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Accurate prediction of integrated aerodynamic forces and moments is a necessary part of

aerospace vehicle development. This accuracy can be quantified in the form of an uncertainty

model, which makes the prediction more useful within an integrated vehicle design effort.

Aerodynamic force and moment databases were constructed for the Artemis I mission of

the Space Launch System vehicle. These databases reconcile data from multiple sources to

yield unified predictions of how NASA’s most advanced launch vehicle interacts with Earth’s

atmosphere as it ascends into orbit. This paper outlines how the uncertainty quantification

was performed for these databases to ensure comprehensive and tractable uncertainty source

coverage.

Nomenclature

D = database model functional representation

𝑑2 = bias correction factor for the range method

𝐹 = uncertainty factor

M = mission stage functional representation

𝑁 = number of measurements in a repeated sample set

®𝑝 = parameter space vector, e.g., (𝛼, 𝛽)

®𝑞 = vector of quantities of interest, e.g., axial, side, and normal integrated forces

𝑅 = range of residuals between multiple data sources

𝑅̄ = range of residuals averaged over the parameter space

®𝑢 = vector of one uncertainty source for all quantities of interest

𝛼 = body-centric aerodynamic incidence angle

𝛼𝑇 = missile-axis (total) aerodynamic incidence angle

𝛽 = body-centric aerodynamic sideslip angle

𝜎 = standard deviation
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Abbreviations

ARC = NASA Ames Research Center

AUPWT = ARC Unitary Plan Wind Tunnel

BPSWT = Boeing Polysonic Wind Tunnel

CFD = Computational Fluid Dynamics

F&M = Forces and Moments

LaRC = NASA Langley Research Center

LUPWT = LaRC Unitary Plan Wind Tunnel

MC = Monte Carlo

MPCV = Multi-purpose Crew Vehicle

MSFC = NASA Marshall Space Flight Center

NASA = National Aeronautics and Space Administration

RM = Range Method of approximating a standard deviation

SLS = Space Launch System

SM = Service Module

UQ = Uncertainty Quantification

I. Introduction

Aerodynamic databases perform a crucial function in the design of launch vehicles like the Space Launch System

(SLS) [1]. Especially with vehicles whose first flight is also its first mission, the physics at play throughout

the flight profile must be assessed from all viable perspectives, lest the cargo and crew be at more risk than has been

anticipated. But every prediction has its own band of likely variation: its uncertainty. With any large-scale design effort,

the complexity of the system can make the uncertainty space intractable without proper attention. This stems from

the fact that different vehicle characteristics must be predicted independently. While these predictions are properly

dependent on one another, that interdependence cannot be reconciled during the individual prediction efforts.

This reconciliation is instead performed by integrated multidegree-of-freedom Monte Carlo (MC) trajectory

simulations [2–4]. The MC approach is well established [5–7]; it enables multiple, often disparate inputs that collectively

characterize a system of interest to yield a coherent distribution of likely outputs. In other words, multiple prior

distributions (e.g., aerodynamic forces on vehicle components, rocket engine thrust models, and structural deformation

estimates) are fused through the system of governing equations to yield a single vector of posterior distributions (e.g.,

multiple possible rocket trajectories to orbit as a function of time).

The SLS design cycle quantifies all known uncertainties introduced within each of these independent prediction sets:
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the requisite priors for the MC simulations. The reasoning is straightforward: rigorous accounting for uncertainties

within each data source will yield a rigorous distribution of vehicle behavior via the MC simulations. Without quality

priors, quality posteriors are unobtainable.

Aerodynamic force and moment (F&M) databases – the focus of this paper – are one category of vehicle trajectory

MC inputs [8, 9].∗ The databases must anticipate how the vehicle interacts with the atmosphere on an integrated

level: the net, six degree-of-freedom loading induced by the external aerodynamics and the rocket engines. Due to the

nonlinearity of the mission fluid flows, which range in category from high-incidence subsonic regimes to multibody

engine plume-dominated supersonic regimes to chemically active hypersonic regimes, the F&M predictions require

a great deal of high-fidelity data to be collected [10]. The uncertainty of these data must be quantified to be 1) as

comprehensive as possible and 2) compatible with the MC integration process.

