

Statistical Wind-Tunnel Experimentation Advancements for eVTOL Aircraft Aero-Propulsive Model Development

Benjamin M. Simmons and Ronald C. Busan

Flight Dynamics Branch NASA Langley Research Center

AIAA SciTech Forum

08-12 January 2024

Contents

- Research motivation
- RAVEN background
- Static wind-tunnel testing
 - Gravitational tare modeling
 - Trim envelope determination
 - Powered-airframe characterization
- Concluding remarks
- Questions/discussion

Software:

- Design-Expert[®]
- SIDPAC

NASA RAVEN-SWFT wind-tunnel testing.

Research Motivation

- Distributed propulsion aircraft enabling Advanced Air Mobility (AAM) missions
 - VTOL, STOL, and CTOL configurations
 - Many control surfaces and propulsors
 - Significant propulsion-airframe interactions
- Conventional methods fail to efficiently characterize complex aircraft
- Design of experiments (DOE) and response surface methodology (RSM) are essential
- Advance DOE/RSM strategies for characterization of complex aircraft
- Aero-propulsive modeling for a new electric vertical takeoff and landing (eVTOL) aircraft

NASA GL-10 aircraft

NASA LA-8 aircraft

AIAA SciTech 2024 Forum

RAVEN eVTOL Vehicle

- RAVEN <u>Research</u> <u>Aircraft</u> for e<u>V</u>TOL <u>Enabling</u> Tech<u>N</u>ologies¹
- Tilt-rotor eVTOL configuration with six variable-pitch proprotors
- Vehicles at different scales
- 24 independent control effectors
 - Six proprotor speeds $(n_1, n_2, ..., n_6)$
 - Six collective angles $(\delta_{c_1}, \delta_{c_2}, \dots, \delta_{c_6})$
 - Four nacelle tilt angles $(\delta_{t_1}, \delta_{t_2}, \delta_{t_3}, \delta_{t_4})$
 - Six flaperons $(\delta_{f_1}, \delta_{f_2}, \dots \delta_{f_6})$
 - Stabilator (δ_s)
 - Rudder (δ_r)
- Built for modeling/controls research
- German, B. J., Jha, A., Whiteside, S. K. S., and Welstead, J. R., "Overview of the Research Aircraft for eVTOL Enabling techNologies (RAVEN) Activity," *AIAA AVIATION Forum*, AIAA Paper 2023-3924, June 2023.

Simmons and Busan, NASA Langley

RAVEN control effector definitions.

RAVEN-SWFT Vehicle SWFT = Subscale Wind-Tunnel and Flight Test

- Wind-tunnel and flight-test research
- Similar in scale and utility to the NASA LA-8
- 28.6% scale version of 1000-lb vehicle
- 37 lbs, 5.7 ft wingspan, 19.5 in diam. proprotors

Simmons and Busan, NASA Langley

RAVEN-SWFT Wind-Tunnel Testing

Langley 12-Foot Low-Speed Tunnel

- Isolated proprotor test¹
- Static full-airframe test
- Dynamic testing (in progress)

ProprotorPowered-airframeRAVEN-SWFT wind tunnel tests.

Static Full-Airframe Test Phases

- Gravitational tare modeling
- Trim envelope determination
- Powered-airframe characterization

Benefits

- Flight simulation development
- Flight control system design
- Validation of prediction tools
- Data/models that can be published
- 1. Simmons, B. M., "Efficient Variable-Pitch Propeller Aerodynamic Model Development for Vectored-Thrust eVTOL Aircraft," *AIAA AVIATION Forum*, AIAA Paper 2022-3817, June 2022.

