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Dual Uplink Entanglement Swap

• Entanglement sources at 
both ground stations send 
qubits to satellite

• Optical Bell state 
measurement on satellite 
entangles remaining qubits 
at ground stations

Dual Uplink

Satellite

Ground 
Terminal 

Ground 
Terminal 

•  Entanglement swap rate is sensitive to loss over ground-to-space path
     – Proportional to product of irradiances of two uplink beams at satellite

•  Atmospheric turbulence introduces wavefront aberration that spreads
   the uplink beam and reduces irradiance at the quantum satellite

•  Adaptive-optics is effective way to compensate turbulence-induced loss,
   but performance can be limited by point-ahead angular offset

EIRP = Equivalent Isotropic Radiated Power (Irradiance * 4pRange2)

Point-ahead problem:
Laser must be pointed 
ahead of target; uplink 
and downlink paths do 

not overlap
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Uplink Adaptive Optics Approaches

•  Use the downlink beam from target satellite as the adaptive-optics
     – Regret: Large anisoplanatism loss

•  Project a synthetic beacon (laser guide star) in the point-ahead
   direction and use the return as the adaptive-optics beacon
     – Regret: Loss caused by tilt anisoplanatism
       Weak laser-guide star-return inadequate for
         high-performance compensation

•  Place a satellite (cubesat) in the point-ahead direction to
   provide adaptive-optics beacon
     – Regret: Requires additional satellite and accurate satellite positioning

•  A-O performance with satellite beacon(s) addressed in following charts
     – Multiple combinations of beacon satellite number and position analyzed
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Satellite Orbits

•  Analysis performed for sun-synchronous orbit for notional ground sites at
    NASA Goddard Space Flight Center and MIT Lincoln Laboratory
     – Orbit altitude = 567 km, Inclination = 97.6 deg
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Analysis Methodology

•  Combination of theoretical and empirical models used to calculate impact of individual effects that limit
   adaptive-optics compensation of atmospheric turbulence; individual effects then combined to estimate
   overall Strehl ratio* for uplink beam 
   Terms modeled in analysis include:

   • Deformable mirror (DM) fitting error: sf2 ⍺  (d/ro)5/3

   • Wavefront sensor sampling error: sf2 ⍺  (d/ro)5/3

   • Residual phase error (finite correction bandwidth): sf2 = F(fG, fBW)
   • Residual jitter (finite tracking bandwidth): sf2 = F(fT, fBW)
   • Wavefront sensor measurement noise: sf2 = F(S, ne)
   • Angular anisoplanatism:  Strehl = F(q/qo, D/ro, Cn

2)
         D = telescope aperture
         d = WFS subaperture diameter
         S = signal in WFS subaperture
         ne = WFS camera read noise
         fBW = correction bandwidth of a-o system
         l = 0.78 µm
         ro = atmospheric coherence diameter (m)
 qo = isoplanatic angle (rad)

                   fG = Greenwood (phase) frequency (Hz)
                   fT = Tyler (tracking) frequency (Hz)

 

System
Parameters

Channel
Parameters

ro

qo

fG

fT

* Strehl Ratio = on-axis intensity / diffraction-limited on-axis intensity
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Point-Ahead Anisoplanatism

•  Isoplanatic error is the wavefront difference between the measured
    and corrected paths 
     – Point-ahead isoplanatic error limits the quality of the correction (Strehl
        ratio) of the uplink beam

•  Anisoplanatic error is a function of (qpa/qo) and (D/ro)
     – Isoplanatic angle, qo, and the coherence diameter, ro, depend on the
        strength and distribution of turbulence along the path

•  Typical values for l = 0.78 µm:
     – HV-5/7 Cn

2 (moderate strength)
        30°        60°  elevation
          ro =        5.63 7.82  cm
         qo =        3.94 9.48  µrad
     – HV-3/5 Cn

2 (stressing)
       30°   60°  elevation
         ro =        3.37 4.69  cm
         qo =        2.81 6.77  µrad

Figure from J. Herrmann, Point-Ahead Anisoplanatism,
  MITLL Project Memorandum 54PM-SWP-0014, Dec. 1990
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Propagation-Code Simulation

• Propagation code simulates a-o correction of uplink beam
     – Performs numerical simulation of laser beam propagation through turbulence
     – Includes numerical simulation of adaptive-optics system
    – Higher fidelity than scaling-law analysis because all degrading effects
        included together, but very time-consuming to run; typically simulate
        specific point(s) in a pass

•  Simulation steps include:
     – Propagate beacon beam down through atmosphere
     – Measure wavefront of beacon in wavefront sensor
     – Apply wavefront correction to outgoing uplink beam
     – Propagate uplink beam back through atmosphere with point-ahead offset
            - Calculate Strehl ratio from time-averaged beam profile at target

•  Code includes:
     – Shack-Hartmann wavefront sensor w noise
     – MEMS deformable mirror 
     – Slew-driven dynamics
     – Finite phase and tilt control-loop bandwidth
     – Kolmogorov phase screens (turbulence)

Compensated

Uplink Beam at Target

Uncompensated

10 m

•  Conditions:
    – 10-kHz WFS sample rate
    – HV-5/7 turbulence model
    – D = 1 m, 33 DM actuators across aperture
    – beacon and uplink wavelength = 0.78 µm
    – 0.5-sec duration of simulation (5000 time steps)
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Comparison of Propagation Code and Models