More than a decade of effort yielded aerodynamic F&M databases – among many others – rigorous enough that the

successful Artemis I mission in November 2022 flew nominally through the MC-simulated trajectory window. In this

paper, the uncertainty quantification procedure for all SLS Artemis I aerodynamic F&M databases will be outlined. In

Section II, all utilized data sources will be outlined and the nature of their uncertainty quantification will be discussed.

In Section III, the individual Artemis I aerodynamic F&M database uncertainty models will be detailed. It will be

shown that, although a unified UQ philosophy was applied across all presented databases, each database yielded a

different – though structurally identical – uncertainty model.

II. Data and Uncertainty Sources
Uncertainty for all Artemis I SLS aerodynamic databases are regarded to stem from three sources, which collectively

separate reality from the database representation. As outlined in Figure 1, these sources are representation error,

sampling error, and database assembly error. Both epistemic and aleatoric uncertainties can be quantified within each

of these steps, depending on which processes are employed. Whereas measurable uncertainties yield nominal value

variances, which can be combined via a root-sum of squares when they are assumed to be independent, the relative

fidelity of those variances is accounted for with uncertainty factors 𝐹 ≥ 1 that scale the variances within the total

model. Uncertainty sources may differ in form and significance depending on what data are used to generate a database.

For wind tunnel test data, representation error is usually small as long as the tunnel can match the flight conditions

while sampling error may be larger due to calibration and repeatability errors; in contrast, for computational data,

representation error is usually larger due to the approximation of the flow physics while sampling error is usually very

small because the simulation can be recorded with numerical precision. Database assembly error tends to increase with

database scope: the more (potentially disparate) flow physics a single database must capture, the more its assembly
∗Although the SLS design effort employs aerodynamic databases that do not comprise integrated forces and moments, these non-F&M databases

are out of the scope of this paper.
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process will influence the total uncertainty.
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Fig. 1 Representation of uncertainty sources that separate an aerodynamic database from the reality that it
strives to represent.

For SLS aerodynamic databases, only output uncertainties are measured to capture these three major error sources.

An alternative process would be to directly quantify uncertainty due to data source-specific inputs, e.g., wind tunnel

flow uniformity or a simulation grid resolution. Output uncertainties were selected over input uncertainties because of

the many data sources employed across the myriad databases and the resulting uncertainty quantification procedure

consistency. Such a decision naturally mandates that the outputs capture an acceptable spectrum of inputs; this was

ensured on a data source-by-data source basis. For example, a wind tunnel repeatability uncertainty, which captures the

experimental representation error, stems from observations at repeated conditions that are dispersed throughout the test

matrix, or even across several tests, such that a spectrum of test condition deviations collectively inform the resulting

output differences. This procedure is consistent with the general methodology developed during the Ares I program

[11, 12].
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A. Data Creation and Recording

While data creation focuses on obtaining nominal aerodynamic F&M values, the creation process itself introduces

quantifiable uncertainty sources. Data sources can be loosely gathered into three categories: experimental data, namely

from wind tunnel tests; computational data from physics-based simulations; and flight data from a relevant vehicle. In

the case of the SLS, no relevant flight data existed prior to its first (successful) flight in November 2022. As such, the

aerodynamic F&M databases were based solely on experimental and computational data.

1. Experimental Data

Nominal data were collected in several wind tunnels: the Langley Research Center (LaRC) 14- by 22-Foot Subsonic

Tunnel (14×22), the Ames Research Center (ARC) Unitary Plan Wind Tunnel (AUPWT), and the Boeing Polysonic

Wind Tunnel (BPSWT). Additional wind tunnel tests were conducted in the Marshall Space Flight Center (MSFC)

14-inch Trisonic Wind Tunnel and the LaRC Unitary Plan Wind Tunnel (LUPWT) to support uncertainty quantification.

Select test model images are shared in Figure 2.

Fig. 2 SLS wind tunnel test models in the LaRC 14×22-foot tunnel (top left) and the AUPWT (bottom) and a
mid-test schlieren image of the test model in the LUPWT (top right) [Source: NASA].

Each wind tunnel follows its own data management protocols due to differences in facility functionality, data

acquisition hardware, and test objectives. While the SLS tests obtained the aerodynamic F&M data relevant to this

paper, in many cases a single wind tunnel test gathers data for multiple objectives at the same time; e.g., surface pressure
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estimates via pressure-sensitive paint to reinforce distributed loads databases used in structural analyses.

