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• Why test in cryogenic facilities like 0.3-M and NTF?
– Highest transonic Reynolds numbers testing to duplicate 

flight conditions

• Measurements already available?
– Force/moment, static/dynamic pressure, strain, 

accelerometers, model deformation and wing twist, PSP/TSP

Off-body flow visualization in these facilities remains 
challenging

– Limited optical access and difficult working environment

0.3-M Transonic Cryogenic Tunnel
– Risk-reduction testing for SAFS system prior to installation at 

NTF

– Testing three models to evaluate best option for steady 
shock positioning for upcoming PTV testing

National Transonic Facility (NTF)
– Tail cone thruster (TCT) sting-mounted model

– First demonstration of SAFS at NTF, and first FS effort since 
2000
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Self-Aligned Focusing Schlieren (SAFS)

• Single-sided optical access

• Inherently self-aligned due to retroreflective 
background

• Insensitive to vibration

• Can be made to be compact

• Simple adjustment of sensitivity
– Ronchi ruling (RR) focus on retroreflective background (RBG)

– Translation/rotation of Rochon prism (RP)

• Simple adjustment of focus plane
– Translation of camera or adjustment of relay lens (RL) focus

• Realignment of system is quick (on the order of 
minutes)
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0.3-M // System Installation and Retroreflective Material

• System installed on breadboard mounted to outer 
plenum door

– Shadowgraph system installed next to SAFS
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0.3-M // System Installation and Retroreflective Material

• System installed on breadboard mounted to outer 
plenum door

– Shadowgraph system installed next to SAFS

• Camera on translation stage for precise focus plane 
adjustment during testing

• Retroreflective material applied to the model inserts on 
opposite wall

– Strips of 3M Scotchlite 7610 material adhered directly to metal 
insert
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0.3-M // Cylinder – Semi-Span Airfoil – Full-Span Airfoil
• Mach 0.25: Wake behind cylinder visible

• Mach 0.69: Unsteady shock waves visible on upper and lower 
surface of cylinder

• Shocks never steady, so cylinder not a good option for PTV 
measurement

• Shadowgraph system shows sensitivity to shocks and shear flow 
(arrows), but not wake flow
–More sensitive to imperfections in RBG material (white dashed)
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0.3-M // Cylinder – Semi-Span Airfoil – Full-Span Airfoil

• Temperatures down to 200 K
– Limitation of rectangular slot window

• Translating camera to adjust focus 
plane from airfoil tip to root

• Isolate tip flow and 
shocks/separated flow

• Shocks visible in shadowgraph, 
but lateral position on airfoil 
unknown
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0.3-M // Cylinder – Semi-Span Airfoil – Full-Span Airfoil

• Required use of upper D-window instead of rectangular slot window

• Smaller field-of-view for SAFS system than shadowgraph

• Relatively steady shock structure on airfoil at α < 5o

• Darkening of shadowgraph from polarization altering window stresses 
seen at top of the window

–Replacement of glass/quartz RP with quartz/quartz RP to avoid stress-induced 
birefringence
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0.3-M // Cylinder – Semi-Span Airfoil – Full-Span Airfoil
Burns, Gao, and Danehy, “Characterization of naturally occurring particles in the NASA Langley 0.3-m Transonic Cryogenic Tunnel using PTV,” AIAA SciTech 2024.
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0.3-M // Stress-Induced Window Birefringence

• Lowering temperature causes stress-induced window 
birefringence
– Alters polarization of light transmitted through window

• Middle rectangular slot window for temperatures down to 
200 K

• Upper D-window for temperatures down to 100 K
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Burns et al., “Multiparameter Flowfield Measurements in High-Pressure, 
Cryogenic Environments Using Femtosecond Lasers,” AIAA 2016-3246.



0.3-M // SAFS vs. Shadowgraph at High Pressure

• Benefit of SAFS over shadowgraph at 
higher pressures

• Cell-like structure of plenum flow 
filtered out in SAFS images

14

α = 4o

M = 0.65

P0 = 50 psia

T0 = 100 K

Shadowgraph, M 0.55, 80 psia, 100 K



NTF // CAD Rendering for System Design

• CAD renders of tunnel/model used to:

1. Select camera can position on far wall
–Camera can shifted downstream to 15.6’ wall 

position

2. SAFS system angling downstream for 
optimum FOV
–Angled downstream by approximately 6 degrees

–View tail cone and inlet of thruster nacelle

3. Location and size of retroreflective 
material on near wall
–Approximately double the size of the centerline 

FOV
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NTF // Retroreflective Material Installation

• Existing retroreflective dots on entire near wall from 
previous focusing schlieren tests in early 2000s

– Insufficient intensity return to use these dots

• Sanded existing retro dots and applied 3M Scotchlite 7610 
retroreflective film

– Four separate regions applied due to row of pressure ports and 
wall seam

• After some running, leading edge (LE) tearing slightly

– Cut off tearing LE and super glued new LE

– No further tearing visible for remainder of testing
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NTF // System Design and Installation
• System assembled as compactly as possible given required 

imaging distances

• Enclosed in copper panels to better conduct heat from 
resistance heaters

• Using existing cables in pass-through port (power, 
ethernet, BNC)

• Slides on existing optical rail, angled downstream before 
tightening set screws
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NTF // Tunnel-Off Sensitivity

• Top images:
– Intensity return of LED lighting sufficient

–Good sensitivity to density gradients (canned 
air duster)

–High-quality imaging even near view-
obstructing tail cone and nacelle

• Bottom left:
–Wafting of gas in the test section after tunnel 

was turned off

• Bottom right:
–Difference in temperature between ambient 

flow and model nacelle

• These are slow-moving flows, unlike 
flow-on conditions
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NTF // Flow Results, No Nacelle, Cryogenic Running
• Model configuration:

– Tail cone thruster nacelle not installed

– Boundary layer rakes installed upstream of FOV

• Ronchi ruling grid lines faintly visible in some 
raw images
– Notch-filtering removes these lines

• Mach 0.71, α-sweep (top right)
– Low α, upper and lower rake tip vortices visible

– Higher α, upper rake tip vortex becomes fainter

– Boundary between aircraft wake and freestream 
clear

• Mach 0.85, α-sweep (bottom right)
– Rake tip vortices less steady than lower Mach 

numbers

– Boundary between aircraft wake and freestream 
clear

• Tail cone boundary layer flow not visible
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NTF // Flow Results, With Nacelle, Air Running

• Model configuration:
–Tail cone thruster nacelle installed

–Limited to air mode operation with nacelle

–Boundary layer rakes not installed

• Raw images:
–Nacelle inlet pressure gradient on bottom and top

–Aircraft wake flow and freestream

• Background-divided images:
–Aircraft wake flow and freestream boundary better visible

–Shock structure on upper surface of nacelle

• Tail cone boundary layer flow not visible
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Conclusions and Future Work

• Implementation at 0.3-M was successful

–Can image through slot window or D-window

–For lower temperatures, use quartz-quartz Rochon prism to mitigate 
influence of stress-induced window birefringence

• Implementation at NTF was generally successful

–Capable of high-quality imaging

–Quick setup time (no influence on main test objectives)

–Low-cost

–Boundary layer measurement not successful

• Future improvements

–Laser for lower pulse widths and higher intensity

–High-speed camera for time-resolved imaging

–Translation/rotation stages for sensitivity and focus plane adjustment
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