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Background and motivation

High Reynolds number testing performed in NASA Langley’s Transonic Cryogenic Tunnels (TCTs)
* Flight-accurate Reynolds numbers in ground-test facilities
e Typically operate in cryogenic, pure N, environments
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Background and motivation

High Reynolds number testing performed in NASA Langley’s Transonic Cryogenic Tunnels (TCTs)
* Flight-accurate Reynolds numbers in ground-test facilities
e Typically operate in cryogenic, pure N, environments
7 N
Harsh environments for experimentation
* High operating pressures and low temperatures require rugged construction
e High dynamic pressures
* Limited optical access
e Vibrations and mobile test sections
* Condensation of water and trace gases in and around facilities

NASA Langley 0.3-m TCT frozen over
after cryogenic operation
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Background and motivation

Successfully implemented a velocimetry system in NASA LaRCs TCT facilities (NTF, 0.3-m TCT) utilizing FLEET

(Femtosecond Laser Electronic Excitation Tagging) velocimetry (Princeton)
* Unseeded optical velocimetry technique
* Femtosecond laser focused to dissociate/ionize molecular N,
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Background and motivation

Successfully implemented a velocimetry system in NASA LaRCs TCT facilities (NTF, 0.3-m TCT) utilizing FLEET
(Femtosecond Laser Electronic Excitation Tagging) velocimetry (Princeton)
Unseeded optical velocimetry technique
* Femtosecond laser focused to dissociate/ionize molecular N,

iE

NTF — Orion Crew Capsule (2022)

Measured two-dimensional planes of velocity in the wake of a scale Orion model
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in the Wake of the Orion Crew Capsule at the National Transonic Facility,” AIAA SciTech 2023

Single-Component Average Velocity Profiles
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A minimally infrusive molecular tagging instrument measured single-component average
velocity profiles in two planes in the wake of the Orion capsule with different heat shield
configurations in the National Transonic Facility at the NASA Langley Research Center.
Reynolds number effects at subsonic conditions have proven difficult to predict due to the
largely separated wake flow. Therefore two measurement planes in the wake of the model
were probed to measure the wake profile for different heat shield configurations and act as a
0 validation reference for computational tools. Air testing included Mach numbers of 0.3, 0.5,
and 0.7 at Reynolds numbers of 5.3 and 7.5 million. In cryogenic nitrogen, the instrument was
employed under transient conditions during the facility warm up at M =0.3 with decreasing
50 Reynolds numbers from 16 million. An exhaustive list of the results is shown and diseussed
here. For free transition heat shield configurations, the size of the wake was found to increase
with Mach number, yet remain constant with Reynolds number for low (M = 0.3) and high (M
=0.7) subsonic Mach numbers. However, intermediate Mach numbers (M = 0.5) showed that
the wake was smaller at higher Reynolds numbers for the IDAT heat shield. The addition of
surface roughness in the form of grit, known as the fixed transition cases, negated any Mach
number dependence to the wake profile and increased the size of the walke for all cases.
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Background and motivation

Transition to particle-based measurements

* While the implementation of FLEET was successful in certain flow regimes at the NTF, to date FLEET has not been successful during the
highest-Reynolds-number part of the operational envelope
* Practical limitations of LPS and measurement geometry

Naturally-occurring particles have been observed over most of the operational envelope in both NASA LaRC TCT facilities
* Detailed by Herring et al. NASA/TM-2015-218800

Since artificial seeding is a nonstarter in the NTF, need to characterize the aerodynamic behavior of the naturally occurring particles
before they can be utilized for diagnostics

Particles in warm Air (dust?), cool and cold N,. (water ice*, LN,)

FLEET in Cryo (40 psia) Particles in Cryo (40 psia)
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Test Objectives for Current Work at 0.3 m TCT

Establish and test a framework by which naturally-occurring particles can be assessed in situ for their

aerodynamic performance
* Tests were carried out in the NASA LaRC 0.3-m TCT (pilot facility for NTF)
* Particles are known to be present over most of the operational envelope in this facility as well

e Test was divided into two phases
* Phase 1: assess particle aerodynamic response across a normal shockwave (How big are the particles?)