Despite the idiosyncrasies of testing one launch vehicle in disparate wind tunnel facilities, the manner by which the

experimental data uncertainty is quantified generally follows the same protocols [13, 14]. Force balance calibration

uncertainty, the principal sampling uncertainty as defined in Figure 1, is computed by a controlled measurement of

known loads to capture 2𝜎 deviations between applied and measured values; these are extended to be 3𝜎 bounds in

agreement with SLS standards:

®𝑢cal = 3𝜎cal . (1)

The principal wind tunnel representation uncertainty is captured with replicated components of the test matrix: capturing

data at the same prescribed conditions multiple times and characterizing the differences in measured loads. While some

repeat runs are adjacent within the test matrix, other repeats are intentionally dispersed to provide a spectrum of input

alterations. This characterization is performed with a process known as the range method (RM).

Standard Deviations via the Range Method (RM) The range method is a technique founded in statistical process

control [15]. It is a method by which standard deviations of many samples can be estimated from the ranges of few

samples. The process is as follows:

1) interpolate data gathered at comparable conditions to numerically identical conditions, e.g., for two quantity of

interest vectors in the (𝛼 , 𝛽) space

®𝑞1 (4.27, −3.08)

®𝑞2 (4.31, −3.13)
→ ®𝑞1,2 (4.3,−3.1) ;

2) compute the average range of residuals within data groups of interest, e.g., from a residual range space

𝑅(𝛼, 𝛽) = | ®𝑞1 − ®𝑞2 | all 𝛽 measurements may be averaged together to yield an average residual range space 𝑅̄(𝛼);

3) approximate the standard deviation of the measurement variations by normalizing the average measurement

residual ranges with a coefficient 𝑑2

𝜎RM =
𝑅̄

𝑑2
(2)

where 𝑑2 is determined based on how many measurements 𝑁 were used to compute the residual range [15]:

𝑑2 (𝑁 = 2, 3, 4, 5) = (1.128, 1.693, 2.059, 2.326) .

In the example case where two repeated measurements ®𝑞1,2 determine the residual range, 𝑑2 = 1.128 would be

employed. The final step is to then
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4) multiply the computed standard deviation by three to determine the data repeatability uncertainty:

®𝑢rep = 3𝜎RM . (3)

Additional uncertainty factors are applied to account for unmodeled effects and additional uncertainty terms may

be introduced on a test-by-test basis (e.g., uncertainty introduced by fusing data from multiple tunnel tests), but the

calibration and repeatability uncertainties are mainstays of experimental data uncertainty quantification for all SLS

aerodynamic F&M databases.

2. Computational Data

When available experimental data sources cannot meet the requirements for a particular database, computational

sources instead provide nominal aerodynamic loads. For Artemis I F&M databases, the Cart3D inviscid flow solver

[16] provided all nonexperimental nominal data. The FUN3D [17], OVERFLOW [18], and Loci/Chem [19, 20] tools

provided additional data used in uncertainty quantification.

Cart3D is a structured-Cartesian-grid, inviscid flow solver with the capability to simulate flow physics in subsonic,

transonic, supersonic, and hypersonic flow regimes. The relatively low computational cost, paired with grid adaptation

capabilities, enables this solver to interrogate a very large parameter space with acceptable accuracy as well as acceptable

cost. An example of Cart3D grid refinement, in this case within the ascent stage discussed more fully in Section III.B, is

shown in Figure 3.

initial mesh

adaptation 1

adaptation 2

adaptation 3

adaptation 4

final adaptation

140k cells

210k cells

410k cells

1.2M cells

4.8M cells

16M cells

Fig. 3 An example of Cart3D grid refinement for flow around the SLS within the ascent mission stage.
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Output uncertainties, rather than input uncertainties, were measured for computational data sources. Computational

data input uncertainty quantification has been and remains an active area of research [21–24], but for SLS aerodynamic

databases such procedures were not implemented. Standard efforts such as grid resolution studies and turbulence model

comparisons were performed to substantiate the delivered data, but such efforts did not inform the uncertainty model.

Rather, similar flow conditions were simulated with multiple architectures – both computational and experimental,

where applicable – in order to assess the Cart3D predictive fidelity at an integrated level. Within these different

architectures, variations in grid resolution, grid adaptation, turbulence modeling, the inclusion of viscous effects, etc.

collectively informed differences in simulation outputs, which directly informed the uncertainty models. For example, it

is understood that OVERFLOW is a higher-fidelity viscous flow solver than Cart3D, but its higher computational cost

may not fit with the demands of a particular database. An example of the OVERFLOW grid adaptation and contours of

viscous, plume-affected flow solutions is presented in Figure 4.

engine plume boxes

adapted engine plumes

body plume boxes

adapted body plumes

Fig. 4 An example of OVERFLOW initial (top) and subsequent (bottom) grid refinement and notable flow
characteristics for flow around the SLS within the ascent mission stage.

