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vehicle touchdown or payload deployment (including o
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SPLICE Components
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(Commercialization/Licensing Statuses are Highlighted)
SPUCE Sensors/Scanners Dedicated Computing
f Precise EDL Navigation
Passive TRN » ' PL&HA Guidance
(Imaging & Inertial) 4 Safe Site

et

Pre-EDL Navigation
Master Clock

DS ices (et srmponst i oo '
Velocity & J Lander & Primary Computer

Software Functions
(Licensable or Listable in NASA SW Catalog) EDL Functions

TRN: Image Processing and Map Comparisons Vehicle Control
Hazard Detection (Safe Site ID) Non-PL&HA Guidance & Nav
PL&HA Guidance
PL&HA Navigation

Architecture
SpaceVPX Architecture (Industry Standard)

Scan-Array Lidar HPSC-Surrogate (COTS + rad-tolerance provnsnons)
(Early licensing/infusion in progress) i

(Map Generation)




SPLICE DLC EDU
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In-House Design &Development:
e Xilinx US+ MPSoC board
e Xilinx US Kintex FPGA board

COTS % ATR Enclosure from PIXUS
* 4-slot OpenVPX backplane

* Syncor PSU

e 1/0 Card with Glenair 805 connectors
* COTS SSD Card from RedRock



EDU Testing

* Suborbital flights on Blue Origin’s New
Shepherd rocket in 2020 and 2021

 HWIL simulation testing

* Workload performance measurements

Monitor
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Host Vehicle Interface (Ethernet)




@ DLC (EDU) and Interfaces
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Descent and Landing Computer

Host Vehicle Chassis (VPX, industry standard) EDL/PL&HA
Sensors
Single Board Computer Expansion Slots
Telemetry
Subsystem | HPSC IMU
Surrogate Chip Solid State
‘_l—’ Drive '
Primary Flight Camera
Computer FPGA Board
I l Sensor [P (I/O Interfaces), NDL
Time timestamping logic.
Soiice Xilinx [P, *algorithms co-
Payload processing HD Lidar
S Power Card




PL&HA Sensor Data Bandwidth

IMU 400 48
NDL 20 280
Camera 10 1.6M

HDL 1 30M
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@ MPSoC Architecture and Functional Allocat
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Interrupt handling, DMA
cFS
cntrl, data movement

XAUI Interface firmware,
data path

FPGA Board

XAUI and sensor interface firmware,
data path, timestamping
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Related Work

* SPLICE algorithms are complex, and must operate with low latency
and deterministically to function in a real-time landing system

 Traditional systems often utilize a Real-Time Operating System (RTOS)
to assure required performance

* Approach was to use embedded Linux OS and develop a datapath
that isolates the application processors from interrupts associated
with the sensor I/O to support deterministic operation.

* Preserves the full set of application processors for SPLICE software

* Departs from industry/vendor recommended template to manage
communication between heterogenous processors



SPLICE Datapath
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Ring Buffer Queue

Not yet processed data in FIFO
order
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Conceptual view of
a circular queue




@ Discussion

PL&HA

W e o ST R S .

* Experimentation revealed that DMA scatter/gather was not efficient
for larger packet size data (e.g. camera). Change to simple DMA
increased image data rate from 2 to 10 Hz.

* Data path tested in HWIL simulation for adverse effects on the
deterministic operation of the flight software
* Run for many days straight without data packet drops or corrupted data

* Over a dozen simulated flights using trajectories from flight tests showed no
behavior that could be attributed to the datapath operation that was non-
deterministic
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@ Conclusions/Future Work
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 Testing of the SPLICE EDU data path indicate that the design supports
deterministic flight software operation while preserving application
computing capacity on the DLC platform.

* Accomplished without the use of a real-time operating system

* The data path design is being used in the next version of the DLC that
is being developed to support a robotic lunar test flight.

e Additional channels are being added for the Hazard Detection LIDAR sensor
and a vehicle interface

* Enhancements will be made to the command path of the interface (not
discussed here.)