• Propagation-code simulations run for discrete points in pass for uplink from MITLL site
     – Considered sun-synchronous orbit used in theory/model calculations (97.6° inclination)
     – Simulated operation with fixed beacon and agile beacon (no in-track pointing error)

Discrete points
 are simulation
 results

Pass achieves maximum
 elevation = 63 deg

Net pointing error applies
 to case with fixed beacon

No out-of-track error applies
 to agile beacon maintained at
 in-track point-ahead position

Very good agreement between semi-empirical model and prop code
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Uplink Performance and Link Figure of Merit

•  Uplink Strehl ratio calculated as function of zenith angle for variety of a-o system design parameters,
    atmospheric conditions, orbit inclinations, and beacon position
    

• Entanglement swap rate scales as product of uplink irradiance
  from each site
    – Irradiance of single uplink scales as Strehl * (D/Range)2,
     – Define Figure of Merit for quantum performance: 
             Figure of Merit = [(Strehl*(D/Range)2]Site 1 * [(Strehl*(D/Range)2]Site 2 
     – Figure of Merit integrated over pass allows comparison of different orbits
         and beacon configurations

Assumed conditions: 
    – HV-5/7 turbulence models
     – Bufton wind with 25 mph ground wind
     – Wavelength = 0.78 µm (beacon and uplink)
     – 500-km circular orbit, overhead pass
     – D = 1 m (telescope aperture diameter)
     – 10 kframes/sec WFS frame rate
     – 33 actuators across aperture (dsubap ~ 3 cm)
     – Orbit inclination  = 30 deg
     – Beacon position = 25 m

Integrated FOM = 328
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Case 1: Single Fixed Beacon

Integrated Figure of Merit = 231.1 sec

•  Uplink beams propagated from two ground sites to quantum satellite with
   single lead-ahead beacon satellite
     –  Lead-ahead beacon position fixed at 33 m ahead of quantum satellite throughout pass

– Orbit passes mid-way between ground sites (longitude -67.65°)
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Case 2: Single Agile Beacon

•  Uplink beams propagated from two ground sites to quantum satellite with
   single lead-ahead beacon satellite
     –  Lead-ahead beacon position continuously adjusted during pass to maximize
          figure of merit

– Orbit passes mid-way between ground sites (longitude -67.65°)

Integrated Figure of Merit = 269.1 sec
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Case 3: Dual Fixed Beacons

•  Uplink beams propagated from two ground sites to quantum satellite with
   two lead-ahead beacon satellites
     –  Lead-ahead beacon positions fixed at 32 m (MITLL) and 41 m (Goddard) ahead of
         quantum satellite

– Orbit longitude shifted to pass closer to MITLL (longitude -65°)

Integrated Figure of Merit = 204.1 sec
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Case 4: Dual Agile Beacons

•  Uplink beams propagated from two ground sites to quantum satellite with
   two lead-ahead beacon satellites
     –  Lead-ahead beacons continuously adjusted to be in correct lead-ahead positions

–  Orbit passes mid-way between ground sites (longitude -67.65°)

Integrated Figure of Merit = 362.8 sec
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Performance v. Orbit Longitude

•  As plane of orbit rotates around Earth, sites will see different maximum elevations
     –  Potential for entanglement swap ends when maximum elevation from either site drops below horizon

•  Integrated Figure of Merit for uplinks calculated for orbits spanning useful range of longitudes
   where maximum elevation for both sites is at least 30 deg
     – Approximate ranges of equator-crossing longitudes:  - 74.5 to -61.6 deg
     – Calculations performed for several beacon configurations (1 or 2, fixed or agile)

• Curves show minimum beacon
   distances from quantum
   satellite as function of orbit
   position
•  Optimum beacon position
    varies over course of pass
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Integrated Figure of Merit – Single Beacon

•  Single satellite provides beacon 
for both ground sites

•  Integrated Figure of Merit 
calculated as function of single-
beacon position for 3 orbits in 
order to find best position for 
fixed beacon
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Comparison of Beacon Configurations

•  Figure of merit integrated over entire pass (above 20° elevation) as function of longitude of 
   567-km sun-synchronous orbit

•  Four beacon configurations modeled:
     – Single beacon satellite for both uplink sites, 
         positioned ahead of pass at best position; not
         moved during pass (1 Fixed Beacon)
     – Single beacon satellite for both uplink sites, 
         continually adjusted throughout pass to be
         in best position (1 Agile Beacon)
     – Two beacon satellites, one for each uplink sites, 
         each positioned ahead of pass at best 
         position; not moved during pass (2 Fixed
         Beacons)
     – Two beacon satellites, each continually adjusted
         during pass to be in correct point-ahead 
         position (2 Agile Beacons)
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Summary

•  Dual-uplink entanglement swap rate is sensitive to loss over ground-to-space channel
     – Loss can be minimized with large transmission apertures if adaptive-optics is employed to compensate
        atmospheric-turbulence-induced wavefront aberration

•  Point-ahead problem for uplink compensation can be overcome by positioning beacon satellite
   ahead of the quantum satellite
     – Dedicated beacon can provide strong signal for wavefront sensor as well as minimize angular anisoplanatism

•  Multiple options for configuring satellite beacons examined to determine impact on entanglement-
   swap rate for a pair of ground-based transmitters
     – Examined use of single beacon and two beacons, with position fixed throughout pass or continually adjusted
        to optimize entanglement swap rate 
   – Results intended to inform system architecture of future dual-uplink entanglement swap demonstration
    


