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The need for novel extreme environment alloys ©

* Rocket engine components (injectors, nozzles, turbine static and rotating
components, chambers) operate in extreme environments.

* High pressure, high heat flux, high thermal gradients, long duty cycles, stress
rupture (creep), oxidation

e Additive manufacturing (AM) has played a pivotal role in component
development and production, but materials are still based on heritage
metal alloys.

* New alloys using unique advantages of AM processing can provide a step
change in properties to allow for higher performance.

 GRX-810 is an oxide dispersion strengthened (ODS) alloy for sustained use
at 900-1200°C with high strength and 100x stress rupture capabilities.

There is a need to advance metal alloys using additive manufacturing
processes to enable higher performing components.




“Usable” Strength

Single

Superalloys

Al-Alloys (2i-51Y)

DS alloys can be utilized for >1000°C
environments

TiAl Alloys ODS Alloys

Protective coating needed

-

Refractory Alloys

500 1000

1500 2000

Temperature (°C)




GRX-810 Overview

Glenn Research Center eXtreme temperature
alloy (GRX-810) was developed using Integrated
Computational Materials Engineering (ICME) —
significantly reducing development time.

* Ni-Co-Cr medium entropy alloy using Laser
Powder Bed Fusion (L-PBF).

* Uses unique ODS powder coating process with

ODS Superalloys

nano-scale Y,0,. £ -
« Significantly improved properties: Gao oo ooswsoark 7t x
« 2x strength at elevated temperatures (1100°C) . e T
e 1,000x better creep rupture 2 e
e 2x better resistance to oxidation g 20 Superaions

]

* Designed for simplified heat treatment — as-built L T L
or Hot Isostatic Pressing (HIP).

Smith, T.M., Thompson, A.C., Gabb, T.P., Bowman, C.L., Kantzos, C.A., 2020. Efficient production of a high-
performance dispersion strengthened, multi-principal element alloy. Scientific Reports 2020 10:1 10, 1-9.
https://doi.org/10.1038/s41598-020-66436-5



SEM Images of GRX-810 using L-PBF €a
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EOS M280

EOS M100

Secondary electron SEM micrographs of (a) Lot 1 GRX-810 produced using an EOS M100 and (b) Lot 2
GRX-810 produced using an EOS M280. The fine circular dark features are nano-scale Y203 particles.
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Tensile properties of GRX-810 produced using an EOS M100 and using an EOS M280. Notable differences in
room temperature strength and high temperature elongation were observed between the different lots.
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GRX-810 Stress Rupture and Oxidation " (TP
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similar trends, although M280 performing better

Smith, T.M., Kantzos, C.A., Zarkevich, N.A., Harder, B.J., Heczko, M., Gradl, P.R., Thompson, A.C., Mills, M.J.,
Gabb, T.P., Lawson, J.W., 2023. A 3D printable alloy designed for extreme environments. Nature.
https://doi.org/10.1038/s41586-023-05893-0



GRX-810 Thermophysical Properties

Thermal Conductivity and Coefficient Thermal Expansion
(CTE) are similar to Ni-based superalloys
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* Hot-fire testing of GRX-810 pentad
injectors and channel-cooled nozzles
using L-PBF GRX-810

* Propellants: LOX/LH2 and LOX/LCH4
e Chamber Pressure ~750 psig (52 bar)
e LOX/LH2 Mixture Ratio=5.3-7.0
e LOX/LCH4 Mixture Ratio=2.7-3.6

 Demonstrate successful component
fabrication process

* Challenge material at elevated
temperatures at MSFC TS115

* Increase TRL from 3 > 5




Typical Process Flow of GRX-810 Hardware
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Typical Process Flow of GRX-810 Hardware

Installation




Component Starts Duration Pc MR

(-) (-) (S) (bar) (psia) (-)
H2 Injector SNO1 9 302.8 495-57.2 718-829 5.33-7.02
CH4 Injector SNO02 29 586.5 37.4-52.4 542-760 3.03-3.65
CH4 Injector SNO3 84 22279 43.2-521 626-756 2.68-3.19
Nozzle SNO04 91 23094 374-521 542-756 2.68-3.11
Nozzle SNO05 8 149.1 49.0-505 711-732 3.00-3.19
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Injector Test Results

* GRX-810 Injector A achieved 84 starts and 2,228 sec (LOX/LCH4)
* Demonstrated greater life than Inconel 625/718 equivalent

* GRX-810 Injector B achieved 30 starts and 591 sec (LOX/LCH4)
 GRX-810 Injector C achleved O starts and 303 sec (LOX/LH2)

Inconel 625 Injector after 10 starts (Erosion) "% GRX-810, LOX/LCH4 13 starts GRX- 310 LOX/LCH4 34 starts 13



GRX-810 Nozzle Test Results

» Regeneratively-cooled (LCHA4) Z 1100 - _emE
nozzle accumulated 90 starts and 100" - 18002
2,309 seconds. = g

[ =

* Local wall temperature >1,000°C 700 - - n % 1260
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Hot-fire Testing
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Summary and Future Work

* Demonstrated successful formulation, powder processing and
coating, microstructure characterization, mechanical properties,
component development and hot-fire testing of GRX-810 alloy.
Successful scale up from M100 to M280 platform and properties.
Elevated temperature tensile (1100°C) is 2x Alloy 718.

* 1,000x improved creep rupture compared to Ni-based superalloys.
 Demonstrated successful injectors and nozzle L-PBF builds,
processing, and hot-fire testing.

Accumulated 221 starts across components, increased TRL=5

Ongoing Development

 Commercialization of the powder processing and coating.

* Continued mechanical testing and characterization ongoing.
e Scale up to M400 and larger machine platforms (L-PBF, DED).
* Properties and data will be available to industry partners.
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