National Aeronautics and Space Administration

Extreme Temperature Additively Manufactured GRX-810 Alloy Development and Hot-fire Testing for Liquid Rocket Engines

> Paul Gradl, Darren Tinker, Ben Williams NASA Marshall Space Flight Center

Tim Smith, Christopher Kantzos

NASA Glenn Research Center

9 January 2024

- Rocket engine components (injectors, nozzles, turbine static and rotating components, chambers) operate in extreme environments.
 - High pressure, high heat flux, high thermal gradients, long duty cycles, stress rupture (creep), oxidation
- Additive manufacturing (AM) has played a pivotal role in component development and production, but materials are still based on heritage metal alloys.
- New alloys using unique advantages of AM processing can provide a step change in properties to allow for higher performance.
- GRX-810 is an oxide dispersion strengthened (ODS) alloy for sustained use at 900-1200°C with high strength and 100x stress rupture capabilities.

There is a need to advance metal alloys using additive manufacturing processes to enable higher performing components.

Landscape of Aerospace Materials and GRX-810

GRX-810 Overview

- Glenn Research Center eXtreme temperature alloy (GRX-810) was developed using Integrated Computational Materials Engineering (ICME) – significantly reducing development time.
- Ni-Co-Cr medium entropy alloy using Laser Powder Bed Fusion (L-PBF).
- Uses unique ODS powder coating process with nano-scale Y_2O_3 .
- Significantly improved properties:
 - 2x strength at elevated temperatures (1100°C)
 - 1,000x better creep rupture
 - 2x better resistance to oxidation
- Designed for simplified heat treatment as-built or Hot Isostatic Pressing (HIP).

Smith, T.M., Thompson, A.C., Gabb, T.P., Bowman, C.L., Kantzos, C.A., 2020. Efficient production of a highperformance dispersion strengthened, multi-principal element alloy. Scientific Reports 2020 10:1 10, 1–9. https://doi.org/10.1038/s41598-020-66436-5

SEM Images of GRX-810 using L-PBF

Secondary electron SEM micrographs of (a) Lot 1 GRX-810 produced using an EOS M100 and (b) Lot 2 GRX-810 produced using an EOS M280. The fine circular dark features are nano-scale Y2O3 particles.

GRX-810 Mechanical Properties

Tensile properties of GRX-810 produced using an EOS M100 and using an EOS M280. Notable differences in room temperature strength and high temperature elongation were observed between the different lots.

Stress rupture shows 100x improvement over typical Ni-based superalloys

Creep results from M100 and M280 showing similar trends, although M280 performing better

Cyclic oxidation at 1093°C and 1200°C

Smith, T.M., Kantzos, C.A., Zarkevich, N.A., Harder, B.J., Heczko, M., Gradl, P.R., Thompson, A.C., Mills, M.J., Gabb, T.P., Lawson, J.W., 2023. A 3D printable alloy designed for extreme environments. Nature. https://doi.org/10.1038/s41586-023-05893-0

Thermal Conductivity and Coefficient Thermal Expansion (CTE) are similar to Ni-based superalloys

Successful Hot-fire Testing

- Hot-fire testing of GRX-810 pentad injectors and channel-cooled nozzles using L-PBF GRX-810
- Propellants: LOX/LH2 and LOX/LCH4
 - Chamber Pressure ~750 psig (52 bar)
 - LOX/LH2 Mixture Ratio = 5.3 7.0
 - LOX/LCH4 Mixture Ratio = 2.7 3.6
- Demonstrate successful component fabrication process
- Challenge material at elevated temperatures at MSFC TS115
- Increase TRL from $3 \rightarrow 5$

Injector

As-Built Nozzle

Post-HIP Nozzle

Typical Process Flow of GRX-810 Hardware

10

Typical Process Flow of GRX-810 Hardware

Hot-fire Testing of L-PBF GRX-810 Injector and Nozzle

Component		Starts	Duration	Pc		MR
(-)		(-)	(S)	(bar)	(psia)	(-)
H2 Injector	SN01	9	302.8	49.5 - 57.2	718 - 829	5.33 - 7.02
CH4 Injector	SN02	29	586.5	37.4 - 52.4	542 - 760	3.03 - 3.65
CH4 Injector	SN03	84	2,227.9	43.2 - 52.1	626 - 756	2.68 - 3.19
Nozzle	SN04	91	2,309.4	37.4 - 52.1	542 - 756	2.68 - 3.11
Nozzle	SN05	8	149.1	49.0 - 50.5	711 - 732	3.00 - 3.19

- GRX-810 Injector A achieved 84 starts and 2,228 sec (LOX/LCH4)
 - Demonstrated greater life than Inconel 625/718 equivalent
- GRX-810 Injector B achieved 30 starts and 591 sec (LOX/LCH4)
- GRX-810 Injector C achieved 9 starts and 303 sec (LOX/LH2)

Inconel 625 Injector after 10 starts (Erosion)

GRX-810, LOX/LCH4 – 13 starts

GRX-810 Nozzle Test Results

- Regeneratively-cooled (LCH4) nozzle accumulated 90 starts and 2,309 seconds.
- Local wall temperature >1,000°C

Hot-fire Testing

L-PBF GRX-810 Component Examples

Summary and Future Work

- Demonstrated successful formulation, powder processing and coating, microstructure characterization, mechanical properties, component development and hot-fire testing of GRX-810 alloy.
- Successful scale up from M100 to M280 platform and properties.
- Elevated temperature tensile (1100°C) is 2x Alloy 718.
- 1,000x improved creep rupture compared to Ni-based superalloys.
- Demonstrated successful injectors and nozzle L-PBF builds, processing, and hot-fire testing.
- Accumulated 221 starts across components, increased TRL = 5

Ongoing Development

- Commercialization of the powder processing and coating.
- Continued mechanical testing and characterization ongoing.
- Scale up to M400 and larger machine platforms (L-PBF, DED).
- Properties and data will be available to industry partners.

Contact: Paul Gradl NASA MSFC Paul.R.Gradl@nasa.gov

Acknowledgements

- Optimized and Repeatable Components using Additive (ORCA) Project
 - Under STMD Game Changing Program
- Transformational Tools and Technology (TTT)
- SLS Liquid Engine Office (LEO)
- Rapid Analysis and Manufacturing Propulsion Technology (RAMPT) Project
- John Fikes
- John Vickers
- Lynn Machamer
- Ken Cooper (Nam Pros)
- Johnny Heflin
- Keegan Jackson
- Kristin Morgan
- Dale Hopkins
- Tessa Fedotowsky
- Bob Witbrodt
- Adam Willis
- MSFC CT Team
- Tom Teasley

- Matt Marsh
- Colton Katsarelis
- Dennis Strickland
- Kendall Feist
- Nick Hensley
- Steve Baggette
- Aaron Thompson
- David Ellis
- Cheryl Bowman
- Timothy P. Gabb
- Nikolai A. Zarkevich
- Bryan J. Harder
- Milan Heczko
- Michael J. Mills
- John W. Lawson
- Derek Quade
- Praxair
- RPM Innovations
- TS115 test crew
- And many others involved