* Phase 2: observe practical behavior of particles under high-lift operating conditions (sensitivity to flow separation)
(Will the particles track the separated flow?)
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Experimental Setup
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Experimental Setup

The NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT)
e Continuous, closed-circuit wind tunnel operating with air or N,

* Mach number range: 0.2 to 0.9

* Total pressure range: 100 kPa to 500 kPa

* Total temperature range: 95 K to 320 K

* Double-shelled construction
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Diagram of 0.3-m TCT facility
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Experimental Setup

The NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT)
* Continuous, closed-circuit wind tunnel operating with air or N,

* Mach number range: 0.2 t0 0.9

* Total pressure range: 100 kPa to 500 kPa

* Total temperature range: 95 K to 320 K

* Double-shelled construction

Flow direction
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Experimental Setup

The NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT)
* Continuous, closed-circuit wind tunnel operating with air or N,

Mach number range: 0.2 to 0.9

Total pressure range: 100 kPa to 500 kPa

Total temperature range: 95 K to 320 K

Double-shelled construction

/ Pressure shell

Flow direction

- Plenum
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Experimental Setup

The NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT)
* Continuous, closed-circuit wind tunnel operating with air or N,

Mach number range: 0.2 to 0.9

Total pressure range: 100 kPa to 500 kPa

Total temperature range: 95 K to 320 K

Double-shelled construction

/ Pressure shell

—= |nner test section

Flow direction

- Plenum
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Experimental Setup

The NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT)

* Continuous, closed-circuit wind tunnel operating with air or N,

* Mach number range: 0.2 t0 0.9

* Total pressure range: 100 kPa to 500 kPa

* Total temperature range: 95 K to 320 K

* Double-shelled construction

* Optical access: outer pressure shell window + two windows in turntable

/ Pressure shell
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Flow direction
Outer window
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Experimental Setup

The NASA Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT)

* Continuous, closed-circuit wind tunnel operating with air or N,

* Mach number range: 0.2 t0 0.9

* Total pressure range: 100 kPa to 500 kPa

* Total temperature range: 95 K to 320 K

* Double-shelled construction

* Optical access: outer pressure shell window + two windows in turntable

/ Pressure shell

- |nner test section

Inner ‘D’-window

Flow direction

~ Plenum
Inner rectangular window
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Experimental Setup, Phase 1
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Experimental Setup, Phase 1

Phase 1 Studies — Assess aerodynamic behavior of naturally-occurring particles through a normal shock
e Ultimately utilized a full-span, supercritical airfoil to generate shock
e SC(3)-0712(B)
* Experiments were informed by a Self-Aligned Focusing Schlieren system (Weisberger et al., companion paper Friday)
Full-span airfoil provided the most positionally-stable shockwave of all available and tested models
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Experimental Setup, Phase 1

Laser and imaging systems
e Burst-mode laser

Center Wavelength | 532.217 nm

Pulse Duration 20 ns

Repetition Rate 20 kHz

Operating Mode Double pulse/ 2.5 or 5 us delay
Burst Duration 10 ms

Burst Period 12's
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Experimental Setup, Phase 1

Laser and imaging systems
e Burst-mode laser
* Beam directed through an external attenuator and astigmatism-correcting optics before being routed to test section
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Experimental Setup, Phase 1

Laser and imaging systems

e Burst-mode laser

 Beam directed through an external attenuator and astigmatism-correcting optics before being routed to test section

* Sheet forming optics near test section and an internal beam periscope to position sheet horizontally over the surface of
the airfoil

Motion-compensating periscopes
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Experimental Setup, Phase 1

