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Dragonfly Mission Overview

Heavier-than-air mobility highly

CRUISE AND efficient at Titan
DIRECT ENTRY Atmospheric density 4x higher
SYSTEMS than Earth’s reduces wing/rotor

area required for lift

Gravity 1/7th of Earth’s reduces
power required

Mission Elapse Time ~ 13 yrs:
10 enroute, 3 surface

s

LANDER INSTRUMENTS

DraGMet: Geophysics & Meteorology
Package (APL, JAXA)

DraMS: Mass Spectrometer (GSFC, CNES)

m DrACO: Drill for Acquisition of Complex
Organics (Honeybee Robotics)

m DragonCam: Camera Suite (MSSS)

m DraGNS: Gamma-ray Neutron Spectrometer
(APL, LLNL, GSFC, Schlumberger)

The Dragonfly mission will deliver a rotorcraft Saturn’s largest moon,
Titan, to enable exploration and search for building blocks of life.




Entry, Descent, & Landing (EDL) CONOPS

* Titan EDL time ~ 2 hours
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'+ Heatshield separation
+ Lander Pose Position

It __ Flight Under
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Numbers are approx.

-+ Lidar Ground Lock Main Chute
Lander release, h=1.2 km, 0.003 km/s, E+128 min —<
% Powered flight L Eolgenrdei(rj]g':“ght
*@ Landing, h =0 km
successful EDL i , J
Objective: Conduct aeroshell aerodynamic stability test in the NASA LaRC Transonic Dynamics

Tunnel (TDT) to provide requisite data for flight mechanics simulation studies
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Dragonfly Aeroshell Physicals for Aero Stability Characterization
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Nominal Mass Properties
* Mass: 2500 kg

Aerodynamic Coordinate System
* Mass moment of inertia: 3589 kg-m?
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Transonic Dynamics Tunnel Test Description ommEguRLY

* Tunnel Characteristics Dynamic Test Tech: Sinusoidal Oscillation Sting Effects

- Large test section: 16- X 16-ft
* Model Scale: 12.42%

- Sub-atmospheric pressure tunnel . : . . a0
© Test mediums: Air and R134A Sting-to-Model Diam. Ratio: 9%

* Test Techniques
- Static Force & Moment
- Dynamic Test Techniques (1-DOF):
= Sinusoidal Oscillation
= Constant Rate
= Multi-Sine Orthogonal
* Data Acquisition
- 6-component strain gauge balance

Sinusoidal Oscillation Position Signal
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- Angular position NASA Engineering and Safety Center (NESC)

CFD Dragonfly Dynamic Stability Assessment
T1-21-01709

- Tunnel flow conditions

- Steady Surface Pressures
* Test Parameters

- Mach numbers: 0.1t0 1.1
- a-range: -90 to +90 deg.
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- Non-dimensional angular rate, g
- Reduced frequency, k

- Reynolds Number, Re Aero data satisfy all similitude

* Test Dates requirements for Mach > 0.2
- June 17-24, July 11, Oct. 24-31, 2022; Feb. 14-15, 2023




Parameter Space and Similitude Requisites
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Fig. TMach Dragonfly Aeroshell POST2 nominal trajectory June 3, 2022
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Sinusoidal Forced Oscillation Motion
with Amplitude, A, and oscillation
frequency w

a=0=Asinwt
a=q=Awcoswt

q = 2kA cos wt




Aerodynamic Modeling For POST2 6-DOF MC Simulation oRRBANELY
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* POST2 models the Dragonfly Aeroshell trajectory using
Newton’s second law for translational and rotational
equations of motion

- Aerodynamics modeled as instantaneous with first order Taylor
series expansion

» Static aero dispersions impact trajectory performance
(drag), nonzero trim, and dynamics due to static stability

* Dynamic aero coefficients modeled as a derivative, Crng»
Cn, and C,
- Contribute to vehicle dynamics as a time integral response to
perturbations from trim. Sources of perturbations:
= winds, parachute release & deployment, mass properties, etc.

