

realistic configurations.

• High-order finite-volume/difference schemes with one flux per edge

due to the lack of tangent terms in the viscous fluxes.

37

Acknowledgements

Our thanks to:

1. Kyle Anderson for suggesting Svard’s paper

2. Hiro Nishikawa for his assistance in

deriving the viscous dissipation matrix

3. Army Research Office for funding the

portion of this work that was done on the

HNS equation

37

Acknowledgements

Our thanks to:

1. Kyle Anderson for suggesting Svard’s paper

2. Hiro Nishikawa for his assistance in

deriving the viscous dissipation matrix

3. Army Research Office for funding the

portion of this work that was done on the

HNS equation

37

Acknowledgements

Our thanks to:

1. Kyle Anderson for suggesting Svard’s paper

2. Hiro Nishikawa for his assistance in

deriving the viscous dissipation matrix

3. Army Research Office for funding the

portion of this work that was done on the

HNS equation

37

Acknowledgements

Our thanks to:

1. Kyle Anderson for suggesting Svard’s paper

2. Hiro Nishikawa for his assistance in

deriving the viscous dissipation matrix

3. Army Research Office for funding the

portion of this work that was done on the

HNS equation

37

Thank you!

37

	Governing Equations and Discretization
	Verification
	Results
	Conclusion and Future Work