To assess the significance of the differences in Cart3D and other representations of reality, the resulting force and

moment coefficients can be compared at a small number of parameter points more obtainable with higher-fidelity tools

and the resulting variations generalized to the entire data space. In the case of comparing to a wind tunnel test, this means

that Cart3D is set to replicate tunnel conditions instead of flight conditions for a more proper comparison. Quantifying

uncertainties from these code-to-code or code-to-tunnel comparisons accounts for the significant representation errors

inherent in flow simulation, as introduced in Figure 1 and is again computed with the RM.

B. Database Representations

Aerodynamic databases can be regarded as models for the loads of interest, which are defined continuously within

the parameter space that spans a particular mission stage. Given a state vector ®𝑝 (e.g., Mach number and body-centric

incidence angles 𝛼 and 𝛽) within the mission stage M, the database D returns a vector of nominal quantities of interest
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®𝑞𝑛 (e.g., total side and normal forces) and centered uncertainty margins ®𝑞𝑢 for those quantities.

D( ®𝑝) = ®𝑞𝑛 ± ®𝑞𝑢 ∀ ®𝑝 ∈ M (4)

These models are built using a finite amount of data, often from several data sources. The model fuses these myriad

discrete data sources into a single, unique-valued, continuous field of quantities of interest.

1. Response Surface Modeling

A response surface is a continuous quantity of interest field that is based on a sparse, discrete data set [25]. An

example is shown in Figure 5. Based on one of several possible continuous mathematical functions, the response surface

warps to fit all provided data within user-specified tolerances. For the liftoff and transition and ascent databases, a natural

interpolant was employed; for the booster separation database, because the Voronai diagram is ill-conditioned in high

dimensions, kriging was employed instead. The response surface can be fit to data from multiple sources, which enables

data fusion to be performed by the surface definition itself. The surface can then be sampled at much higher resolution

in the parameter space than is possible with the original data sources to yield deliverable, high-resolution data tables.†

As with other data-driven modeling techniques, it is standard practice to omit a fraction of the source data from the

response surface creation process [25]. Checking the response surface against these omitted data yields a quantification

of the surface predictive fidelity: how well it anticipates the quantities of interest where it was not given reference data.

If the response surface was not forced to pass through the training data as well, i.e., a higher fit tolerance was allocated,

then the training data also provides a quantification of predictive fidelity. The number of training and test points varied

from database to database, as detailed in subsequent sections of this paper, but consistent alignment of training and

testing point comparisons verified that an adequate number of points were generated. The response surface modeling

uncertainty is quantified from the surface-data comparisons, as with previous steps, via the RM where only a small

number of point comparisons are available.

2. Data Tabulation and Interpolation

In particularly large parameter spaces like the booster separation event database discussed in Section III.C, even

tabulating a response surface with as high a resolution as is tractable yields a relatively sparse database. The interpolation

of this sparse data space by the trajectory simulation codes may differ from the response surface predictions, and this

additional uncertainty source, where significant, must be accounted for. Test points and the RM are used to perform this

quantification just as they were used to quantify the response surface modeling uncertainty.
†Program requirements mandated the delivery of high-resolution data tables as opposed to response surfaces packaged, for example, within an

application programming interface.
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Fig. 5 Example response surfaces of two F&M coefficients (𝑞1 and 𝑞2) defined within a two-dimensional
parameter space (𝑝1 and 𝑝2). Points (only shown on top plot) denote discrete data that defined the response
surface.

III. Uncertainty Models throughout the Mission Profile
Several aerodynamic force and moment databases collectively cover the trajectory window through which the SLS

exits the atmosphere. As outlined in Figure 6, the vehicle rises vertically off a mobile launch tower and performs an

initial transitional roll maneuver, ascends at a relatively low incidence angle as its speed increases, separates its solid

rocket boosters, continues to ascend and accelerate until the service module panels and launch abort system jettison,

and then exits the atmosphere. The core stage separates after atmospheric effects are no longer significant; the launch

abort system jettison is managed by the Orion capsule research team and is thus out of the scope of this paper [26]. As

such, the service module panel jettison is the final mission milestone for which the SLS aerodynamics task team is

responsible. The following sections outline the aerodynamic uncertainty models that cover these mission stages for the

Artemis I flight.