- Uniform Uncertainties

= most positive value of will always provide the maximum contribution to
vehicle dynamics (this is not true for static aero coeff. and some other
models)

* Large parameter space to prevent early termination of
POST2 MC simulation runs

* Physically realizable uncertainties
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Equations of Motion

m(rv — qw) + gSCxy — mg sin 6
m(pw — ru) + qgSCy + mg cos 6 sin ¢
m(qu — pv) + qSC; + mg cos 0 cos ¢

qSbC, — qr(I, — 1) + qply,
(p _TZ)IxZ

] IqS CCp —pr(ly — 1) —
plxz qsbCn, —pq(l, — 1) — qriy, /

Linear Taylor Series Expansion C. = dCn n 0Cp,
Cm = Cimg + Cmp@ + C @79 3 (quef) ALyes
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Effect of Mach on Static and Dynamic Aero Coefficients
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Effect of Reduced Frequency for Subsonic Mach Numbers

-0.2

-04

-0.6

T138- Effect Of k: Mach = 0.6 ghat=0.0054
T T T

M = 0.6, § = 0.005

1 1 1 1

T138- Effect Of k: Mach = 0.3 ghat=0.012
T T T T T

—E6— R184k=0.013
—&— R185k=0.017 N 0.8

R1008 k=0.02 nominal
—A— R187 k=0.027

T138- Effect Of k: Mach = 0.5 ghat=0.0065
T T T

M =03, §=0.012

—6— R204 k=0.033
—&— R205k=0.039

R1011 k=0.045 nominal
—A— R207 k=0.062

-0.6

M =0.5, § = 0.007

| 1

M =02, §=0.022

T138- Effect Of k: Mach = 0.2 ghat=0.022
T T T T

—6— R150k=0.073

0.8 —&— R1012 k=0.085 nominal 4
R151k=0.102
06 —&A— R152k=0.12 A
= —6— R193k=0.015 - -
—E— R194 k=0.02
- R1009 k=0.025 nominal - 04 F N
—A— R196 k=0.031
| | | | | | | | | | _06 | | | | | | | | | | |
5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60

a, deg

* Nonlinear with M, o, and k

a, deg

* No effect of k at oo = 30°




— =

Effect of Reduced Freq. for Incompressible Mach Numbers ORAGENFLY

0.4 T T T 04 —e T I T

035l [0—k=01@Mm=02
—5—k=02@M=0.1

_ Trajectory circa June 2022
0.35 - ° TbT

0.3 k=03@M=0.06 7

0 5 10 15 20 25 30 35 40 45 50 55 60 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
a, deg Mach

Drogue release at M = 0.04

Significant incremental effect

Nonlinear with k

For k > 0.3 and a < 20°, effect is saturated
* ADB accounts for k using Mach number
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Summary & Conclusions ORAGENFLY
Summary Conclusions
« Dynamic stability is one of the major concerns for meeting * Effect of Mach and a
Dragonfly EDL requirements exacerbated by a Iong ﬂlght - CN and Cm are linear over |arge a-range

time, >2 hours. : :
; . _ _ - C,,.. highly nonlinear
* Monte Carlo simulation assessments require static and 1

dynamic test techniques: = M > 0.2: Unstable
- cover a large parameter space = M < 0.2: Stable
- physically realizable uncertainties e Effect of Reduced Frequency on Cmq

* Extensive aerodynamic data for M < 1.1
- M=0.1,0.2,0.3,04,0.5,0.6,0.7,0.8,0.9, 0.97, 1.05

- a-range: -90° to +90°

- For M < 0.8, nonlinear with a except a = 30°
where there is no effect.

= compliment of cone angle = 30°
- Significant incremental effect for M < 0.2

= ADB accounts for k effect with Mach number
breakpoints

Reduced frequencies for flight under drogue

Satisfies all similitude requirements for M < 1.1

= exception: Reynolds number is only matched for M > 0.2

Uncertainties cover all Mach and «
= repeatability
= reproducibility
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