Laser and imaging systems
e Burst-mode laser

 Beam directed through an external attenuator and astigmatism-correcting optics before being routed to test section
* Sheet forming optics near test section and an internal beam periscope to position sheet horizontally over the surface of

the airfoil

* High-speed CMOS camera viewed through same window, Scheimpflug mount and second internal periscope required

e Operated at 40 kHz to frame-straddle the double pulse from the burst-mode laser

From mezzanine
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Experimental Setup, Phase 1

Data Sample

» Scattering imaged through D-window (principally back-scatter, low intensity)
* Verylow SNR (O(1))
* Had to limit tunnel operating temperature to > 200 K (condensation within plenum)
* Performed particle tracking velocimetry (PTV) due to the low particle flux at this elevated temperature

Data were subjected to numerous pre- and post-processing steps to successfully identify particles and assess
displacements/velocity (see paper for more details)
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Visualization of wing, schlieren, shock and velocimetry

(Flow is right to left)

ux [mfs] 210 220 230 240 250 260 270 280 290 300 310 320




Results, Phase 1

Primary case — M_ =0.74, Pt =192 kPa, Tt =200 K, a = 4°
* Normal shock visible near upstream edge of measurement region
* Total shock movement detected to be ~10 mm over all measurements (smallest of all tested cases)

* Obvious effects of particle inertia in integrated velocity traces

Ensemble averaged 2D velocity field
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Results, Phase 1

Primary case — M_, =0.74, Pt =192 kPa, Tt =200 K, a = 4°

[1] Loth, E., “Compressibility and Rarefaction Effects on Drag of a Spherical Particle,” AIAA Journal, Vol. 46, No. 9, 2008.

[2] Williams, OJH, Nguyen, T., Schreyer, AM, and Smits, AJ, “Particle response analysis for particle image velocimetry in supersonic flows,”
Physics of Fluids, Vol. 27, 2015.

[3] Hall, RM, “Pre-Existing Seed Particles and the Onset of Condensation in Cryogenic Wind Tunnels,” V[GYAN
AIAA 22nd Aerospace Sciences Meeting, 1984.

Normal shock visible near upstream edge of measurement region
Total shock movement detected to be ~10 mm over all measurements (smallest of all tested cases)
Obvious effects of particle inertia in integrated velocity traces
Velocity traces fit for particle response using relations of Loth [1] with correction by Williams [2]
e Composition unknown, assumed both LN2 and water ice
Mean particle diameter lied between 1.6 and 1.9 um, with the overall range between 0.2 and 3.5 um
Previous measurements (~40 years ago) by Hall et al. found the most prevalent particle diameter to be around 3 um
with significant variance in the measurement [3]
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Experimental Setup, Phase 2
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Experimental Setup, Phase 2

Phase 2 Studies — Assess particles for sensitivity to flow separation under high-lift tunnel operating conditions and model
geometry

* Low-Mach-#, High-a

» Stand-in for conditions experienced in upcoming (possibly ongoing CRM-HL experiments in the NTF)

e Semi-span airfoil used in the studies
* NACA 65A006 airfoil
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Experimental Setup, Phase 2

Laser and imaging systems
e Burst-mode laser

Burst-mode laser

N
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Center Wavelength | 532.217 nm
Pulse Duration 20 ns
Repetition Rate 100 kHz
Operating Mode Single pulse
Burst Duration 10 ms

Burst Period 12's
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Experimental Setup, Phase 2

Laser and imaging systems
e Burst-mode laser
 Beam directed through an external attenuator and sheet-forming optics on upper mezzanine
e Laser sheet transmitted to test section area and through plenum and test section via numerous mirrors
* Sheet passed over model at an oblique angle (~¥55° WRT streamwise direction)
* Final dimensions ~40 mm (height) x 5 mm (thickness)

Motion-compensating periscopes

From mezzanine

‘-----t\
//ﬁ';é

AN

—————————

Burst-mode laser

A/2-plate  ———_ _ Plenum
@ Ny \

External attenuator

—

Test section

Airfoil

e ::> model "