A. Liftoff and Transition

The liftoff and transition mission stage sees the rocket separate from the tower and sweep from a high, wind-dominated

angle of attack to a low, velocity-dominated angle of attack. It is worth noting that aerodynamic transition occurs as the

rocket is lifting off and is not a function of ground-relative rocket pitch angle. Though entirely incompressible, the
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Core Stage Separation
– exoatmospheric

Launch Abort System Jettison
– modeled by Orion research team 

SM Panel Jettison – multi-body flow

Centerbody Ascent – supersonic and hypersonic

Booster Separation – multi-body flow dynamics, engine plume impingement

Full Stack Ascent – transonic and supersonic, maximum dynamic pressure

Liftoff and Transition – subsonic, maximum incidence

Fig. 6 Schematic of the Space Launch System Artemis I mission profile. Notable aerodynamic characteristics
are noted alongside the mission stages.

aerodynamic data space is sizeable, with angles of attack and sideslip ranging from -90° to 90°. Data are provided for

the integrated vehicle as well as for each booster individually. For the liftoff portion, the aerodynamic influence of the

tower is accounted for.

This database is founded solely on data from the LaRC 14- by 22-foot Subsonic Tunnel (14×22) [27]. A simplified

tower geometry was employed to reduce manufacturing costs without sacrificing test relevance. The booster loads

were measured independently from the full-stack loads. Data symmetrization was utilized where tunnel data could not

physically be collected in the liftoff portion. Natural interpolant response surfaces were generated from the collected

data and then sampled for higher-resolution database tabulation.

Due to the single data source, the uncertainty model is relatively straightforward. In the transition portion,

representation error and sampling error are collectively captured through balance calibration (®𝑢cal) and experiment

repeatability (®𝑢rep) errors; modeling error (®𝑢mod) is captured by comparing the database response surface to the

underlying wind tunnel measurements. Uncertainty factors for the experiment, 𝐹exp, and the database tabulation, 𝐹db,

were included to account for aleatoric uncertainties.

®𝑞transition
𝑢 =

√︂
𝐹exp

(
®𝑢2

cal + ®𝑢2
rep

)
+ 𝐹db ®𝑢2

mod (5)

The calibration term was provided by a balance specification sheet. The repeatability term was computed via the RM.

The response surface uncertainty was computed by comparing response surface values to exact tunnel measurements

and taking a 3𝜎 bound of the differences. All three components were computed within three separate total aerodynamic
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incidence windows: 0°–20°, 30°–60°, and 70°–90°. As such, the total uncertainty is a function of the same 𝛼-𝛽 data

space as is the nominal data table.

The liftoff model is structurally identical but introduces additional uncertainty terms for 1) the symmetry assumption

needed to fill missing data ranges (®𝑢sym) and 2) the lateral vehicle-tower proximity that can vary due to vehicle drift

during flight (®𝑢prx): respectively, additional epistemic and aleatoric uncertainties in the representation category. However,

because the uncertainty due to vehicle drift was concluded to be perfectly correlated with balance calibration uncertainty,

the balance calibration uncertainty was removed from the model and the repeatability uncertainty was doubled.

®𝑞liftoff
𝑢 =

√︂
2𝐹exp ®𝑢2

rep + 𝐹db

(
®𝑢2

mod + ®𝑢2
sym + ®𝑢2

prx

)
(6)

The symmetry term was computed by symmetrizing about different angles and comparing the resulting drift in trend. It

is set to zero outside of the symmetrized data range. The tower proximity term was computed by taking additional data

at slightly off-nominal lateral vehicle positions and applying a 3𝜎 bound to the observed changes in aerodynamic loads.

In addition to providing conservative buffers on the uncertainty terms, the uncertainty factors account for unmodeled

effects including differences between flight and wind tunnel Reynolds numbers, geometric differences between test and

flight like the tunnel structure simplification, and engine plume effects.