Simmons and Busan, NASA Langley

7

Gravitational Tare Characterization

- Internal strain-gage balance measures:
 - Aero-propulsive forces and moments
 - Gravitational loads (i.e., aircraft weight)
- Gravitational loads must be removed
- Tare runs require additional test time
- eVTOL aircraft have large moving components
- Previous testing required many tare points
- New gravitational tare modeling approach
 - Application of DOE/RSM techniques
 - Powered-airframe test factors: α , δ_{t_1} , δ_{t_2} , δ_{t_3} , δ_{t_4} , δ_{f_1} , δ_{f_6} , δ_s
 - I-optimal response surface design (130 total points)
 - Model identified to predict gravitational loads
 - Obviates most required tare test time

AIAA SciTech 2024 Forum

2D slice of the 8-factor tare experiment design.

Gravitational Tare Model Validation

Isolated-airframe angle-of-attack sweep data collected at \overline{q} = 3.5 psf using a traditional and modeled tare.

Transition Trim Envelope Determination

- Proper design space limits are
 important for transition characterization
- Specifying boundaries around the trim envelope is an effective approach
- The trim envelope was determined manually in previous wind-tunnel tests
- New trim approach using DOE/RSM
 - Efficient, accurate, and mostly automated
 - Testing with a reduced number of factors
 - Level, unaccelerated transition envelope
 - Results inform subsequent aero-propulsive characterization experiments

Trim Envelope Determination Strategy

- Progressive testing (increasing airspeed)
- Identify response surface equations
- Find control effector settings where:
 - \circ Lift = Aircraft Weight = 37 lbf
 - Horizontal Thrust Drag = 0 lbf
 - Pitching Moment = 0 ft-lbf
- Free control variables:
 - Front collective ($\delta_{c_{\text{front}}}$)
 - Rear collective $(\delta_{c_{rear}})$
 - Nacelle tilt (δ_t)
- Fixed control variables (swept):
 - Proprotor rotational speed ($n_{\text{front}} = n_{\text{rear}}$)
 - Outboard flaperon angle ($\delta_{f_{out}}$)
 - Inboard flaperon angle $(\delta_{f_{in}})$
- Root-finding algorithm finds trim solutions
- Near-real-time analysis capabilities

Simmons and Busan, NASA Langley

Trim Envelope Determination Experiment

- Eight dynamic pressure, \overline{q} , settings (low \rightarrow high)
- Testing up to the highest attainable \bar{q}
- Seven test factors/explanatory variables:
 - 1. Front motor command/rotational speed ($n_{\rm front}$)
 - 2. Rear motor command/rotational speed (n_{rear})
 - 3. Front collective pitch angle ($\delta_{c_{\text{front}}}$)
 - 4. Rear collective pitch angle ($\delta_{c_{rear}}$)
 - 5. Nacelle tilt angle (δ_t)
 - 6. Outboard flaperon deflection angle ($\delta_{f_{out}}$)
 - 7. Inboard/midboard flaperon deflection angle ($\delta_{f_{in}}$)
- Frugal design strategy (56 points per \overline{q} setting)
- I-optimal response surface design

2D slice of the 7-factor trim experiment design in coded units.

Experimentally-Determined Trim Envelope

Simmons and Busan, NASA Langley

Powered-Airframe Characterization

- Informed by the transition trim envelope determination results
- Powered-airframe testing from hover through mid-transition
- Eight dynamic pressure, \bar{q} , settings
- 26 independent test factors at each \bar{q} setting
 - Angle of attack (α)
 - Angle of sideslip (β)
 - Motor speed commands $(\eta_{m_1}, \eta_{m_2}, ..., \eta_{m_6})$
 - Collective pitch angles $(\delta_{c_1}, \delta_{c_2}, ..., \delta_{c_6})$
 - Nacelle tilt angles $(\delta_{t_1}, \delta_{t_2}, \delta_{t_3}, \delta_{t_4})$
 - Flaperon deflection angles $(\delta_{f_1}, \delta_{f_2}, \dots \delta_{f_6})$
 - Stabilator deflection angle (δ_s)
 - Rudder deflection angle (δ_r)
- Nested *I*-optimal design¹ (984 points per \overline{q})

1. Simmons, B. M., "Evaluation of Response Surface Experiment Designs for Distributed Propulsion Aircraft Aero-Propulsive Modeling," AIAA SciTech Forum, AIAA Paper 2023-2251, Jan. 2023.

