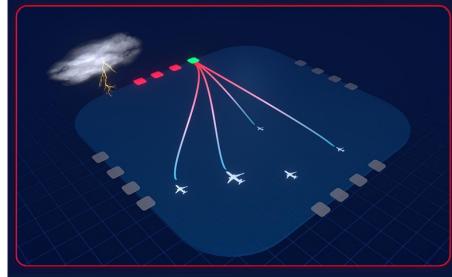
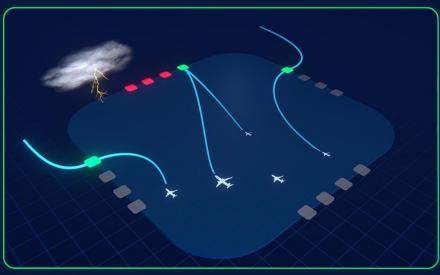


Quality of Candidate Flights and Submission Prediction in Collaborative Digital Departure Reroute

Sarah Youlton[†], Alexandre Amblard[‡], William J. Coupe*

† Universities Space Research Association, *NASA Ames Research Center


AIAA SciTech Forum January 8th - January 12th, 2024


This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Background

- NASA's Digital Information Platform (DIP)
- Field evaluations at Dallas/Fort Worth International Airport (KDFW)
- D10 Terminal Radar Approach CONtrol (TRACON) composed of 16 departure fixes along the terminal boundary

Problem:

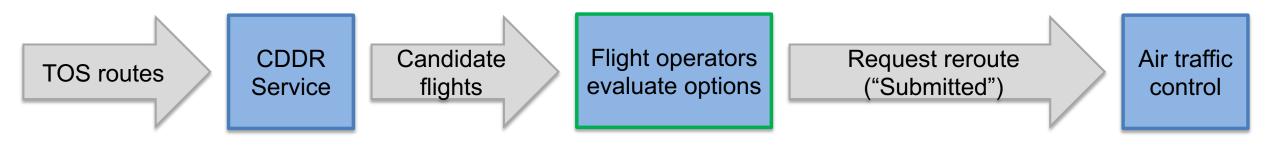
Departure fixes impacted by severe weather and aircraft separation requirements causing delay

Solution:

Reroute flights using an alternative route on a different departure fix to avoid restrictions and reduce delay

 DIP enables reroute capability through the Collaborative Digital Departure Reroute (CDDR) Service

Collaborative Digital Departure Reroute



Purpose

- Service provides reroute decision support to flight operators and air traffic control
- Flight operators evaluate reroute options to reduce delay, fuel burn, and CO₂ emissions

Service Details

- Input: Trajectory Option Set (TOS) = a set of alternative routes
- Predicts delay on filed route and each TOS alternative route
- Computes delay savings on each TOS alternative route relative to filed route
- Computes system level savings from rerouting a single flight
- Proposes candidate flights = TOS routes with predicted delay savings > predefined threshold

CDDR Service helps flight operators with reroute decision process

Objectives

Quality of Candidate Score

Gain insight into which candidate flights are higher quality

Key Points

- Would enable user to focus on best candidate flights for reroute
- Would aid decision-making process
- Identify high quality candidate flights that were not submitted to improve submissions

Binary Classification Model

Predict if the flight operator will submit a candidate flight for reroute (Discussed in paper)

Data

- Data from operational CDDR system at KDFW between 4/28/2022 and 3/27/2023
- 927 candidate flights: 820 not submitted, 107 submitted
- Six data elements identified as features:

Data Element	Description		
Candidate duration	Duration alternative route was considered a candidate flight (in minutes)		
OFF delay savings*	Estimated delay savings at the runway (in minutes)		
IN delay savings*	Estimated delay savings at the arrival gate (in minutes)		
System level delay savings for the airline*	Estimated system level delay savings for subsequent flights from the same carrier (in minutes		
Controller-Pilot Data Link Communication (CPDLC)	Whether the aircraft has equipment to communicate reroutes digitally (boolean)		
Probability of delay savings*	Probability that the alternative route has OFF delay savings > predefined threshold		

^{*} Indicates sampled at:

- 1) Flight's pushback time from the gate (not submitted candidate flights)
- 2) Last time the flight operator submitted the reroute (submitted candidate flights)

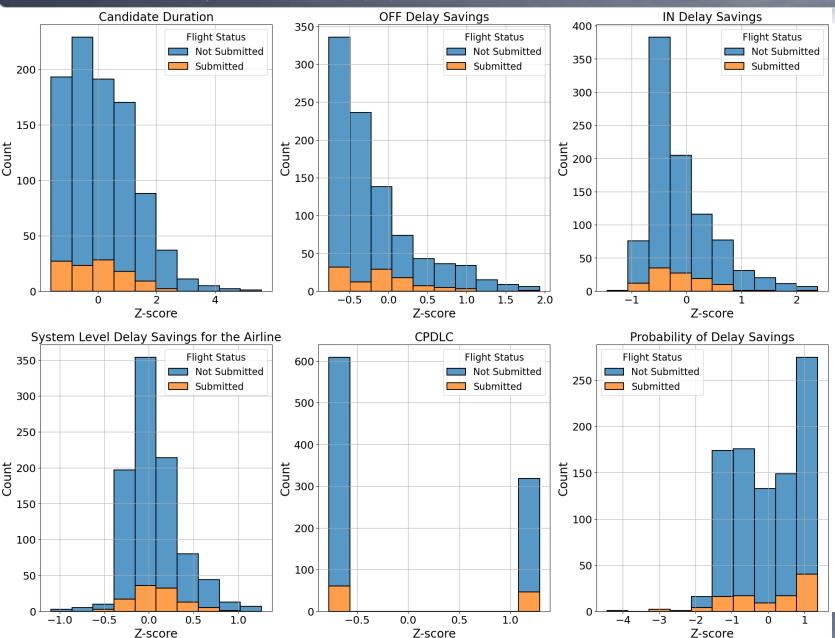
Data (Continued)