Representative uncertainty buildups are presented in Figure 7. Different uncertainty sources contributed more

significantly in different flight regions. Response surface modeling uncertainty was consistently lower or equivalent to

the other sources. Repeatability was dominant through the higher-incidence data range, which is to be expected due to

the complicated flow separation downstream of the vehicle. In the transition portion, calibration uncertainty was more

influential at lower aerodynamic incidences. In the liftoff portion, tower proximity and symmetry uncertainties were

both similar to the repeatability uncertainty in different F&M values.

B. Ascent

The ascent stage covers the rocket progression from the transition stage all the way up to where the atmosphere

becomes rarefied and aerodynamics no longer play a significant role in the vehicle trajectory [28]. The flow proceeds

from transonic to supersonic to hypersonic; the vehicle experiences its maximum dynamic pressure; the boosters and

eventually the Multi-purpose Crew Vehicle (MPCV) panels separate from the centerbody as it proceeds to orbit. The

aerodynamic incidence range is much more restricted than it is for the liftoff and transition database, but the Mach range

is far larger. An overlap in Mach ranges exists for the full-stack and centerbody database sections to account for variable

booster separation events.

The full-stack database was based on wind tunnel tests in the AUPWT and the BPSWT [29, 30]. Natural interpolant

response surfaces were constructed from the wind tunnel data and interrogated to build the final data tables. The
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Fig. 7 Representative uncertainty component buildups for the liftoff (left) and transition (right) F&M database
for side (𝑢𝐶𝑌 , top) and normal forces (𝑢𝐶𝑁 , bottom).

AUPWT data covered the lower end of the Mach range and the BPSWT covered the higher end. The overlapping Mach

region served as a source for uncertainty quantification with the AUPWT data being treated as the nominal source.

Simulations were conducted in FUN3D to augment the uncertainty model.

The centerbody database was constructed with over 1,000 inviscid simulations in the Cart3D solver distributed

uniformly within the data space. Due to their lack of impingement on the vehicle, the exhaust plumes were not modeled.

Due to the overall flow stability, pseudosteady rather than time-accurate Reynolds-averaged Navier-Stokes simulations

were conducted.

The full-stack uncertainty model is more complicated than the transition model due to the multiple data sources.

It comprises a buildup of balance calibration (®𝑢cal), test repeatability (®𝑢rep), response surface interpolation (®𝑢mod),
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ground-to-flight (®𝑢G2F), and tunnel-to-tunnel (®𝑢T2T ) uncertainties.

®𝑞ascent, full stack
𝑢 = 𝐹full stack

√√√√√√√√√2®𝑢2
cal + ®𝑢2

rep + ®𝑢2
mod

+®𝑢2
G2F + ®𝑢2

T2T

(7)

An uncertainty factor was added outside of the root-sum of squares, rather than on a term-by-term basis, so that it would

be structurally comparable to the uncertainty factor used in the centerbody uncertainty model described immediately

below. Calibration and repeatability uncertainties were computed with the standard procedure [31, 32]; the calibration

uncertainty was doubled to also account for in-test measurement adjustments, which are perfectly correlated with

calibration uncertainty. These two terms were computed for the lower Mach range from the AUPWT data and for the

higher range from the BPSWT data, due to those data sources providing the nominals in those ranges. The response

surface modeling uncertainty is itself a root-sum of squares

®𝑢2
mod = ®𝑢2

resub + ®𝑢2
interp (8)

computed by comparing response surface values to 1) tunnel measurements provided for surface creation (®𝑢resub) and 2)

tunnel measurements withheld during surface creation (®𝑢interp) and taking a 3𝜎 bound of the differences in both cases.

At some Mach ranges, interp data sets were unavailable. The observed differences between the response surfaces and

the tunnel data were counterbalanced by the repeatability uncertainty to ensure that it is not double-counted within

the model uncertainty; where ®𝑢mod < ®𝑢rep, the modeling uncertainty was set to zero. The ground-to-flight uncertainty,

which accounts for differences between the tunnel conditions and those experienced by the full-scale vehicle, was

computed by building two alternative response surfaces based on FUN3D data – one at tunnel conditions and another at

flight conditions – and comparing them to one another and recording the 3𝜎-bounded difference. The tunnel-to-tunnel

uncertainty captures the differences between tunnel measurements relative to the AUPWT data. As such, this term

vanishes in the lower Mach range because the source data are from the AUPWT; the BPSWT-based higher-Mach range

data have nonzero tunnel-to-tunnel uncertainties to account for this shift in source data. A small, global uncertainty

factor was applied for conservatism.