 \sim ariable 0.5Joded -0.5 -0.5 0.50 Coded Variable 1 2D slice of the 26-factor experiment design in coded units.

Block 1

Block 2

Block 3 Block 4

Block 5

0

RAVEN-SWFT Wind-Tunnel Testing Video

Static RAVEN-SWFT DOE/RSM wind-tunnel testing (x20 speed).

Simmons and Busan, NASA Langley

Powered-Airframe Model Identification

 \overline{q}, v, w

 n_1, n_2, \dots, n_6

 $\delta_{c_1}, \delta_{c_2}, \dots, \delta_{c_6}$

 $\delta_{t_1}, \delta_{t_2}, \delta_{t_3}, \delta_{t_4}$

 $\delta_{f_1}, \delta_{f_2}, \dots \delta_{f_6}$

 δ_s, δ_r

Aero-Propulsive

Model

X, Y, Z, L, M, N

- Aero-propulsive modeling framework tailored to eVTOL aircraft¹
- Flight condition variable: dynamic pressure \overline{q} (or freestream velocity V)
- Explanatory variables:

 - Control deflection angles $(\delta_{c_1}, \delta_{c_2}, \dots, \delta_{c_6}, \delta_{t_1}, \delta_{t_2}, \delta_{t_3}, \delta_{t_4}, \delta_{f_1}, \delta_{f_2}, \dots, \delta_{f_6}, \delta_s, \delta_r)$
- Response variables:
 - Dimensional body-axis aero-propulsive forces (X, Y, Z)
 - Dimensional body-axis aero-propulsive moments (L, M, N)
- Nonlinear response surface equations (RSEs) developed at each \bar{q}
 - Model structure determination: stepwise regression
 - Parameter estimation: ordinary least-squares regression
- Continuous transition model formed by interpolating between RSEs
- Simmons, B. M., and Murphy, P. C., "Aero-Propulsive Modeling for Tilt-Wing, Distributed Propulsion Aircraft Using Wind 1. Tunnel Data," Journal of Aircraft, Vol. 59, No. 5, 2022, pp. 1162–1178.

Sample Local Modeling Results

- Z RSE at $\bar{q} = 2.75$ psf compared to axial and center wind-tunnel data points
- RSE predictions show good agreement with measured data
- Data are within the 95% prediction interval (PI)
- Similar results observed for other response variables and \overline{q} settings
- · Sample residual diagnostics plots are shown in the paper

Simmons and Busan, NASA Langley

Sample Global Modeling Results

Coefficient of determination, R^2 , for each local model.

Simmons and Busan, NASA Langley

Concluding Remarks

- eVTOL aircraft present new aero-propulsive modeling challenges
- DOE/RSM techniques enable accurate characterization of complex aircraft
- Multiple advances in efficient eVTOL aircraft wind-tunnel testing
 - Gravitational tare experiment design and modeling approach
 - Experimental transition trim envelope determination strategy
 - Powered-airframe testing conducted using the nested *I*-optimal design
- Final aero-propulsive models have good predictive capability
- Techniques can be applied for many current and future eVTOL vehicles
- Active research is further refining eVTOL vehicle modeling techniques
- RAVEN project strong emphasis on public release of data/technology

Look Ahead: NASA Langley FDRF

- Flight Dynamics Research Facility (FDRF)
- Scheduled to open in January 2025
- Replacing, combining, and expanding capabilities of the:
 - 20-Foot Vertical Spin Tunnel (VST)
 - 12-Foot Low-Speed Tunnel (LST)

FDRF construction progress (Dec. 19, 2023)

20-Foot VST Simmons and Busan, NASA Langley

12-Foot LST

Questions/Discussion – Thank you for attending.