Periscope to
test section

Plenum o V[GYAN



Experimental Setup, Phase 2

Laser and imaging systems
e Burst-mode laser
 Beam directed through an external attenuator and sheet-forming optics on upper mezzanine
e Laser sheet transmitted to test section area and through plenum and test section via numerous mirrors
* Sheet passed over model at an oblique angle (~¥55° WRT streamwise direction)
* Final dimensions ~40 mm (height) x 5 mm (thickness)
e High-speed CMOS synced with laser and imaged through outer pressure-shell window and internal slot window

Motion-compensating periscopes
High-speed
CMOS camera
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Experimental Setup, Phase 2

Data Sample

* Because the camera is aligned (orthogonal) to the streamwise direction measurement, measurement is principally
detecting streamwise movement of the particles (through the thickness of the laser sheet)

* Particle tracking velocimetry (PTV) performed on data after preprocessing of images

Measurement plane not in
streamwise direction

Sample data (background subtracted)
(Mach 0.25, AoA 8 deg)
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Results, Phase 2

Streak images
e Constructed from preprocessed data, allow the visualization of particle trajectories over time
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Results, Phase 2

Streak images
e Constructed from preprocessed data, allow the visualization of particle trajectories over time
 a = 8°: Uniform tangential motion in areas above and below airfoil

M_=0.25, & = 8°




Results, Phase 2

Streak images

e Constructed from preprocessed data, allow the visualization of particle trajectories over time
 a = 8°: Uniform tangential motion in areas above and below airfoil

* a =10° Intermittent reversed and stagnant motion on top surface of airfoil (incipient separation)

M,,= 0.25, a = 10°




Results, Phase 2

Streak images

e Constructed from preprocessed data, allow the visualization of particle trajectories over time

 a = 8°: Uniform tangential motion in areas above and below airfoil

* a =10° Intermittent reversed and stagnant motion on top surface of airfoil (incipient separation)

 «a =12° Continuous region of reversed and stagnant flow on upper airfoil surface (complete separation)

M_=0.25, & = 12°




Results, Phase 2

Streak images

e Constructed from preprocessed data, allow the visualization of particle trajectories over time

 a = 8°: Uniform tangential motion in areas above and below airfoil

* a =10° Intermittent reversed and stagnant motion on top surface of airfoil (incipient separation)

 «a =12° Continuous region of reversed and stagnant flow on upper airfoil surface (complete separation)
* «a =13° Streamwise/spanwise expansion of separated region

M_=0.25, & = 13°




Results, Phase 2

Mean velocity fields

3D orietation of vectors
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Results, Phase 2

Mean velocity fields
» Reflect general observations made in streak images
« a =8°:Flow is uniformly tangent to airfoil surface, obvious gradient in velocity on underside of airfoil

M,.= 0.25, & = 8°
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Results, Phase 2

Mean velocity fields

» Reflect general observations made in streak images

« a =8°:Flow is uniformly tangent to airfoil surface, obvious gradient in velocity on underside of airfoil

« a =10° No mean reversed of stagnant flow observed on upper surface, region of decreased velocity (consistent with IS)

M,.= 0.25, & = 10°

|u| [m/s]: 10 20 30 40 50 60 70 80 90 100 106.25




Results, Phase 2

Mean velocity fields

» Reflect general observations made in streak images

« a =8°:Flow is uniformly tangent to airfoil surface, obvious gradient in velocity on underside of airfoil

« a =10° No mean reversed of stagnant flow observed on upper surface, region of decreased velocity (consistent with IS)
« a =12°: Large region of separated flow on upper surface, region appears to be stagnant (slightly reversed near surface)

M= 0.25, a = 12°
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Results, Phase 2

Mean velocity fields

» Reflect general observations made in streak images

« a =8°:Flow is uniformly tangent to airfoil surface, obvious gradient in velocity on underside of airfoil