A representative buildup of the full-stack ascent uncertainty terms is presented in Figure 8. The ground-to-flight

uncertainty was dominant in most Mach ranges. The modeling and calibration uncertainties were more significant at

lower Mach ranges, whereas the repeatability uncertainty varied in significance both across Mach ranges and between

coefficients.

The centerbody uncertainty model only has one term: a code-to-tunnel uncertainty (®𝑢C2T ) computed by comparing

the Cart3D simulations to data from the MSFC 14-inch Trisonic wind tunnel. Directly measurable sampling errors in
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Fig. 8 Representative uncertainty component buildups for the full stack ascent F&M database for side (top)
and normal forces (bottom).

the simulation were small enough that they were neglected. The Cart3D data were directly delivered as the database

table, so no additional data modeling uncertainty was introduced. As such, the root sum square reduces to a single

unsquared term.

®𝑞ascent, centerbody
𝑢 = 𝐹centerbody ®𝑢C2T (9)

Unmodeled effects are accounted for with a more substantial uncertainty factor relative to the full-stack model.

C. Solid Rocket Booster Separation

The separation of the solid rocket boosters (SRBs) is a mission-critical event that occurs midway through the ascent

stage. When the SRB thrust drops below a certain near-zero threshold, separation motors (on each SRB) fire from either

side of the centerbody and the SRBs jettison outboard while the centerbody continues to accelerate forward. An outline

of their general trajectory is shown in Figure 9. During this event, aerodynamic forces and moments influence whether

the boosters will 1) successfully clear their mounting hardware, 2) avoid recontacting the centerbody as they move aft,

and 3) avoid contacting each other as they impinge on the main engine plumes and fall back to Earth.

As outlined in Ref. [33], the booster separation database covers a very large parameter space in order to anticipate

myriad booster separation trajectories. This broad space was populated with over 20,000 Cart3D simulations dispersed

using a thirteen-dimension star-shaped approach with initially uniform point spacing in each dimension. Kriging defined
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Fig. 9 An outline of the Artemis I booster separation event.

the response surface because the Voronai diagram that defines the natural neighbor interpolant was found to be poorly

conditioned in such a high dimension. The Cart3D capability to model plume interactions was employed. The database

also accounts for whether a core-stage engine or a booster separation motor are disabled due to a flight anomaly, to

ensure that in these eventualities the off-nominal mission profiles are still viable.

The uncertainty was quantified by comparing Cart3D simulations to two other, lower-parameter resolution data

sources: approximately 100 OVERFLOW simulations (®𝑢C2C) and approximately 6,000 Cart3D simulations replicating

points in an LUPWT test (®𝑢C2T ) [34]. Uncertainty was also quantified for the iteration averaging in Cart3D (®𝑢num),

database tabulation procedure (®𝑢mod), and the assumption that the boosters could be simulated at symmetric separation

positions but sampled independently of one another (®𝑢sym). An additional uncertainty term was included to account for

the database structure and how it addressed booster separation motor failures (®𝑢bsm). This final uncertainty term was
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excluded for database usage where the booster separation motors were nominal.

®𝑞booster separation
𝑢 =

√√√√√√√√√𝐹cfd

(
®𝑢2

C2T + ®𝑢2
C2C + ®𝑢2

num

)
+𝐹db

(
®𝑢2

mod + ®𝑢2
sym + ®𝑢2

bsm

) (10)

The code-to-tunnel uncertainty was computed by taking a 3𝜎 bound of point-to-point comparisons as a function of

axial booster separation distance; the code-to-code uncertainty was computed via the RM because not enough points

existed at each axial separation distance to make a statistically representative set. The Cart3D sampling error uncertainty

came from a 3𝜎 bound of variations in the simulation caused by simulating the same physical conditions with various

computational settings including CFL number and initial mesh resolution. The response surface model error is especially

important in this database due to the very high dimension of the parameter space; several dozen test points were

simulated in Cart3D and compared to the response surface, bounding the results at 3𝜎 to quantify this uncertainty source.

Several thousand additional Cart3D simulations were conducted to quantify the effect of the symmetry assumption

throughout the entire parameter space, with similar 3𝜎 bounds on the results yielding the uncertainty term. Several

dozen more were run to quantify the booster separation motor uncertainty. The total uncertainty was defined only as a

function of the booster axial distance from its initial position.