Acknowledgments

- Funding: NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) Project
- Wind-tunnel test support: Wes O'Neal, Clinton Duncan, Rick Thorpe, Earl Harris, Lee Pollard, Sue Grafton
- RAVEN-SWFT vehicle support: Greg Howland, Matt Gray, Neil Coffey, Steve Geuther, Dave North
- RAVEN project support: Kasey Ackerman, Jake Cook, Steve Riddick, Siena Whiteside, Jason Welstead, Nat Blaesser
- Gravitational tare modeling integration and validation support: Stephen Farrell and Wes O'Neal

Related eVTOL Aircraft Modeling and RAVEN-SWFT References

- 1. Simmons, B. M. and Murphy, P. C., "Aero-Propulsive Modeling for Tilt-Wing, Distributed Propulsion Aircraft Using Wind Tunnel Data," *Journal of Aircraft*, Vol. 59, No. 5, 2022, pp. 1162–1178.
- 2. Simmons, B. M., Geuther, S. C., and Ahuja, V., "Validation of a Mid-Fidelity Approach for Aircraft Stability and Control Characterization," *AIAA AVIATION Forum*, AIAA Paper 2023-4076, June 2023.
- 3. Simmons, B. M., "Evaluation of Response Surface Experiment Designs for Distributed Propulsion Aircraft Aero-Propulsive Modeling," *AIAA SciTech Forum*, AIAA Paper 2023-2251, Jan. 2023.
- 4. Simmons, B. M., "Efficient Variable-Pitch Propeller Aerodynamic Model Development for Vectored-Thrust eVTOL Aircraft," *AIAA AVIATION Forum*, AIAA Paper 2022-3817, June 2022.
- 5. Busan, R. C., Murphy, P. C., Hatke, D. B., and Simmons, B. M., "Wind Tunnel Testing Techniques for a Tandem Tilt-Wing, Distributed Electric Propulsion VTOL Aircraft," *AIAA SciTech Forum*, AIAA Paper 2021-1189, Jan. 2021.

Backup Slides

Simmons and Busan, NASA Langley

RAVEN-SWFT Modeling and Controls

Simmons and Busan, NASA Langley

Gravitational Tare Model Validation

Gravitational tare voltage data and model predictions for an isolated-airframe angle-of-attack sweep data at \overline{q} = 3.5 psf.

Simmons and Busan, NASA Langley

Powered-Airframe Experiment Design

Fig. 7 Sequential two-dimensional slices of the 26-factor powered-airframe characterization experiment design.

Table 8 Powered-airframe experiment design summary

Block	Design	Design	Model	Center	Axial	Validation	Total	Cumulative
Number	Type	Model	Points	Points	Points	Points	Points	Points
1	<i>I</i> -optimal	quadratic (1/2)	202	3	0	0	205	205
2	<i>I</i> -optimal	quadratic (2/2)	203	3	0	0	206	411
3	nested <i>I</i> -optimal	quadratic (1/2)	203	3	0	0	206	617
4	nested <i>I</i> -optimal	quadratic (2/2)	202	3	0	0	205	822
5	validation	N/A	0	6	104	52	162	984

Powered-Airframe Experiment Design

Table 9Prediction variance threshold FDS valuesfor the powered-airframe experiment design

	Evaluation	FDS with	FDS with
Blocks	Model	$\delta/\sigma \leq 1.5$	$\delta/\sigma \leq 2$
1-2	Quadratic	0.837	0.999
1-4	Quadratic	0.986	1.000
1-4	Quadratic	0.970	1.000
	+ Pure Cubic		

Fig. 8 Prediction variance plots for the 26-factor poweredairframe experiment design.

Simmons and Busan, NASA Langley

Powered-Airframe Modeling Results

Fig. 9 Residual diagnostics for the powered-airframe model at $\bar{q} = 2.75$ psf.

Powered-Airframe Modeling Results

Fig. 12 Number of model parameters, n_p , identified for each local model response.

Fig. 14 Binomial analysis of residuals prediction error metric, e_{cv}^* , for each local model response.

Simmons and Busan, NASA Langley