« a =10° No mean reversed of stagnant flow observed on upper surface, region of decreased velocity (consistent with IS)
« a =12°: Large region of separated flow on upper surface, region appears to be stagnant (slightly reversed near surface)
» «a = 13° Expansion of the separated region, region of stagnant flow expanded and shifted downstream/medial

M,.= 0.25, & = 13°
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Summary and Conclusions

» After years of modestly successful FLEET velocimetry measurements in NASA LaRC’s TCT facilities, shifting toward
particle-based measurements due to insufficient performance of FLEET over full operational envelope in the NTF
* However it is beneficial to have two measurement techniques operating on different principles
* Naturally-occurring particles a likely candidate for their prevalence
* Need to further assess the aerodynamic performance of the particles
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Established and tested a framework in NASA LaRC’s 0.3-m TCT for in situ particle response assessment
* Use of a normal shockwave generated by an airfoil to induce velocity lag
* A posteriori assessment of velocity distributions in separated flows
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Summary and Conclusions

Phase 1 Studies: Performed a particle response assessment using a supercritical airfoil to generate a normal shockwave
* Found stable operating conditions using SAFS system

Mean particle diameter found to lie between 1.6 and 1.9 um and ranged from 0.2 to 3.5 um
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Phase 2 Studies: Observed and measured particle behavior in representative high-lift conditions for sensitivity to separated flow
* Transition from fully attached to fully separated detected from 8° to 13° angle of attack sweep

Velocity distribution within separated flow regions indicate a small fraction of particles (5-7 %) unresponsive to the separated regions
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Results, Phase 2

Velocity distributions (probability density functions)
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Sampled in low velocity/separated flow region

At lowest angle of attack (8°), see focal clusters consistent with uniform tangential motion seen in the mean velocity field
For all other cases, see much larger variance in the measured velocities (streamwise particularly) with a shift to lower
and negative velocities at the highest angles of attack

Long tails on the streamwise velocity distributions suggests larger particles unable to track with separation (5-7% total
probability)
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Background and motivation

Successfully implemented a velocimetry system in NASA LaRCs TCT facilities (NTF, 0.3-m TCT) utilizing FLEET

(Femtosecond Laser Electronic Excitation Tagging) velocimetry (Princeton)
* Unseeded optical velocimetry technique
* Femtosecond laser focused to dissociate/ionize molecular N,

iE

0.3-m TCT — Transonic Airfoil (2016)
* Measured 2-component velocity profiles around a transonic airfoil model

ATAA JOURNAL .
Vol. 55, No. 12, December 2017
Updates

Unseeded Velocity Measurements Around a Transonic Airfoil

Using Femtosecond Laser Tagging
Plenum Test Section Plenum T T T
500 Ross A. Burns* and Paul M. Danehy?
® Froxlliser AT m / S ] NASA Langley Rﬂ('::;.h‘ :;Li:,/rl,]lnl:‘n:mn, Virginia 23681

Region Femtosecond laser electronic excitation tagging velocimetry was used to study the flowfield around a symmetric,

transonic airfoil in the NASA Langley Research Center’s 0.3 m transonic eryogenic tunnel facility. A nominal Mach
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Burns, RA and Danehy, PM, “Unseeded Velocity Measurements Around a Transonic Airfoil Using Femtosecond Laser Tagging,”
AlAA Journal 2017
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Background and motivation

Successfully implemented a velocimetry system in NASA LaRCs TCT facilities (NTF, 0.3-m TCT) utilizing FLEET

(Femtosecond Laser Electronic Excitation Tagging) velocimetry (Princeton)
* Unseeded optical velocimetry technique
* Femtosecond laser focused to dissociate/ionize molecular N,

iE

NTF — CRM Wake Velocity (2018)
* Measured two-dimensional velocity field in wake of the common research model in the NTF
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