A representative buildup of uncertainties on SRB forces is presented in Figure 10. Different uncertainty sources

dominate different stages of the separation event. The uncertainty model dependency on the booster axial separation

distance enables the F&M at smaller separation distances, where centerbody recontact is more likely, to be represented

within a tighter yet still rigorous uncertainty margin that is not affected by the larger uncertainties that exist at larger

separations. At all separation distances, the Cart3D numerical uncertainty is minimally influential in the nominal flight

regime but far more dominant in the engine-out conditions. The inclusion of the booster separation motor uncertainty

term tends to have more influence at the larger separation distances.

Moderate uncertainty factors were employed to account for unmodeled effects including untracked parameter

sensitivities and unsteady effects. Additional validation was performed by 1) further assessing the rigor of the

code-to-code uncertainty using a tertiary flow solver and 2) simulating booster movement directly within OVERFLOW,

but these validation sets were not included in the uncertainty model due to double-counting.

D. MPCV SM Panel Jettison

The jettison of the Multi-purpose Crew Vehicle (MPCV) service module (SM) panels occurs at hypersonic Mach

numbers near the altitude boundary where aerodynamic effects are no longer influential on the vehicle trajectory. A

schematic of the jettison for one panel is provided in Figure 11. As with booster separation, the database is organized

into multiple regions of aerodynamic similarity: the Hinged, Near, and Far domains. The panels must jettison prior to
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Fig. 10 Representative uncertainty component buildups for the nominal (left) and core engine-out (right) booster
separation F&M database for SRB side (top) and normal forces (bottom). The SRBs are further downstream of
the centerbody as the separation distance blocks increase from 1 to 4.

the MPCV separation from the centerbody; the aerodynamic database serves to ensure that they do not recontact with

the centerbody during the jettison event.

In addition to simulating multiple panels at multiple positions, the database is a function of the centerbody angles of

attack and sideslip. Due to the high parametric complexity and the multibody nature of the problem, as with booster

separation, the primary data source for this database is the Cart3D flow solver.

This database uncertainty model only accounts for representation error and sampling error because the database

assembly error was found to be negligible.

®𝑞MPVC SM panel jettison
𝑢 =

√︂
𝐹cfd

(
®𝑢2

C2C + ®𝑢2
num

)
(11)

The code-to-code (representation) uncertainty was quantified by comparing select (inviscid) Cart3D simulations to

(viscous) Loci/Chem simulations and taking a 3𝜎 bound of the identified differences. The numerical uncertainty was

quantified directly from the fluctuations in the inviscid solution iteration history to a similar 3𝜎 bound. In this and all

other databases, grid resolution was studied to substantiate the delivered databases but the results did not inform the

uncertainty model directly. The resulting uncertainties were collected into the three jettison regions but left uniform
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Fig. 11 An outline of the Artemis I MPCV SM panel jettison event. Note that one panel is illustrated but that
multiple panels jettison at once on the actual vehicle.

within each region. They differed for each panel due to the interactions between panels and the centerbody orientation.

IV. Conclusion
In this paper, the uncertainty quantification procedures applied to the Space Launch System Artemis I configuration

aerodynamic forces and moments databases have been summarized. Treatment of different data source types was

discussed and each specific database was outlined.

Although each uncertainty model in Section III was unique, they were all created using the same core principles:

accumulation of uncorrelated uncertainties; the range method to characterize uncertainties from sparse, comparable

measurements; fair audits of both epistemic and aleatoric uncertainty sources that often affect the severity of uncertainty

factors; and an awareness of how the resulting databases will interact with the rest of the vehicle program. These

tenets yielded databases that were accurate enough for reasonable mission viability assessments to be performed and

conservative enough for reasonable externalities to be anticipated.

Quantification of uncertainty in applied aerodynamic applications is an exercise in risk acceptance. These databases
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exist within larger frameworks of vehicle design and risk mitigation; while the nominal aerodynamic loads tend to

inform the configuration design, the uncertainties on those loads more significantly inform anticipated safety factors,

launch windows, and ultimate configuration functionality. And yet the most useful and relevant aerodynamic database

is not one that multiplies its bounds ad infinitum in the name of conservatism. Rather, it is crucial for aerodynamic

database developers to provide accurate and precise representations of how the vehicle interacts with the air, all across

the spectrum of relevant variations. Only then can the program at large conclude whether aerodynamically motivated

concerns are valid ones; only then can the vehicle operate as expected.
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