Data Engineering

- Converted boolean data elements to integers
- Changed delay savings signs so positive indicates savings
- Removed candidate flights with null values

Z-score Normalization

- Mean and standard deviation for each feature
- Used data from 4/28/2022 9/16/2022


Removed Outliers

- Identified for normalized features in the full data set
- Outside median ± 3.5 x Interquartile Range

Data (Continued)

Key Points

- Focus on bins with higher ratio of submitted to not submitted candidate flights
- Some candidate flights with high delay savings were not submitted (data challenge)

Quality of Candidate Score

Objective: Gain insight into the quality of candidate flights to determine if they are a good option for submission

Method: Assign a score to each candidate flight using a summation of weighted normalized features

Quality Score =
$$\sum_{n=1}^{6} w_n f_n$$

Quality of Candidate Score

Objective: Gain insight into the quality of candidate flights to determine if they are a good option for submission

Method: Assign a score to each candidate flight using a summation of weighted normalized features

Quality Score =
$$\sum_{n=1}^{6} w_n f_n$$

No "true" score

- Submitted status used to indicate high quality
- Bin flights based on scores
- Compute submitted fraction for each bin

Submitted fraction =
$$\frac{Submitted\ count}{Total\ count}$$

Quality of Candidate Score

Objective: Gain insight into the quality of candidate flights to determine if they are a good option for submission

Method: Assign a score to each candidate flight using a summation of weighted normalized features

Quality Score =
$$\sum_{n=1}^{6} w_n f_n$$

No "true" score

- Submitted status used to indicate high quality
- Bin flights based on scores
- Compute submitted fraction for each bin

Submitted fraction =
$$\frac{Submitted\ count}{Total\ count}$$

Weight Options

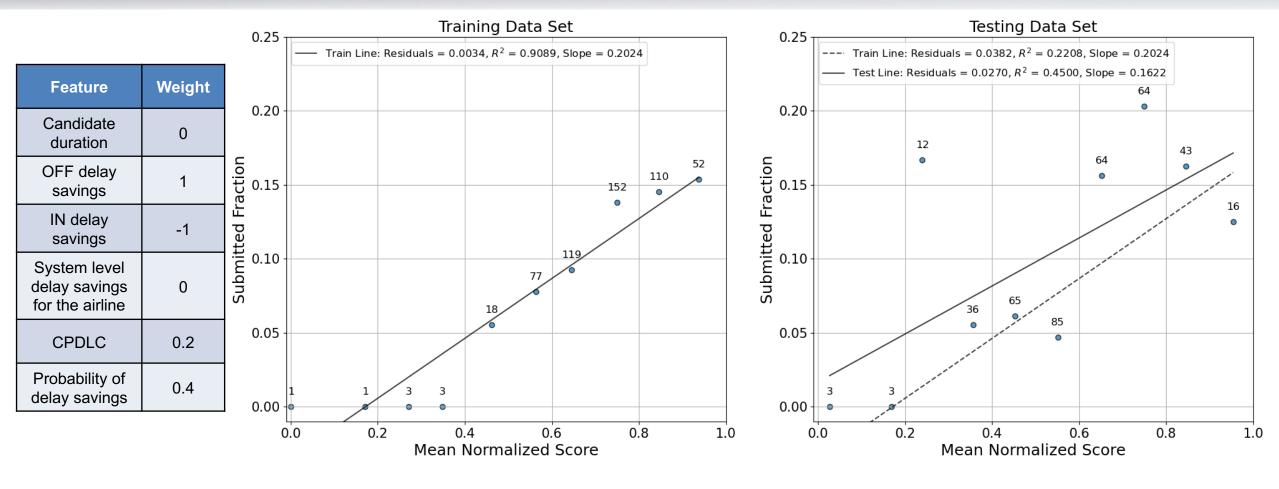
- Baseline: all weights to 1, poor results
- Weight permutations from -1 to 1
 in 0.2 increments (1,771,561 options)

Quality of Candidate Score (Continued)

Weight Permutation Steps

- 1. Scores computed and normalized between 0 and 1
- 2. Each flight assigned a bin based on its score (10 bins total)
- 3. Computed submitted fraction and mean normalized score for each bin
- 4. Check at least six bins are defined
- 5. Best fit line: x-axis = mean normalized score, y-axis = submitted fraction
- 6. Calculated residuals, R², and slope of best fit line to evaluate weight permutation performance

Quality of Candidate Score (Continued)


Group	Date Range	Percentage of Data	Routes Not Submitted	Routes Submitted
Training	4/28/22 – 9/16/22	57.8%	473	63
Testing	9/17/22 – 3/27/23	42.2%	347	44

- For each set of weights, steps performed on:
 - 1. Full training dataset
 - 2. Stratified 3-fold cross validation on training dataset
- Resulted in best fit lines for the full training dataset, training folds, and validation folds
- Computed average residuals and average R² only if the sign of the slopes for all best fit lines matched
- Reported weights producing minimum average residuals and maximum average R²
- Applied best weights to testing data

Quality of Candidate Score (Continued)

- Higher quality score means higher submitted fraction
- Challenge: High quality candidate flights not submitted because of hidden constraints and human factors

Conclusion

Quality of Candidate Score

- Developed initial scoring method to identify higher quality candidate flights
- Would enable user to focus on the best candidate flights for reroute
- Would aid in decision-making process
- Identify high quality candidate flights that were not submitted to improve submissions

Future Work

- Evaluate other weight possibilities
- Investigate other scoring methods
- Test other data elements as features
- Goal: Provide scoring method in real-time operations